1
|
Steinkühler J, Peruzzi JA, Krüger A, Villaseñor CG, Jacobs ML, Jewett MC, Kamat NP. Improving Cell-Free Expression of Model Membrane Proteins by Tuning Ribosome Cotranslational Membrane Association and Nascent Chain Aggregation. ACS Synth Biol 2024; 13:129-140. [PMID: 38150067 DOI: 10.1021/acssynbio.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell-free gene expression (CFE) systems are powerful tools for transcribing and translating genes outside of a living cell. Synthesis of membrane proteins is of particular interest, but their yield in CFE is substantially lower than that for soluble proteins. In this paper, we study the CFE of membrane proteins and develop a quantitative kinetic model. We identify that ribosome stalling during the translation of membrane proteins is a strong predictor of membrane protein synthesis due to aggregation between the ribosome nascent chains. Synthesis can be improved by the addition of lipid membranes, which incorporate protein nascent chains and, therefore, kinetically compete with aggregation. We show that the balance between peptide-membrane association and peptide aggregation rates determines the yield of the synthesized membrane protein. We define a membrane protein expression score that can be used to rationalize the engineering of lipid composition and the N-terminal domain of a native and computationally designed membrane proteins produced through CFE.
Collapse
Affiliation(s)
- Jan Steinkühler
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Bio-Inspired Computation, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Citlayi G Villaseñor
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Miranda L Jacobs
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Knauer JF, Schulz C, Zemella A, Wüstenhagen DA, Walter RM, Küpper JH, Kubick S. Synthesis of mono Cytochrome P450 in a modified CHO-CPR cell-free protein production platform. Sci Rep 2024; 14:1271. [PMID: 38218994 PMCID: PMC10787779 DOI: 10.1038/s41598-024-51781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Cytochromes P450 (CYPs) are a group of monooxygenases that can be found in almost all kinds of organisms. For CYPs to receive electrons from co-substrate NADPH, the activity of NADPH-Cytochrome-P450-oxidoreductase (CPR) is required as well. In humans, CYPs are an integral part of liver-based phase-1 biotransformation, which is essential for the metabolization of multiple xenobiotics and drugs. Consequently, CYPs are important players during drug development and therefore these enzymes are implemented in diverse screening applications. For these applications it is usually advantageous to use mono CYP microsomes containing only the CYP of interest. The generation of mono-CYP containing mammalian cells and vesicles is difficult since endogenous CYPs are present in many cell types that contain the necessary co-factors. By obtaining translationally active lysates from a modified CHO-CPR cell line, it is now possible to generate mono CYPs in a cell-free protein synthesis process in a straightforward manner. As a proof of principle, the synthesis of active human CYPs from three different CYP450 gene families (CYP1A2, CYP2B6 and CYP3A4), which are of outstanding interest in industry and academia was demonstrated. Luciferase based activity assays confirm the activity of the produced CYPs and enable the individual adaptation of the synthesis process for efficient cell-free enzyme production. Furthermore, they allow for substrate and inhibitor screenings not only for wild-type CYPs but also for mutants and further CYP isoforms and variants. As an example, the turnover of selected CYP substrates by cell-free synthesized CYPs was demonstrated via an indirect luciferase assay-based screening setup.
Collapse
Affiliation(s)
- Jan Felix Knauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Christian Schulz
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Ruben Magnus Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus -Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Sumangala N, Im SC, Valentín-Goyco J, Auchus RJ. Influence of cholesterol on kinetic parameters for human aromatase (P450 19A1) in phospholipid nanodiscs. J Inorg Biochem 2023; 247:112340. [PMID: 37544101 PMCID: PMC11260420 DOI: 10.1016/j.jinorgbio.2023.112340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Cholesterol, a significant constituent of the endoplasmic reticulum membrane, exerts a substantial effect on the membrane's biophysical and mechanical properties. Cholesterol, however, is often neglected in model systems used to study membrane-bound proteins. For example, the influence of cholesterol on the enzymatic functions of type 2 cytochromes P450, which require a phospholipid bilayer and the redox partner P450-oxidoreductase (POR) for activity, are rarely investigated. Human aromatase (P450 19A1) catalyzes three sequential oxygenations of 19‑carbon steroids to estrogens and is widely expressed across various tissues, which are characterized by varying cholesterol compositions. Our study examined the impact of cholesterol on the functionality of the P450 19A1 complex with POR. Nanodiscs containing P450 19A1 with 20% cholesterol/80% phospholipid had similar rates and affinity of androstenedione binding as phospholipid-only P450 19A1 nanodiscs, and rates of product formation were indistinguishable among these conditions. In contrast, the rate of the first electron transfer from POR to P450 19A1 was 3-fold faster in cholesterol-containing nanodiscs than in phospholipid-only nanodiscs. These results suggest that cholesterol influences some aspects of POR interaction with P450 19A1 and might serve as an additional regulatory mechanism in this catalytic system.
Collapse
Affiliation(s)
- Nirupama Sumangala
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States
| | - Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States.
| |
Collapse
|
4
|
Gao C, Mohamed HI, Deng J, Umer M, Anwar N, Chen J, Wu Q, Wang Z, He Y. Effects of Molecular Crowding on the Structure, Stability, and Interaction with Ligands of G-quadruplexes. ACS OMEGA 2023; 8:14342-14348. [PMID: 37125118 PMCID: PMC10134454 DOI: 10.1021/acsomega.3c01169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
G-quadruplexes (G4s) are widely found in cells and have significant biological functions, which makes them a target for screening antitumor and antiviral drugs. Most of the previous research on G4s has been conducted mainly in diluted solutions. However, cells are filled with organelles and many biomolecules, resulting in a constant state of a crowded molecular environment. The conformation and stability of some G4s were found to change significantly in the molecularly crowded environment, and interactions with ligands were disturbed to some extent. The structure of the G4s and their biological functions are correlated, and the effect of the molecularly crowded environment on G4 conformational transitions and interactions with ligands should be considered in drug design targeting G4s. This review discusses the changes in the conformation and stability of G4s in a physiological environment. Moreover, the mechanism of action of the molecularly crowded environment affecting the G4 has been further reviewed based on previous studies. Furthermore, current challenges and future research directions are put forward. This review has implications for the design of drugs targeting G4s.
Collapse
Affiliation(s)
- Chao Gao
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hany I. Mohamed
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Jieya Deng
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Umer
- Institute
for Forest Resources and Environment of Guizhou and Forestry College,
Research Center of Forest Ecology, Guizhou
University, Guiyang 550025, China
| | - Naureen Anwar
- Department
of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Jixin Chen
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan
Botanical Garden, Chinese Academy of Science, Wuhan 430074, China
| | - Zhangqian Wang
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Gao C, Deng J, Anwar N, Umer M, Chen J, Wu Q, Dong X, Xu H, He Y, Wang Z. Molecular crowding promotes the aggregation of parallel structured G-quadruplexes. Int J Biol Macromol 2023; 240:124442. [PMID: 37062387 DOI: 10.1016/j.ijbiomac.2023.124442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
G-quadruplexes are widely distributed in cells and are usually essential in mediating biological processes. The intracellular environment is often in a state of molecular crowding, and the current research considerably focuses on the effect of molecular crowding on the conformation of telomeric G-quadruplexes. However, G-quadruplex-forming oligonucleotides are primarily located in the promoter region of the proto-oncogene and on mRNA inside the cell and are reported to fold into parallel structures. Thus, studying the interaction mechanism between ligands and parallel structured G-quadruplexes under crowding conditions is crucial for the design of drugs targeting G-quadruplexes. In our study, molecular crowding was simulated through polyethylene glycol with an average molecular weight of 200 (PEG200) to investigate the parallel structure of the canonical G-quadruplexes c-KIT1, c-MYC, and 32KRAS and their interactions with ligands. Circular dichroism (CD) spectral scanning, fluorescence resonance energy transfer (FRET), and native polyacrylamide gel electrophoresis (PAGE) analysis revealed that molecular crowding failed to induce oligonucleotides to form parallel G-quadruplex structures in the explored model sequences while induced telomeric G-rich sequences to form antiparallel G-quadruplexes in solution without K+. Molecular crowding did not induce changes in their parallel structures but promoted the formation of G-quadruplex aggregates. Moreover, to some extent, molecular crowding also induced a looser structure of the monomer G-quadruplexes. Further studies showed that molecular crowding did not alter the binding stoichiometry of the ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate (RHPS4) to c-KIT1, while it inhibited its interaction with parallel structured G-quadruplexes. This work provides new insights into developing anticancer drugs targeting parallel structured G-quadruplexes.
Collapse
Affiliation(s)
- Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jieya Deng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Naureen Anwar
- Department of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Muhammad Umer
- Institute for Forest Resources and Environment of Guizhou and Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Jixin Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 40074, China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Sun L, Wang D, Noh I, Fang RH, Gao W, Zhang L. Synthesis of Erythrocyte Nanodiscs for Bacterial Toxin Neutralization. Angew Chem Int Ed Engl 2023; 62:e202301566. [PMID: 36853913 DOI: 10.1002/anie.202301566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
Nanodiscs are a compelling nanomedicine platform due to their ultrasmall size and distinct disc shape. Current nanodisc formulations are made primarily with synthetic lipid bilayers and proteins. Here, we report a cellular nanodisc made with human red blood cell (RBC) membrane (denoted "RBC-ND") and show its effective neutralization against bacterial toxins. In vitro, RBC-ND neutralizes the hemolytic activity and cytotoxicity caused by purified α-toxin or complex whole secreted proteins (wSP) from methicillin-resistant Staphylococcus aureus bacteria. In vivo, RBC-ND confers significant survival benefits for mice intoxicated with α-toxin or wSP in both therapeutic and prevention regimens. Moreover, RBC-ND shows good biocompatibility and biosafety in vivo. Overall, RBC-ND distinguishes itself by inheriting the biological functions of the source cell membrane for bioactivity. The design strategy of RBC-ND can be generalized to other types of cell membranes for broad applications.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| |
Collapse
|
7
|
Torrens A, Ruiz CM, Martinez MX, Tagne AM, Roy P, Grimes D, Ahmed F, Lallai V, Inshishian V, Bautista M, Chen YC, Huestis MA, Das A, Fowler CD, Mahler SV, Piomelli D. Nasal accumulation and metabolism of Δ 9-tetrahydrocannabinol following aerosol ('vaping') administration in an adolescent rat model. Pharmacol Res 2023; 187:106600. [PMID: 36481259 PMCID: PMC9845136 DOI: 10.1016/j.phrs.2022.106600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Passive aerosol exposure to Δ9-tetrahydrocannabinol (THC) in laboratory animals results in faster onset of action and less extensive liver metabolism compared to most other administration routes and might thus provide an ecologically relevant model of human cannabis inhalation. Previous studies have, however, overlooked the possibility that rodents, as obligate nose breathers, may accumulate aerosolized THC in the nasal cavity, from where the drug might directly diffuse to the brain. To test this, we administered THC (ten 5-s puffs of 100 mg/mL of THC) to adolescent (31-day-old) Sprague-Dawley rats of both sexes. We used liquid chromatography/tandem mass spectrometry to quantify the drug and its first-pass metabolites - 11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC) - in nasal mucosa, lungs, plasma, and brain (olfactory bulb and cerebellum) at various time points after exposure. Apparent maximal THC concentration and area under the curve were ∼5 times higher in nasal mucosa than in lungs and 50-80 times higher than in plasma. Concentrations of 11-OH-THC were also greater in nasal mucosa and lungs than other tissues, whereas 11-COOH-THC was consistently undetectable. Experiments with microsomal preparations confirmed local metabolism of THC into 11-OH-THC (not 11-COOH-THC) in nasal mucosa and lungs. Finally, whole-body exposure to THC deposited substantial amounts of THC (∼150 mg/g) on fur but suppressed post-exposure grooming in rats of both sexes. The results indicate that THC absorption and metabolism in nasal mucosa and lungs, but probably not gastrointestinal tract, contribute to the pharmacological effects of aerosolized THC in male and female rats.
Collapse
Affiliation(s)
- Alexa Torrens
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Maricela X Martinez
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Alex Mabou Tagne
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Pritam Roy
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Dakota Grimes
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Faizy Ahmed
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Valeria Lallai
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Victoria Inshishian
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | | | - Aditi Das
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Daniele Piomelli
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697-4625, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-4625, USA.
| |
Collapse
|
8
|
Torrens A, Roy P, Lin L, Vu C, Grimes D, Inshishian VC, Montesinos JS, Ahmed F, Mahler SV, Huestis MA, Das A, Piomelli D. Comparative Pharmacokinetics of Δ 9-Tetrahydrocannabinol in Adolescent and Adult Male and Female Rats. Cannabis Cannabinoid Res 2022; 7:814-826. [PMID: 35353551 PMCID: PMC9784615 DOI: 10.1089/can.2021.0205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Introduction: Studies in rodent models have shown that adolescent exposure to Δ9-THC, the psychotropic constituent of cannabis, produces long-lasting alterations in brain function and behavior. However, our understanding of how age and sex might influence the distribution and metabolism of THC in laboratory rodents is still incomplete. In the present report, we provide a comparative analysis of the pharmacokinetic (PK) properties of THC in adolescent and adult rats of both sexes, and outline several dissimilarities across these groups. Materials and Methods: A single (acute) or 2-week daily (subchronic) administration of THC (0.5 or 5 mg/kg, acute; 5 mg/kg, subchronic; intraperitoneal) was given to adolescent (33-day-old, acute; 30-44-day-old, subchronic) and young adult (70-day-old, acute only) male and female rats. THC and its first-pass metabolites-11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-were quantified in plasma and brain tissue using a selective isotope-dilution liquid chromatography/tandem mass spectrometry assay. Changes in body temperature were measured using abdominally implanted microchips. Biotransformation of THC to its metabolites using freshly prepared liver microsomes was assessed. Results: At the acute 5 mg/kg dose, maximal plasma concentrations of THC were twice as high in adult than in adolescent rats. Conversely, in adults, brain concentrations and brain-to-plasma ratios for THC were substantially lower (25-50%) than those measured in adolescents. Similarly, plasma and brain concentrations of THC metabolites were higher in adolescent male rats compared with adult males. Interestingly, plasma and brain concentrations of the psychoactive THC metabolite 11-OH-THC were twofold to sevenfold higher in female animals of both ages compared with males. Moreover, liver microsomes from adolescent males and adolescent and adult females converted THC to 11-OH-THC twice as fast as adult male microsomes. A dose-dependent hypothermic response to THC was observed in females with 0.5 and 5 mg/kg THC, whereas only the highest dose elicited a response in males. Finally, subchronic administration of THC during adolescence did not significantly affect the drug's PK profile. Conclusions: The results reveal the existence of multiple age and sex differences in the distribution and metabolism of THC in rats, which might influence the pharmacological response to the drug.
Collapse
Affiliation(s)
- Alexa Torrens
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Pritam Roy
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Cindy Vu
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Dakota Grimes
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Victoria C. Inshishian
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Johanna S. Montesinos
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Marylin A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aditi Das
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biological Chemistry, and University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
9
|
Metabolomics-guided discovery of cytochrome P450s involved in pseudotropine-dependent biosynthesis of modified tropane alkaloids. Nat Commun 2022; 13:3832. [PMID: 35780230 PMCID: PMC9250511 DOI: 10.1038/s41467-022-31653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/26/2022] [Indexed: 12/01/2022] Open
Abstract
Plant alkaloids constitute an important class of bioactive chemicals with applications in medicine and agriculture. However, the knowledge gap of the diversity and biosynthesis of phytoalkaloids prevents systematic advances in biotechnology for engineered production of these high-value compounds. In particular, the identification of cytochrome P450s driving the structural diversity of phytoalkaloids has remained challenging. Here, we use a combination of reverse genetics with discovery metabolomics and multivariate statistical analysis followed by in planta transient assays to investigate alkaloid diversity and functionally characterize two candidate cytochrome P450s genes from Atropa belladonna without a priori knowledge of their functions or information regarding the identities of key pathway intermediates. This approach uncovered a largely unexplored root localized alkaloid sub-network that relies on pseudotropine as precursor. The two cytochrome P450s catalyze N-demethylation and ring-hydroxylation reactions within the early steps in the biosynthesis of diverse N-demethylated modified tropane alkaloids. Cytochrome P450s drive the structural diversity of plant alkaloids, many of which have biotechnological uses. Here the authors use reverse genetics and metabolomics to identify two Atropa belladonna cytochrome P450s that synthesize pseudotropine-derived alkaloids.
Collapse
|
10
|
Xu M, Guo YY, Li D, Cen XF, Qiu HL, Ma YL, Huang SH, Tang QZ. Screening of Lipid Metabolism-Related Gene Diagnostic Signature for Patients With Dilated Cardiomyopathy. Front Cardiovasc Med 2022; 9:853468. [PMID: 35433888 PMCID: PMC9010535 DOI: 10.3389/fcvm.2022.853468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background Dilated cardiomyopathy (DCM) is characterized by enlarged ventricular dimensions and systolic dysfunction and poor prognosis. Myocardial lipid metabolism appears abnormal in DCM. However, the mechanism of lipid metabolism disorders in DCM remains unclear. Methods A gene set variation analysis (GSVA) were performed to estimate pathway activity related to DCM progression. Three datasets and clinical data downloaded from the Gene Expression Omnibus (GEO), including dilated cardiomyopathy and donor hearts, were integrated to obtain gene expression profiles and identify differentially expressed genes related to lipid metabolism. GO enrichment analyses of differentially expressed lipid metabolism-related genes (DELs) were performed. The clinical information used in this study were obtained from GSE21610 dataset. Data from the EGAS00001003263 were used for external validation and our hospital samples were also tested the expression levels of these genes through RT-PCR. Subsequently, logistic regression model with the LASSO method for DCM prediction was established basing on the 7 DELs. Results GSVA analysis showed that the fatty acid metabolism was closely related to DCM progression. The integrated dataset identified 19 DELs, including 8 up-regulated and 11 down-regulated genes. A total of 7 DELs were identified by further external validation of the data from the EGAS00001003263 and verified by RT-PCR. By using the LASSO model, 6 genes, including CYP2J2, FGF1, ETNPPL, PLIN2, LPCAT3, and DGKG, were identified to construct a logistic regression model. The area under curve (AUC) values over 0.8 suggested the good performance of the model. Conclusion Integrated bioinformatic analysis of gene expression in DCM and the effective logistic regression model construct in our study may contribute to the early diagnosis and prevention of DCM in people with high risk of the disease.
Collapse
Affiliation(s)
- Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ying-ying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xian-feng Cen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong-liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yu-lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Si-hui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- *Correspondence: Qi-zhu Tang,
| |
Collapse
|
11
|
Wang Z, Deng J, Umer M, Anwar N, Wang Y, Dong X, Xu H, He Y, Gao C. RHPS4 shifted the conformation ensemble equilibrium of Tel24 by preferentially stabilizing the (3 + 1) hybrid-2 conformation. RSC Adv 2022; 12:26011-26015. [PMID: 36199604 PMCID: PMC9469490 DOI: 10.1039/d2ra03959a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeric G-quadruplexes have been a promising target for developing antitumor drugs with fewer side effects. The intracellular environment is usually in a state of molecular crowding. Studying the interaction mechanism among ligands and telomeric G-quadruplexes under crowded conditions is important for designing drugs that target telomeric G-quadruplexes. In the present study, the telomeric G-quadruplex Tel24 (TTAGGG)4 was found to fold into a conformational ensemble of parallel and (3 + 1) hybrid-2 conformations in solution with molecular crowding conditions created by PEG200. G-quadruplex-ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl] acridinium methosulfate (RHPS4) preferentially stabilized the (3 + 1) hybrid-2 conformation and shifted the conformational ensemble equilibrium of Tel24 towards the hybrid conformation. We also found that the (3 + 1) hybrid-2 conformation of Tel24 was more likely to form as compared to the parallel conformation in the conformational ensemble of Tel24. Overall, this study provides new insights into the conformation of telomere G-quadruplexes and their interactions with ligands in a physiological environment. Tel24 G-quadruplex can form a conformational ensemble consisting of parallel and (3 + 1) hybrid-2 conformations. RHPS4 preferentially stabilized the hybrid-2 conformation and shifted the conformational ensemble equilibrium.![]()
Collapse
Affiliation(s)
- Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jieya Deng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Umer
- Institute for Forest Resources and Environment of Guizhou and Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, 550025, China
| | - Naureen Anwar
- Department of Zoology, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Yidang Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - XingXing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Huff HC, Vasan A, Roy P, Kaul A, Tajkhorshid E, Das A. Differential Interactions of Selected Phytocannabinoids with Human CYP2D6 Polymorphisms. Biochemistry 2021; 60:2749-2760. [PMID: 34491040 DOI: 10.1021/acs.biochem.1c00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 2D6 (CYP2D6) is primarily expressed in the liver and in the central nervous system. It is known to be highly polymorphic in nature. It metabolizes several endogenous substrates such as anandamide (AEA). Concomitantly, it is involved in phase 1 metabolism of several antidepressants, antipsychotics, and other drugs. Research in the field of phytocannabinoids (pCBs) has recently accelerated owing to their legalization and increasing medicinal use for pain and inflammation. The primary component of cannabis is THC, which is well-known for its psychotropic effects. Since CYP2D6 is an important brain and liver P450 and is known to be inhibited by CBD, we investigated the interactions of four important highly prevalent CYP2D6 polymorphisms with selected phytocannabinoids (CBD, THC, CBDV, THCV, CBN, CBG, CBC, β-carophyllene) that are rapidly gaining popularity. We show that there is differential binding of CYP2D6*17 to pCBs as compared to WT CYP2D6. We also perform a more detailed comparison of WT and *17 CYP2D6, which reveals the possible regulation of AEA metabolism by CBD. Furthermore, we use molecular dynamics to delineate the mechanism of this binding, inhibition, and regulation. Taken together, we have found that the interactions of CYP2D6 with pCBs vary by polymorphism and by specific pCB class.
Collapse
|
13
|
Leow JWH, Verma RK, Lim ABH, Fan H, Chan ECY. Atypical kinetics of cytochrome P450 2J2: Epoxidation of arachidonic acid and reversible inhibition by xenobiotic inhibitors. Eur J Pharm Sci 2021; 164:105889. [PMID: 34044117 DOI: 10.1016/j.ejps.2021.105889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Extrahepatic CYP2J2 metabolism of arachidonic acid (AA) to bioactive regioisomeric epoxyeicosatrienoic acids (EETs) is implicated in both physiological and pathological conditions. Here, we aimed to characterize atypical substrate inhibition kinetics of this endogenous metabolic pathway and its reversible inhibition by xenobiotic inhibitors when AA is used as the physiologically-relevant substrate vis-à-vis conventional probe substrate astemizole (AST). As compared to typical Michaelis-Menten kinetics observed for AST, complete substrate inhibition was observed for CYP2J2 metabolism of AA to 14,15-EET whereby velocity of the reaction declined significantly at concentrations of AA above 20-30 µM with an estimated substrate inhibition constant (Ks) of 31 µM. In silico sequential docking of two AA substrates to orthosteric (OBS) and adjacent secondary binding sites (SBS) within a 3-dimensional homology model of CYP2J2 revealed favorable and comparable binding poses of glide-scores -3.1 and -3.8 respectively. Molecular dynamics (MD) simulations ascertained CYP2J2 conformational stability with dual AA substrate binding as time-dependent root mean squared deviation (RMSD) of protein Cα atoms and ligand heavy atoms stabilized to a plateau in all but one trajectory (n=6). The distance between heme-iron and ω6 (C14, C15) double bond of AA in OBS also increased from 7.5 ± 1.4 Å to 8.5 ± 1.8 Å when CYP2J2 was simulated with only AA in OBS versus the presence of AA in both OBS and SBS (p<0.001), supporting the observed in vitro substrate inhibition phenomenon. Poor correlation was observed between inhibitory constants (Ki) determined for a panel of nine competitive and mixed mode xenobiotic inhibitors against CYP2J2 metabolism of AA as compared to AST, whereby 4 out of 9 drugs had a greater than 5-fold difference between Ki values. Nonlinear Eadie-Hofstee plots illustrated that complete substrate inhibition of CYP2J2 by AA was not attenuated even at high concentrations of xenobiotic inhibitors which further corroborates that CYP2J2 may accommodate three or more ligands simultaneously. In light of the atypical kinetics, our results highlight the importance of using physiologically-relevant substrates in in vitro enzymatic inhibition assays for the characterization of xenobiotic-endobiotic interactions which is applicable to other complex endogenous metabolic pathways beyond CYP2J2 metabolism of AA to EETs. The accurate determination of Ki would further facilitate the association of xenobiotic-endobiotic interactions to observed therapeutic or toxic outcomes.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Ravi Kumar Verma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Amos Boon Hao Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543.
| |
Collapse
|
14
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Torrens A, Vozella V, Huff H, McNeil B, Ahmed F, Ghidini A, Mahler SV, Huestis MA, Das A, Piomelli D. Comparative Pharmacokinetics of Δ 9-Tetrahydrocannabinol in Adolescent and Adult Male Mice. J Pharmacol Exp Ther 2020; 374:151-160. [PMID: 32345621 DOI: 10.1124/jpet.120.265892] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/27/2020] [Indexed: 01/24/2023] Open
Abstract
We investigated the pharmacokinetic properties of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive constituent of cannabis, in adolescent and adult male mice. The drug was administered at logarithmically ascending doses (0.5, 1.6, and 5 mg/kg, i.p.) to pubertal adolescent (37-day-old) and adult (70-day-old) mice. Δ9-THC and its first-pass metabolites-11-hydroxy-Δ9-THC and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-were quantified in plasma, brain, and white adipose tissue (WAT) using a validated isotope-dilution liquid chromatography/tandem mass spectrometry assay. Δ9-THC (5 mg/kg) reached 50% higher circulating concentration in adolescent mice than in adult mice. A similar age-dependent difference was observed in WAT. Conversely, 40%-60% lower brain concentrations and brain-to-plasma ratios for Δ9-THC and 50%-70% higher brain concentrations for Δ9-THC metabolites were measured in adolescent animals relative to adult animals. Liver microsomes from adolescent mice converted Δ9-THC into 11-COOH-THC twice as fast as adult microsomes. Moreover, the brains of adolescent mice contained higher mRNA levels of the multidrug transporter breast cancer resistance protein, which may extrude Δ9-THC from the brain, and higher mRNA levels of claudin-5, a protein that contributes to blood-brain barrier integrity. Finally, administration of Δ9-THC (5 mg/kg) reduced spontaneous locomotor activity in adult, but not adolescent, animals. The results reveal the existence of multiple differences in the distribution and metabolism of Δ9-THC between adolescent and adult male mice, which might influence the pharmacological response to the drug. SIGNIFICANCE STATEMENT: Animal studies suggest that adolescent exposure to Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating constituent of cannabis, causes persistent changes in brain function. These studies generally overlook the impact that age-dependent changes in the distribution and metabolism of the drug might exert on its pharmacological effects. This report provides a comparative analysis of the pharmacokinetic properties of Δ9-THC in adolescent and adult male mice and outlines multiple functionally significant dissimilarities in the distribution and metabolism of Δ9-THC between these two age groups.
Collapse
Affiliation(s)
- Alexa Torrens
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| | - Valentina Vozella
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| | - Hannah Huff
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| | - Brandon McNeil
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| | - Faizy Ahmed
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| | - Andrea Ghidini
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| | - Stephen V Mahler
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| | - Marilyn A Huestis
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| | - Aditi Das
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology (A.T., V.V., B.M., F.A., A.G., D.P.), Neurobiology and Behavior (S.V.M.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois (H.H., A.D.); Dipartimento di Scienza degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma Italy (A.G.); and Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania (M.A.H.)
| |
Collapse
|