1
|
Xu Y, Yang Z, Wang T, Hu L, Jiao S, Zhou J, Dai T, Feng Z, Li S, Meng Q. From molecular subgroups to molecular targeted therapy in rheumatoid arthritis: A bioinformatics approach. Heliyon 2024; 10:e35774. [PMID: 39220908 PMCID: PMC11365346 DOI: 10.1016/j.heliyon.2024.e35774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
1Background Rheumatoid Arthritis (RA) is a heterogeneous autoimmune disease with multiple unidentified pathogenic factors. The inconsistency between molecular subgroups poses challenges for early diagnosis and personalized treatment strategies. In this study, we aimed to accurately distinguish RA patients at the transcriptome level using bioinformatics methods. 2Methods We collected a total of 362 transcriptome datasets from RA patients in three independent samples from the GEO database. Consensus clustering was performed to identify molecular subgroups, and clinical features were assessed. Differential analysis was employed to annotate the biological functions of specifically upregulated genes between subgroups. 3Results Based on consensus clustering of RA samples, we identified three robust molecular subgroups, with Subgroup III representing the high-risk subgroup and Subgroup II exhibiting a milder phenotype, possibly associated with relatively higher levels of autophagic ability. Subgroup I showed biological functions mainly related to viral infections, cellular metabolism, protein synthesis, and inflammatory responses. Subgroup II involved autophagy of mitochondria and organelles, protein localization, and organelle disassembly pathways, suggesting heterogeneity in the autophagy process of mitochondria that may play a protective role in inflammatory diseases. Subgroup III represented a high-risk subgroup with pathological processes including abnormal amyloid precursor protein activation, promotion of inflammatory response, and cell proliferation. 4Conclusion The classification of the RA dataset revealed pathological heterogeneity among different subgroups, providing new insights and a basis for understanding the molecular mechanisms of RA, identifying potential therapeutic targets, and developing personalized treatment approaches.
Collapse
Affiliation(s)
- Yangyang Xu
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhenyu Yang
- Jinan University, Guangzhou, Guangdong Province, China
- Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, Xuzhou City, Jiangsu Province, China
| | - Tengyan Wang
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang City, Guizhou Province, China
| | - Liqiong Hu
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Songsong Jiao
- Jinan University, Guangzhou, Guangdong Province, China
| | - Jiangfei Zhou
- Jinan University, Guangzhou, Guangdong Province, China
| | - Tianming Dai
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhencheng Feng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Qinqqi Meng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Jiang Y, Yue Y, Lu C, Latif MZ, Liu H, Wang Z, Yin Z, Li Y, Ding X. AtSNU13 modulates pre-mRNA splicing of RBOHD and ALD1 to regulate plant immunity. BMC Biol 2024; 22:153. [PMID: 38982460 PMCID: PMC11234627 DOI: 10.1186/s12915-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China.
| |
Collapse
|
3
|
Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA (NEW YORK, N.Y.) 2023; 29:531-550. [PMID: 36737103 PMCID: PMC10158995 DOI: 10.1261/rna.079273.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 05/06/2023]
Abstract
Premessenger RNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex that assembles in a highly regulated process on each intronic substrate. Most studies of splicing and spliceosomes have been carried out in human or S. cerevisiae model systems. There exists, however, a large diversity of spliceosomes, particularly in organisms with reduced genomes, that suggests a means of analyzing the essential elements of spliceosome assembly and regulation. In this review, we characterize changes in spliceosome composition across phyla, describing those that are most frequently observed and highlighting an analysis of the reduced spliceosome of the red alga Cyanidioschyzon merolae We used homology modeling to predict what effect splicing protein loss would have on the spliceosome, based on currently available cryo-EM structures. We observe strongly correlated loss of proteins that function in the same process, for example, in interacting with the U1 snRNP (which is absent in C. merolae), regulation of Brr2, or coupling transcription and splicing. Based on our observations, we predict splicing in C. merolae to be inefficient, inaccurate, and post-transcriptional, consistent with the apparent trend toward its elimination in this lineage. This work highlights the striking flexibility of the splicing pathway and the spliceosome when viewed in the context of eukaryotic diversity.
Collapse
Affiliation(s)
- Corbin S Black
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada H3A 0C7
| | - Thomas A Whelan
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Erin L Garside
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Naomi M Fast
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Stephen D Rader
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
4
|
Schärfen L, Zigackova D, Reimer KA, Stark MR, Slat VA, Francoeur NJ, Wells ML, Zhou L, Blackshear PJ, Neugebauer KM, Rader SD. Identification of Alternative Polyadenylation in Cyanidioschyzon merolae Through Long-Read Sequencing of mRNA. Front Genet 2022; 12:818697. [PMID: 35154260 PMCID: PMC8831791 DOI: 10.3389/fgene.2021.818697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Alternative polyadenylation (APA) is widespread among metazoans and has been shown to have important impacts on mRNA stability and protein expression. Beyond a handful of well-studied organisms, however, its existence and consequences have not been well investigated. We therefore turned to the deep-branching red alga, Cyanidioschyzon merolae, to study the biology of polyadenylation in an organism highly diverged from humans and yeast. C. merolae is an acidothermophilic alga that lives in volcanic hot springs. It has a highly reduced genome (16.5 Mbp) and has lost all but 27 of its introns and much of its splicing machinery, suggesting that it has been under substantial pressure to simplify its RNA processing pathways. We used long-read sequencing to assess the key features of C. merolae mRNAs, including splicing status and polyadenylation cleavage site (PAS) usage. Splicing appears to be less efficient in C. merolae compared with yeast, flies, and mammalian cells. A high proportion of transcripts (63%) have at least two distinct PAS's, and 34% appear to utilize three or more sites. The apparent polyadenylation signal UAAA is used in more than 90% of cases, in cells grown in both rich media or limiting nitrogen. Our documentation of APA for the first time in this non-model organism highlights its conservation and likely biological importance of this regulatory step in gene expression.
Collapse
Affiliation(s)
- Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Kirsten A. Reimer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Martha R. Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Viktor A. Slat
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Nancy J. Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Melissa L. Wells
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Perry J. Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Stephen D. Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
5
|
Interactome Analysis of KIN (Kin17) Shows New Functions of This Protein. Curr Issues Mol Biol 2021; 43:767-781. [PMID: 34449532 PMCID: PMC8929021 DOI: 10.3390/cimb43020056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein-protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.
Collapse
|
6
|
Bao J, Zhang Y, Zhang L, Wang X. Effects of maternal exposure to PFOA on testes of male offspring mice. CHEMOSPHERE 2021; 272:129585. [PMID: 33465609 DOI: 10.1016/j.chemosphere.2021.129585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This study was conducted to explore the effects of maternal exposure to perfluorooctanoic acid (PFOA) on testicular development of male offspring mice. 20 pregnant Kunming mice were randomly divided into control group and PFOA exposure group with 10 mice of each. In PFOA exposure group, pregnant mice were given 5 mg/kg BW PFOA daily by gavage during gestation. Male offspring mice were killed to separate serum and collect testis at postpartum day 21, then tested the experimental indicators. The results showed that compared with control group, the content of PFOA in the serum of PFOA-exposed mice increased significantly and testosterone content is significantly reduced. Histological observations revealed architectural damages in testis in PFOA exposed groups and the apoptosis was increased. Transcriptome sequencing results showed that the U4/U6 snRNA coding genes snu13 and prp19 complex coding genes HSP73 were up-regulated and the U5 snRNA coding genes Brr2, Prp8 and EJC/TREX coding THOC genes were down-regulated after PFOA exposure Real-time PCR confirmed this result. These results indicate that the exposure of pregnant mice to perfluorooctanoic acid will have a damaging effect on the development of testes in male offspring mice, which may be due to blocked activation of the shear body, changes in structural functions, and inability to perform shear functions.
Collapse
Affiliation(s)
- Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Linchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
7
|
Reimer KA, Stark MR, Aguilar LC, Stark SR, Burke RD, Moore J, Fahlman RP, Yip CK, Kuroiwa H, Oeffinger M, Rader SD. The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors. RNA (NEW YORK, N.Y.) 2017; 23:952-967. [PMID: 28325844 PMCID: PMC5435867 DOI: 10.1261/rna.058487.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/15/2017] [Indexed: 05/22/2023]
Abstract
Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga Cyanidioschyzon merolae and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the C. merolae LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Department of Chemistry, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Martha R Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Lisbeth-Carolina Aguilar
- Laboratory of RNP Biochemistry, Institut de Recherches Cliniques de Montréal (IRCM), Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Sierra R Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Jack Moore
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Haruko Kuroiwa
- Kuroiwa Initiative Research Unit, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Marlene Oeffinger
- Laboratory of RNP Biochemistry, Institut de Recherches Cliniques de Montréal (IRCM), Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| |
Collapse
|