1
|
Lemen D, Rokita SE. Polar Interactions between Substrate and Flavin Control Iodotyrosine Deiodinase Function. Biochemistry 2024; 63:2380-2389. [PMID: 39213510 PMCID: PMC11408085 DOI: 10.1021/acs.biochem.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flavin cofactors offer a wide range of chemical mechanisms to support a great diversity in catalytic function. As a corollary, such diversity necessitates careful control within each flavoprotein to limit its function to an appropriate subset of possible reactions and substrates. This task falls to the protein environment surrounding the flavin in most enzymes. For iodotyrosine deiodinase that catalyzes a reductive dehalogenation of halotyrosines, substrates can dictate the chemistry available to the flavin. Their ability to stabilize the necessary one-electron reduced semiquinone form of flavin strictly depends on a direct coordination between the flavin and α-ammonium and carboxylate groups of its substrates. While perturbations to the carboxylate group do not significantly affect binding to the resting oxidized form of the deiodinase, dehalogenation (kcat/Km) is suppressed by over 2000-fold. Lack of the α-ammonium group abolishes detectable binding and dehalogenation. Substitution of the ammonium group with a hydroxyl group does not restore measurable binding but does support dehalogenation with an efficiency greater than those of the carboxylate derivatives. Consistent with these observations, the flavin semiquinone does not accumulate during redox titration in the presence of inert substrate analogues lacking either the α-ammonium or carboxylate groups. As a complement, a nitroreductase activity based on hydride transfer is revealed for the appropriate substrates with perturbations to their zwitterion.
Collapse
Affiliation(s)
- Daniel Lemen
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Su Q, Xu B, Chen X, Rokita SE. Misregulation of bromotyrosine compromises fertility in male Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2322501121. [PMID: 38748578 PMCID: PMC11126969 DOI: 10.1073/pnas.2322501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/27/2024] Open
Abstract
Biological regulation often depends on reversible reactions such as phosphorylation, acylation, methylation, and glycosylation, but rarely halogenation. A notable exception is the iodination and deiodination of thyroid hormones. Here, we report detection of bromotyrosine and its subsequent debromination during Drosophila spermatogenesis. Bromotyrosine is not evident when Drosophila express a native flavin-dependent dehalogenase that is homologous to the enzyme responsible for iodide salvage from iodotyrosine in mammals. Deletion or suppression of the dehalogenase-encoding condet (cdt) gene in Drosophila allows bromotyrosine to accumulate with no detectable chloro- or iodotyrosine. The presence of bromotyrosine in the cdt mutant males disrupts sperm individualization and results in decreased fertility. Transgenic expression of the cdt gene in late-staged germ cells rescues this defect and enhances tolerance of male flies to bromotyrosine. These results are consistent with reversible halogenation affecting Drosophila spermatogenesis in a process that had previously eluded metabolomic, proteomic, and genomic analyses.
Collapse
Affiliation(s)
- Qi Su
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| | - Bing Xu
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| | - Xin Chen
- HHMI, The Johns Hopkins University, Baltimore, MD21218
- Department of Biology, The Johns Hopkins University, Baltimore, MD21218
| | - Steven E. Rokita
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
3
|
Kozyryev A, Boucher PA, Quiñones-Jurgensen CM, Rokita SE. The 2'-hydroxy group of flavin mononucleotide influences the catalytic function and promiscuity of the flavoprotein iodotyrosine dehalogenase. RSC Chem Biol 2023; 4:698-705. [PMID: 37654510 PMCID: PMC10467613 DOI: 10.1039/d3cb00094j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The isoalloxazine ring system of the flavin cofactor is responsible for much of the catalytic power and diversity associated with flavoproteins. While the specificity of these enzymes is greatly influenced by the surrounding protein environment, the ribityl group of the cofactor may also participate in stabilizing transient intermediates formed by substrates and flavin. A conserved interaction between the phenolate oxygen of l-iodotyrosine and the 2'-hydroxy group of flavin mononucleotide (FMN) bound to iodotyrosine deiodianase (IYD) implied such a contribution to catalysis. Reconstitution of this deiodinase with 2'-deoxyflavin mononucleotide (2'-deoxyFMN) decreased the overall catalytic efficiency of l-iodotyrosine dehalogenation (kcat/Km) by more than 5-fold but increased kcat by over 2-fold. These affects are common to human IYD and its homolog from Thermotoga neapolitana and are best explained by an ability of the 2'-hydroxy group of FMN to stabilize association of the substrate in its phenolate form. Loss of this 2'-hydroxy group did not substantially affect the formation of the one electron reduced semiquinone form of FMN but its absence released constraints that otherwise suppresses the ability of IYD to promote hydride transfer as measured by a competing nitroreductase activity. Generation of IYD containing 2'-deoxyFMN also removed steric constraints that had previously limited the use of certain mechanistic probes. For example, l-O-methyl iodotyrosine could be accommodated in the active site lacking the 2'-hydroxy of FMN and shown to be inert to dehalogenation as predicted from a mechanism requiring ketonization of the phenolic oxygen. In the future, ancillary sites within a cofactor should now be considered when engineering new functions within existing protein architectures as demonstrated by the ability of IYD to promote nitroreduction after loss of the 2'-hydroxy group of FMN.
Collapse
Affiliation(s)
- Anton Kozyryev
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| | - Petrina A Boucher
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| | - Carla M Quiñones-Jurgensen
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| |
Collapse
|
4
|
Kozyryev A, Lemen D, Dunn J, Rokita SE. Substrate Electronics Dominate the Rate of Reductive Dehalogenation Promoted by the Flavin-Dependent Iodotyrosine Deiodinase. Biochemistry 2023; 62:1298-1306. [PMID: 36892456 PMCID: PMC10073337 DOI: 10.1021/acs.biochem.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Iodotyrosine deiodinase (IYD) is unusual in its reliance on flavin to promote reductive dehalogenation of halotyrosines under aerobic conditions. Applications of this activity can be envisioned for bioremediation, but expansion of its specificity requires an understanding of the mechanistic steps that limit the rate of turnover. Key processes capable of controlling steady-state turnover have now been evaluated and described in this study. While proton transfer is necessary for converting the electron-rich substrate into an electrophilic intermediate suitable for reduction, kinetic solvent deuterium isotope effects suggest that this process does not contribute to the overall efficiency of catalysis under neutral conditions. Similarly, reconstituting IYD with flavin analogues demonstrates that a change in reduction potential by as much as 132 mV affects kcat by less than 3-fold. Furthermore, kcat/Km does not correlate with reduction potential and indicates that electron transfer is also not rate determining. Catalytic efficiency is most sensitive to the electronic nature of its substrates. Electron-donating substituents on the ortho position of iodotyrosine stimulate catalysis and conversely electron-withdrawing substituents suppress catalysis. Effects on kcat and kcat/Km range from 22- to 100-fold and fit a linear free-energy correlation with a ρ ranging from -2.1 to -2.8 for human and bacterial IYD. These values are consistent with a rate-determining process of stabilizing the electrophilic and nonaromatic intermediate poised for reduction. Future engineering can now focus on efforts to stabilize this electrophilic intermediate over a broad series of phenolic substrates that are targeted for removal from our environment.
Collapse
Affiliation(s)
- Anton Kozyryev
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| | - Daniel Lemen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| | - Jessica Dunn
- Chemistry Biology Interface Graduate Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
- Chemistry Biology Interface Graduate Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| |
Collapse
|
5
|
Musila JM, Rokita SE. Sequence Conservation Does Not Always Signify a Functional Imperative as Observed in the Nitroreductase Superfamily. Biochemistry 2022; 61:703-711. [PMID: 35319879 PMCID: PMC9018611 DOI: 10.1021/acs.biochem.2c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Consensus sequences have the potential to help classify the structure and function of proteins and highlight key regions that may contribute to their biological properties. Often, the level of significance will track with the extent of sequence conservation, but this should not be considered universal. Arg and Lys dominate a position adjacent to the N1 and C2 carbonyl of flavin mononucleotide (FMN) bound in the proteins of the nitroreductase superfamily. Although this placement satisfies expectations for stabilizing the reduced form of FMN, the substitution of these residues in three subfamilies promoting distinct reactions demonstrates their importance to catalysis as only modest. Replacing Arg34 with Lys, Gln, or Glu enhances FMN binding to a flavin destructase (BluB) by twofold and diminishes FMN turnover by no more than 25%. Similarly, replacing Lys14 with Arg, Gln, or Glu in a nitroreductase (NfsB) does not perturb the binding of the substrate nitrofurazone. The catalytic efficiency does decrease by 21-fold for the K14Q variant, but no change in the midpoint potential of FMN was observed with any of the variants. Equivalent substitution at Arg38 in iodotyrosine deiodinase (IYD) affects catalysis even more modestly (<10-fold). While the Arg/Lys to Glu substitution inactivates NfsB and IYD, this change also stabilizes one-electron transfer in IYD contrary to predictions based on other classes of flavoproteins. Accordingly, functional correlations developed in certain structural superfamilies may not necessarily translate well to other superfamilies.
Collapse
Affiliation(s)
- Jonathan M Musila
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Sun Z, Xu B, Spisak S, Kavran JM, Rokita SE. The minimal structure for iodotyrosine deiodinase function is defined by an outlier protein from the thermophilic bacterium Thermotoga neapolitana. J Biol Chem 2021; 297:101385. [PMID: 34748729 PMCID: PMC8668982 DOI: 10.1016/j.jbc.2021.101385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
The nitroreductase superfamily of enzymes encompasses many flavin mononucleotide (FMN)-dependent catalysts promoting a wide range of reactions. All share a common core consisting of an FMN-binding domain, and individual subgroups additionally contain one to three sequence extensions radiating from defined positions within this core to support their unique catalytic properties. To identify the minimum structure required for activity in the iodotyrosine deiodinase subgroup of this superfamily, attention was directed to a representative from the thermophilic organism Thermotoga neapolitana (TnIYD). This representative was selected based on its status as an outlier of the subgroup arising from its deficiency in certain standard motifs evident in all homologues from mesophiles. We found that TnIYD lacked a typical N-terminal sequence and one of its two characteristic sequence extensions, neither of which was found to be necessary for activity. We also show that TnIYD efficiently promotes dehalogenation of iodo-, bromo-, and chlorotyrosine, analogous to related deiodinases (IYDs) from humans and other mesophiles. In addition, 2-iodophenol is a weak substrate for TnIYD as it was for all other IYDs characterized to date. Consistent with enzymes from thermophilic organisms, we observed that TnIYD adopts a compact fold and low surface area compared with IYDs from mesophilic organisms. The insights gained from our investigations on TnIYD demonstrate the advantages of focusing on sequences that diverge from conventional standards to uncover the minimum essentials for activity. We conclude that TnIYD now represents a superior starting structure for future efforts to engineer a stable dehalogenase targeting halophenols of environmental concern.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bing Xu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shaun Spisak
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer M Kavran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
|
8
|
Hu J, Su Q, Schlessman JL, Rokita SE. Redox control of iodotyrosine deiodinase. Protein Sci 2019; 28:68-78. [PMID: 30052294 PMCID: PMC6296174 DOI: 10.1002/pro.3479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022]
Abstract
The redox chemistry of flavoproteins is often gated by substrate and iodotyrosine deiodinase (IYD) has the additional ability to switch between reaction modes based on the substrate. Association of fluorotyrosine (F-Tyr), an inert substrate analog, stabilizes single electron transfer reactions of IYD that are not observed in the absence of this ligand. The co-crystal of F-Tyr and a T239A variant of human IYD have now been characterized to provide a structural basis for control of its flavin reactivity. Coordination of F-Tyr in the active site of this IYD closely mimics that of iodotyrosine and only minor perturbations are observed after replacement of an active site Thr with Ala. However, loss of the side chain hydroxyl group removes a key hydrogen bond from flavin and suppresses the formation of its semiquinone intermediate. Even substitution of Thr with Ser decreases the midpoint potential of human IYD between its oxidized and semiquinone forms of flavin by almost 80 mV. This decrease does not adversely affect the kinetics of reductive dehalogenation although an analogous Ala variant exhibits a 6.7-fold decrease in its kcat /Km . Active site ligands lacking the zwitterion of halotyrosine are not able to induce closure of the active site lid that is necessary for promoting single electron transfer and dehalogenation. Under these conditions, a basal two-electron process dominates catalysis as indicated by preferential reduction of nitrophenol rather than deiodination of iodophenol.
Collapse
Affiliation(s)
- Jimin Hu
- Department of ChemistryJohns Hopkins UniversityBaltimoreMaryland, 21218
| | - Qi Su
- Department of ChemistryJohns Hopkins UniversityBaltimoreMaryland, 21218
| | | | - Steven E. Rokita
- Department of ChemistryJohns Hopkins UniversityBaltimoreMaryland, 21218
| |
Collapse
|
9
|
Sun Z, Rokita SE. Toward a Halophenol Dehalogenase from Iodotyrosine Deiodinase via Computational Design. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zuodong Sun
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Copp JN, Akiva E, Babbitt PC, Tokuriki N. Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry 2018; 57:4651-4662. [PMID: 30052428 DOI: 10.1021/acs.biochem.8b00473] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapidly expanding number of protein sequences found in public databases can improve our understanding of how protein functions evolve. However, our current knowledge of protein function likely represents a small fraction of the diverse repertoire that exists in nature. Integrative computational methods can facilitate the discovery of new protein functions and enzymatic reactions through the observation and investigation of the complex sequence-structure-function relationships within protein superfamilies. Here, we highlight the use of sequence similarity networks (SSNs) to identify previously unexplored sequence and function space. We exemplify this approach using the nitroreductase (NTR) superfamily. We demonstrate that SSN investigations can provide a rapid and effective means to classify groups of proteins, therefore exposing experimentally unexplored sequences that may exhibit novel functionality. Integration of such approaches with systematic experimental characterization will expand our understanding of the functional diversity of enzymes and their associated physiological roles.
Collapse
Affiliation(s)
- Janine N Copp
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| |
Collapse
|
11
|
O'Flynn BG, Suarez G, Hawley AJ, Merkler DJ. Insect Arylalkylamine N-Acyltransferases: Mechanism and Role in Fatty Acid Amide Biosynthesis. Front Mol Biosci 2018; 5:66. [PMID: 30094237 PMCID: PMC6070697 DOI: 10.3389/fmolb.2018.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/26/2018] [Indexed: 01/29/2023] Open
Abstract
Arylalkylamine N-acyltransferases (AANATs) catalyze the formation of an N-acylamide from an acyl-CoA thioester and an amine. One well known example is the production of N-acetylserotonin from acetyl-CoA and serotonin, a reaction in the melatonin biosynthetic pathway from tryptophan. AANATs have been identified from a variety of vertebrates and invertebrates. Considerable efforts have been devoted to the mammalian AANAT because a cell-permeable inhibitor specifically targeted against this enzyme could prove useful to treat diseases related to dysfunction in melatonin production. Insects are an interesting model for the study of AANATs because more than one isoform is typically expressed by a specific insect and the different insect AANATs (iAANATs) serve different roles in the insect cell. In contrast, mammals express only one AANAT. The major role of iAANATs seem to be in the production of N-acetyldopamine, a reaction important in the tanning and sclerotization of the cuticle. Metabolites identified in insects including N-acetylserotonin and long-chain N-fatty acyl derivatives of dopamine, histidine, phenylalanine, serotonin, tyrosine, and tryptophan are likely produced by an iAANAT. In vitro studies of specific iAANATs are consistent with this hypothesis. In this review, we highlight the current metabolomic knowledge of the N-acylated aromatic amino acids and N-acylated derivatives of the aromatic amino acids, the current mechanistic understanding of the iAANATs, and explore the possibility that iAANATs serve as insect "rhymezymes" regulating photoperiodism and other rhythmic processes in insects.
Collapse
Affiliation(s)
| | | | | | - David J. Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
12
|
Phatarphekar A, Su Q, Eun SH, Chen X, Rokita SE. The importance of a halotyrosine dehalogenase for Drosophila fertility. J Biol Chem 2018; 293:10314-10321. [PMID: 29764939 DOI: 10.1074/jbc.ra118.003364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
The ability of iodotyrosine deiodinase to salvage iodide from iodotyrosine has long been recognized as critical for iodide homeostasis and proper thyroid function in vertebrates. The significance of its additional ability to dehalogenate bromo- and chlorotyrosine is less apparent, and none of these functions could have been anticipated in invertebrates until recently. Drosophila, as most arthropods, contains a deiodinase homolog encoded by CG6279, now named condet (cdt), with a similar catalytic specificity. However, its physiological role cannot be equivalent because Drosophila lacks a thyroid and its associated hormones, and no requirement for iodide or halotyrosines has been reported for this species. We have now applied CRISPR/Cas9 technology to generate Drosophila strains in which the cdt gene has been either deleted or mutated to identify its biological function. As previously shown in larvae, expression of cdt is primarily limited to the fat body, and we now report that loss of cdt function does not enhance sensitivity of the larvae to the toxic effects of iodotyrosine. In adult flies by contrast, expression is known to occur in testes and is detected at very high levels in this tissue. The importance of cdt is most evident in the decrease in fertility observed when either males or females carry a deletion or mutation of cdt Therefore, dehalogenation of a halotyrosine appears essential for efficient reproduction in Drosophila and likely contributes to a new pathway for controlling viability in arthropods.
Collapse
Affiliation(s)
| | - Qi Su
- From the Departments of Chemistry and
| | - Suk Ho Eun
- Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Xin Chen
- Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
13
|
Sridharan GV, D'Alessandro M, Bale SS, Bhagat V, Gagnon H, Asara JM, Uygun K, Yarmush ML, Saeidi N. Multi-omic network-based interrogation of rat liver metabolism following gastric bypass surgery featuring SWATH proteomics. TECHNOLOGY 2017; 5:139-184. [PMID: 29780857 PMCID: PMC5956888 DOI: 10.1142/s233954781750008x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Morbidly obese patients often elect for Roux-en-Y gastric bypass (RYGB), a form of bariatric surgery that triggers a remarkable 30% reduction in excess body weight and reversal of insulin resistance for those who are type II diabetic. A more complete understanding of the underlying molecular mechanisms that drive the complex metabolic reprogramming post-RYGB could lead to innovative non-invasive therapeutics that mimic the beneficial effects of the surgery, namely weight loss, achievement of glycemic control, or reversal of non-alcoholic steatohepatitis (NASH). To facilitate these discoveries, we hereby demonstrate the first multi-omic interrogation of a rodent RYGB model to reveal tissue-specific pathway modules implicated in the control of body weight regulation and energy homeostasis. In this study, we focus on and evaluate liver metabolism three months following RYGB in rats using both SWATH proteomics, a burgeoning label free approach using high resolution mass spectrometry to quantify protein levels in biological samples, as well as MRM metabolomics. The SWATH analysis enabled the quantification of 1378 proteins in liver tissue extracts, of which we report the significant down-regulation of Thrsp and Acot13 in RYGB as putative targets of lipid metabolism for weight loss. Furthermore, we develop a computational graph-based metabolic network module detection algorithm for the discovery of non-canonical pathways, or sub-networks, enriched with significantly elevated or depleted metabolites and proteins in RYGB-treated rat livers. The analysis revealed a network connection between the depleted protein Baat and the depleted metabolite taurine, corroborating the clinical observation that taurine-conjugated bile acid levels are perturbed post-RYGB.
Collapse
Affiliation(s)
- Gautham Vivek Sridharan
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Matthew D'Alessandro
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Shyam Sundhar Bale
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Vicky Bhagat
- Warren Alpert Medical School of Brown University, 222 Richmond St., Providence, RI 02903, USA
| | - Hugo Gagnon
- Phenoswitch Bioscience, 3001 12e Avenue N, Sherbrooke, QC J1H 5N4, Canada
| | - John M Asara
- Beth Israel Deaconness Medical Center, 3 Blackfan Circle Rm 425, Boston, MA 02115, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Nima Saeidi
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
14
|
Sun Z, Su Q, Rokita SE. The distribution and mechanism of iodotyrosine deiodinase defied expectations. Arch Biochem Biophys 2017; 632:77-87. [PMID: 28774660 DOI: 10.1016/j.abb.2017.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/19/2022]
Abstract
Iodotyrosine deiodinase (IYD) is unusual for its reliance on flavin to promote reductive dehalogenation under aerobic conditions. As implied by the name, this enzyme was first discovered to catalyze iodide elimination from iodotyrosine for recycling iodide during synthesis of tetra- and triiodothyronine collectively known as thyroid hormone. However, IYD likely supports many more functions and has been shown to debrominate and dechlorinate bromo- and chlorotyrosines. A specificity for halotyrosines versus halophenols is well preserved from humans to bacteria. In all examples to date, the substrate zwitterion establishes polar contacts with both the protein and the isoalloxazine ring of flavin. Mechanistic data suggest dehalogenation is catalyzed by sequential one electron transfer steps from reduced flavin to substrate despite the initial expectations for a single two electron transfer mechanism. A purported flavin semiquinone intermediate is stabilized by hydrogen bonding between its N5 position and the side chain of a Thr. Mutation of this residue to Ala suppresses dehalogenation and enhances a nitroreductase activity that is reminiscent of other enzymes within the same structural superfamily.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Qi Su
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
15
|
Ingavat N, Kavran JM, Sun Z, Rokita SE. Active Site Binding Is Not Sufficient for Reductive Deiodination by Iodotyrosine Deiodinase. Biochemistry 2017; 56:1130-1139. [PMID: 28157283 PMCID: PMC5330855 DOI: 10.1021/acs.biochem.6b01308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The minimal requirements for substrate recognition and turnover by iodotyrosine deiodinase were examined to learn the basis for its catalytic specificity. This enzyme is crucial for iodide homeostasis and the generation of thyroid hormone in chordates. 2-Iodophenol binds only very weakly to the human enzyme and is dehalogenated with a kcat/Km that is more than 4 orders of magnitude lower than that for iodotyrosine. This discrimination likely protects against a futile cycle of iodinating and deiodinating precursors of thyroid hormone biosynthesis. Surprisingly, a very similar catalytic selectivity was expressed by a bacterial homologue from Haliscomenobacter hydrossis. In this example, discrimination was not based on affinity since 4-cyano-2-iodophenol bound to the bacterial deiodinase with a Kd lower than that of iodotyrosine and yet was not detectably deiodinated. Other phenols including 2-iodophenol were deiodinated but only very inefficiently. Crystal structures of the bacterial enzyme with and without bound iodotyrosine are nearly superimposable and quite similar to the corresponding structures of the human enzyme. Likewise, the bacterial enzyme is activated for single electron transfer after binding to the substrate analogue fluorotyrosine as previously observed with the human enzyme. A cocrystal structure of bacterial deiodinase and 2-iodophenol indicates that this ligand stacks on the active site flavin mononucleotide (FMN) in a orientation analogous to that of bound iodotyrosine. However, 2-iodophenol association is not sufficient to activate the FMN chemistry required for catalysis, and thus the bacterial enzyme appears to share a similar specificity for halotyrosines even though their physiological roles are likely very different from those in humans.
Collapse
Affiliation(s)
- Nattha Ingavat
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 United States
| | - Jennifer M. Kavran
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street Baltimore, Maryland 21205 United States,Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 925 North Wolfe Street Baltimore, Maryland, 21205 United States
| | - Zuodong Sun
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 United States
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 United States,Corresponding Author:
| |
Collapse
|