1
|
Nolan D, Chin TR, Eamsureya M, Oppenheim S, Paley O, Alves C, Parks G. Modeling the behavior of monoclonal antibodies on hydrophobic interaction chromatography resins. BIORESOUR BIOPROCESS 2024; 11:25. [PMID: 38647931 PMCID: PMC10991917 DOI: 10.1186/s40643-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/01/2024] [Indexed: 04/25/2024] Open
Abstract
Monoclonal antibodies (mAbs) require a high level of purity for regulatory approval and safe administration. High-molecular weight (HMW) species are a common impurity associated with mAb therapies. Hydrophobic interaction chromatography (HIC) resins are often used to remove these HMW impurities. Determination of a suitable HIC resin can be a time and resource-intensive process. In this study, we modeled the chromatographic behavior of seven mAbs across 13 HIC resins using measurements of surface hydrophobicity, surface charge, and thermal stability for mAbs, and hydrophobicity and zeta-potential for HIC resins with high fit quality (adjusted R2 > 0.80). We identified zeta-potential as a novel key modeling parameter. When using these models to select a HIC resin for HMW clearance of a test mAb, we were able to achieve 60% HMW clearance and 89% recovery. These models can be used to expedite the downstream process development for mAbs in an industry setting.
Collapse
Affiliation(s)
- Douglas Nolan
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA.
| | - Thomas R Chin
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA
| | - Mick Eamsureya
- Eurofins Lancaster Laboratories Professional Scientific Services, LLC, Lancaster, PA, 17601, USA
| | | | - Olga Paley
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA
| | - Christina Alves
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA
| | - George Parks
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA
| |
Collapse
|
2
|
Djukić T, Drvenica I, Kovačić M, Minić R, Vučetić D, Majerič D, Šefik-Bukilica M, Savić O, Bugarski B, Ilić V. Dynamic light scattering analysis of immune complexes in sera of rheumatoid arthritis patients. Anal Biochem 2023:115194. [PMID: 37279816 DOI: 10.1016/j.ab.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
The size of circulating immune complexes (CICs) in rheumatoid arthritis (RA) could be an emerging criterion in disease diagnosis. This study analyzed size and electrokinetic potential of CICs from RA patients, healthy young adults, and RA patients age-matched controls aiming to establish their unique CIC features. Pooled CIC of 30 RA patients, 30 young adults, and 30 RA group's age-matched controls (middle-aged and oldеr healthy adults), and in vitro IgG aggregates from pooled sera of 300 healthy volunteers were tested using dynamic light scattering (DLS). Size distribution of CIC in healthy young adults exhibited high polydispersity. RA CIC patients and their age-matched control showed distinctly narrower size distributions compared with young adults. In these groups, particles clustered around two well-defined peaks. Particles of peak 1 were 36.1 ± 6.8 nm in RA age-matched control, and 30.8 ± 4.2 nm in RA patients. Particles of peak 2 of the RA age-matched control's CIC was 251.7 ± 41.2 nm, while RA CIC contained larger particles (359.9 ± 50.5 nm). The lower zeta potential of RA CIC, compared to control, indicated a disease-related decrease in colloidal stability. DLS identified RA-specific, but also age-specific distribution of CIC size and opened possibility of becoming a method for CIC size analysis in IC-mediated diseases.
Collapse
Affiliation(s)
- Tamara Djukić
- Innovation Center of the Faculty of Technology and Metallurgy Ltd, Belgrade, Serbia
| | - Ivana Drvenica
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia.
| | - Marijana Kovačić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| | - Rajna Minić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| | - Dušan Vučetić
- Institute for Transfusiology and Haemobiology, Military Medical Academy, Belgrade, Serbia; Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Dragana Majerič
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Mirjana Šefik-Bukilica
- Institute for Rheumatology, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Savić
- Blood Transfusion Institute of Serbia, Belgrade, Serbia
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Ilić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| |
Collapse
|
3
|
Cain P, Huang L, Tang Y, Anguiano V, Feng Y. Impact of IgG subclass on monoclonal antibody developability. MAbs 2023; 15:2191302. [PMID: 36945111 PMCID: PMC10038059 DOI: 10.1080/19420862.2023.2191302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
IgG-based monoclonal antibody therapeutics, which are mainly IgG1, IgG2, and IgG4 subclasses or related variants, have dominated the biotherapeutics field for decades. Multiple laboratories have reported that the IgG subclasses possess different molecular characteristics that can affect their developability. For example, IgG1, the most popular IgG subclass for therapeutics, is known to have a characteristic degradation pathway related to its hinge fragility. However, there remains a paucity of studies that systematically evaluate the IgG subclasses on manufacturability and long-term stability. We thus conducted a systematic study of 12 mAbs derived from three sets of unrelated variable regions, each cloned into IgG1, an IgG1 variant with diminished effector functions, IgG2, and a stabilized IgG4 variant with further reduced FcγR interaction, to evaluate the impact of IgG subclass on manufacturability and high concentration stability in a common formulation buffer matrix. Our evaluation included Chinese hamster ovary cell productivity, host cell protein removal efficiency, N-linked glycan structure at the conserved N297 Fc position, solution appearance at high concentration, and aggregate growth, fragmentation, charge variant profile change, and post-translational modification upon thermal stress conditions or long-term storage at refrigerated temperature. Our results elucidated molecular attributes that are common to all IgG subclasses, as well as those that are unique to certain Fc domains, providing new insight into the effects of IgG subclass on antibody manufacturability and stability. These learnings can be used to enable a balanced decision on IgG subclass selection for therapeutic antibodies and aid in acceleration of their product development process.
Collapse
Affiliation(s)
- Paul Cain
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Lihua Huang
- Bioproduct Research & Development, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Yu Tang
- Pharmaceutical Development and Manufacturing, Syndax Pharmaceuticals, Waltham, MA, USA
| | - Victor Anguiano
- Bioproduct Research & Development, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Yiqing Feng
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| |
Collapse
|
4
|
Jakob LA, Mesurado T, Jungbauer A, Lingg N. Increase in cysteine-mediated multimerization under attractive protein-protein interactions. Prep Biochem Biotechnol 2022; 53:891-905. [PMID: 36576211 DOI: 10.1080/10826068.2022.2158471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The CASPON enzyme became an interesting enzyme for fusion protein processing because it generates an authentic N-terminus. However, the high cysteine content of the CASPON enzyme may induce aggregation via disulfide-bond formation, which can reduce enzymatic activity and be considered a critical quality attribute. Different multimerization states of the CASPON enzyme were isolated by preparative size exclusion chromatography and analyzed with respect to multimerization propensity and enzymatic activity. The impact of co-solutes on multimerization was studied in solution and in adsorbed state. Furthermore, protein-protein interactions in the presence of different co-solutes were measured by self-interaction chromatography and were then correlated to the multimerization propensity. The dimer was the most stable and active species with 50% higher enzymatic activity than the tetramer. Multimerization was mainly governed by a cysteine-mediated pathway, as indicated by DTT-induced reduction of most caspase multimers. In the presence of ammonium sulfate, attractive protein-protein interactions were consistent with those observed for higher multimerization when the cysteine-mediated pathway was followed. Multimerization was also observed under attractive conditions on a chromatographic stationary phase. These findings corroborate common rules to perform protein purification with low residence time to avoid disulfide bond formation and conformational change of the protein upon adsorption.
Collapse
Affiliation(s)
- Leo A Jakob
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tomás Mesurado
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Nico Lingg
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
5
|
Powell T, Knight MJ, Wood A, O'Hara J, Burkitt W. Detection of Isopeptide Bonds in Monoclonal Antibody Aggregates. Pharm Res 2021; 38:1519-1530. [PMID: 34528168 PMCID: PMC8497302 DOI: 10.1007/s11095-021-03103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Purpose A major difficulty in monoclonal antibody (mAb) therapeutic development is product aggregation. In this study, intermolecular isopeptide bonds in mAb aggregates were characterized for the first time. We aim to propose a mechanism of covalent aggregation in a model antibody using stressed studies at raised temperatures to aid in the understanding of mAb aggregation pathways. Methods Aggregate fractions were generated using raised temperature and were purified using size-exclusion chromatography (SEC). The fractions were tryptically digested and characterized using liquid chromatography hyphenated to tandem mass-spectrometry (LC–MS/MS). Results An increased amount of clipping between aspartic acid and proline in a solvent accessible loop in the constant heavy 2 (CH2) domain of the mAb was observed under these conditions. Detailed peptide mapping revealed 14 isopeptide bonds between aspartic acid at that cleavage site and lysine residues on adjacent antibodies. Two additional isopeptide bonds were identified between the mAb HC N-terminal glutamic acid or a separate aspartic acid to lysine residues on adjacent antibodies. Conclusions Inter-protein isopeptide bonds between the side chains of acidic amino acids (aspartate and glutamate) and lysine were characterized for the first time in mAb aggregates. A chemical mechanism was presented whereby spontaneous isopeptide bond formation could be facilitated via either the aspartic acid side chain or C-terminus. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-021-03103-y.
Collapse
Affiliation(s)
- Thomas Powell
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK.
| | - Michael J Knight
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK
| | - Amanda Wood
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK
| | - John O'Hara
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK
| | - William Burkitt
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK
| |
Collapse
|
6
|
Imura Y, Tagawa T, Miyamoto Y, Nonoyama S, Sumichika H, Fujino Y, Yamanouchi M, Miki H. Washing with alkaline solutions in protein A purification improves physicochemical properties of monoclonal antibodies. Sci Rep 2021; 11:1827. [PMID: 33469121 PMCID: PMC7815873 DOI: 10.1038/s41598-021-81366-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Protein A affinity chromatography has been widely used for both laboratory scale purification and commercial manufacturing of monoclonal antibodies and Fc-fusion proteins. Protein A purification is specific and efficient. However, there still remain several issues to be addressed, such as incomplete clearance of impurities including host cell proteins, DNA, aggregates, etc. In addition, the effects of wash buffers in protein A purification on the physicochemical characteristics of antibodies have yet to be fully understood. Here we found a new purification protocol for monoclonal antibodies that can improve physicochemical properties of monoclonal antibodies simply by inserting an additional wash step with a basic buffer after the capture step to the conventional protein A purification. The effects of the alkaline wash on monoclonal antibodies were investigated in terms of physicochemical characteristics, yields, and impurity clearance. The simple insertion of an alkaline wash step resulted in protection of antibodies from irreversible aggregation, reduction in free thiols and impurities, an improvement in colloidal and storage stability, and enhanced yields. This new procedure is widely applicable to protein A affinity chromatography of monoclonal antibodies.
Collapse
Affiliation(s)
- Yuichi Imura
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan. .,Development Department, Tanabe Research Laboratories U.S.A. Inc., San Diego, USA.
| | - Toshiaki Tagawa
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Yuya Miyamoto
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Fujisawa, Japan
| | - Satoshi Nonoyama
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Hiroshi Sumichika
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Yasuhiro Fujino
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan.,Research Department, Tanabe Research Laboratories U.S.A. Inc., San Diego, USA
| | - Masaya Yamanouchi
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Hideo Miki
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Fujisawa, Japan
| |
Collapse
|
7
|
Mieczkowski C, Bahmanjah S, Yu Y, Baker J, Raghunathan G, Tomazela D, Hsieh M, McCoy M, Strickland C, Fayadat-Dilman L. Crystal Structure and Characterization of Human Heavy-Chain Only Antibodies Reveals a Novel, Stable Dimeric Structure Similar to Monoclonal Antibodies. Antibodies (Basel) 2020; 9:antib9040066. [PMID: 33266498 PMCID: PMC7709113 DOI: 10.3390/antib9040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
We report the novel crystal structure and characterization of symmetrical, homodimeric humanized heavy-chain-only antibodies or dimers (HC2s). HC2s were found to be significantly coexpressed and secreted along with mAbs from transient CHO HC/LC cotransfection, resulting in an unacceptable mAb developability attribute. Expression of full-length HC2s in the absence of LC followed by purification resulted in HC2s with high purity and thermal stability similar to conventional mAbs. The VH and CH1 portion of the heavy chain (or Fd) was also efficiently expressed and yielded a stable, covalent, and reducible dimer (Fd2). Mutagenesis of all heavy chain cysteines involved in disulfide bond formation revealed that Fd2 intermolecular disulfide formation was similar to Fabs and elucidated requirements for Fd2 folding and expression. For one HC2, we solved the crystal structure of the Fd2 domain to 2.9 Å, revealing a highly symmetrical homodimer that is structurally similar to Fabs and is mediated by conserved (CH1) and variable (VH) contacts with all CDRs positioned outward for target binding. Interfacial dimer contacts revealed by the crystal structure were mutated for two HC2s and were found to dramatically affect HC2 formation while maintaining mAb bioactivity, offering a potential means to modulate novel HC2 formation through engineering. These findings indicate that human heavy-chain dimers can be secreted efficiently in the absence of light chains, may show good physicochemical properties and stability, are structurally similar to Fabs, offer insights into their mechanism of formation, and may be amenable as a novel therapeutic modality.
Collapse
Affiliation(s)
- Carl Mieczkowski
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
- Correspondence: ; Tel.: +1-650-496-6501
| | - Soheila Bahmanjah
- Department of Chemistry, Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (S.B.); (C.S.)
| | - Yao Yu
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Jeanne Baker
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Gopalan Raghunathan
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Daniela Tomazela
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Mark Hsieh
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Mark McCoy
- Department of Pharmacology, Mass Spectrometry & Biophysics, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Corey Strickland
- Department of Chemistry, Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (S.B.); (C.S.)
| | - Laurence Fayadat-Dilman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| |
Collapse
|
8
|
Swope N, Chung WK, Cao M, Motabar D, Liu D, Ahuja S, Handlogten M. Impact of enzymatic reduction on bivalent bispecific antibody fragmentation and loss of product purity upon reoxidation. Biotechnol Bioeng 2020; 117:1063-1071. [PMID: 31930476 PMCID: PMC10947566 DOI: 10.1002/bit.27264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 11/11/2022]
Abstract
Antibody disulfide bond (DSB) reduction during manufacturing processes is a widely observed phenomenon attributed to host cell reductases present in harvest cell culture fluid. Enzyme-induced antibody reduction leads to product fragments and aggregates that increase the impurity burden on the purification process. The impact of reduction on bivalent bispecific antibodies (BisAbs), which are increasingly entering the clinic, has yet to be investigated. We focused on the reduction and reoxidation properties of a homologous library of bivalent BisAb formats that possess additional single-chain Fv (scFv) fragments with engineered DSBs. Despite all BisAbs having similar susceptibilities to enzymatic reduction, fragmentation pathways were dependent on the scFv-fusion site. Reduced molecules were allowed to reoxidize with and without low pH viral inactivation treatment. Both reoxidation studies demonstrated that multiple, complex BisAb species formed as a result of DSB mispairing. Furthermore, aggregate levels increased for all molecules when no low pH treatment was applied. Combined, our results show that complex DSB mispairing occurs during downstream processes while aggregate formation is dependent on sample treatment. These results are applicable to other novel monoclonal antibody-like formats containing engineered DSBs, thus highlighting the need to prevent reduction of novel protein therapeutics to avoid diminished product quality during manufacturing.
Collapse
Affiliation(s)
- Nicole Swope
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Wai Keen Chung
- Purification Process Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Mingyan Cao
- Analytical Sciences, AstraZeneca, Gaithersburg, USA
| | - Dana Motabar
- Purification Process Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Dengfeng Liu
- Analytical Sciences, AstraZeneca, Gaithersburg, USA
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Handlogten
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
9
|
|
10
|
Lopez E, Scott NE, Wines BD, Hogarth PM, Wheatley AK, Kent SJ, Chung AW. Low pH Exposure During Immunoglobulin G Purification Methods Results in Aggregates That Avidly Bind Fcγ Receptors: Implications for Measuring Fc Dependent Antibody Functions. Front Immunol 2019; 10:2415. [PMID: 31681303 PMCID: PMC6797627 DOI: 10.3389/fimmu.2019.02415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
Evaluating the biophysical and functional nature of IgG is key to defining correlates of protection in infectious disease, and autoimmunity research cohorts, as well as vaccine efficacy trials. These studies often require small quantities of IgG to be purified from plasma for downstream analysis with high throughput immunoaffinity formats which elute IgG at low-pH, such as Protein G and Protein A. Herein we sought to compare Protein G purification of IgG with an immunoaffinity method which elutes at physiological pH (Melon Gel). Critical factors impacting Fc functionality with the potential to significantly influence FcγR binding, such as IgG subclass distribution, N-glycosylation, aggregation, and IgG conformational changes were investigated and compared. We observed that transient exposure of IgG to the low-pH elution buffer, used during the Protein G purification process, artificially enhanced recognition of Fcγ Receptors (FcγRs) as demonstrated by Surface Plasmon Resonance (SPR), FcγR dimer ELISA, and a functional cell-based assay. Furthermore, low-pH exposed IgG caused conformational changes resulting in increased aggregation and hydrophobicity; factors likely to contribute to the observed enhanced interaction with FcγRs. These results highlight that methods employed to purify IgG can significantly alter FcγR-binding behavior and biological activity and suggest that the IgG purification approach selected may be a previously overlooked factor contributing to the poor reproducibility across current assays employed to evaluate Fc-mediated antibody effector functions.
Collapse
Affiliation(s)
- Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Central Clinical School, Alfred Health, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Hui GK, Gardener AD, Begum H, Eldrid C, Thalassinos K, Gor J, Perkins SJ. The solution structure of the human IgG2 subclass is distinct from those for human IgG1 and IgG4 providing an explanation for their discrete functions. J Biol Chem 2019; 294:10789-10806. [PMID: 31088911 PMCID: PMC6635440 DOI: 10.1074/jbc.ra118.007134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/03/2019] [Indexed: 11/06/2022] Open
Abstract
Human IgG2 antibody displays distinct therapeutically-useful properties compared with the IgG1, IgG3, and IgG4 antibody subclasses. IgG2 is the second most abundant IgG subclass, being able to bind human FcγRII/FcγRIII but not to FcγRI or complement C1q. Structural information on IgG2 is limited by the absence of a full-length crystal structure for this. To this end, we determined the solution structure of human myeloma IgG2 by atomistic X-ray and neutron-scattering modeling. Analytical ultracentrifugation disclosed that IgG2 is monomeric with a sedimentation coefficient (s20, w0) of 7.2 S. IgG2 dimer formation was ≤5% and independent of the buffer conditions. Small-angle X-ray scattering in a range of NaCl concentrations and in light and heavy water revealed that the X-ray radius of gyration (Rg ) is 5.2-5.4 nm, after allowing for radiation damage at higher concentrations, and that the neutron Rg value of 5.0 nm remained unchanged in all conditions. The X-ray and neutron distance distribution curves (P(r)) revealed two peaks, M1 and M2, that were unchanged in different buffers. The creation of >123,000 physically-realistic atomistic models by Monte Carlo simulations for joint X-ray and neutron-scattering curve fits, constrained by the requirement of correct disulfide bridges in the hinge, resulted in the determination of symmetric Y-shaped IgG2 structures. These molecular structures were distinct from those for asymmetric IgG1 and asymmetric and symmetric IgG4 and were attributable to the four hinge disulfides. Our IgG2 structures rationalize the existence of the human IgG1, IgG2, and IgG4 subclasses and explain the receptor-binding functions of IgG2.
Collapse
Affiliation(s)
- Gar Kay Hui
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Antoni D Gardener
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Halima Begum
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Charles Eldrid
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
| | - Jayesh Gor
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Stephen J Perkins
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
12
|
Application of a label-free and domain-specific free thiol method in monoclonal antibody characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1114-1115:93-99. [DOI: 10.1016/j.jchromb.2019.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
|
13
|
Svilenov H, Winter G. The ReFOLD assay for protein formulation studies and prediction of protein aggregation during long-term storage. Eur J Pharm Biopharm 2019; 137:131-139. [DOI: 10.1016/j.ejpb.2019.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/28/2022]
|
14
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
15
|
Resemann A, Liu-Shin L, Tremintin G, Malhotra A, Fung A, Wang F, Ratnaswamy G, Suckau D. Rapid, automated characterization of disulfide bond scrambling and IgG2 isoform determination. MAbs 2018; 10:1200-1213. [PMID: 30277844 PMCID: PMC6284591 DOI: 10.1080/19420862.2018.1512328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human antibodies of the IgG2 subclass exhibit complex inter-chain disulfide bonding patterns that result in three structures, namely A, A/B, and B. In therapeutic applications, the distribution of disulfide isoforms is a critical product quality attribute because each configuration affects higher order structure, stability, isoelectric point, and antigen binding. The current standard for quantification of IgG2 disulfide isoform distribution is based on chromatographic or electrophoretic techniques that require additional characterization using mass spectrometry (MS)-based methods to confirm disulfide linkages. Detailed characterization of the IgG2 disulfide linkages often involve MS/MS approaches that include electrospray ionization or electron-transfer dissociation, and method optimization is often cumbersome due to the large size and heterogeneity of the disulfide-bonded peptides. As reported here, we developed a rapid LC-MALDI-TOF/TOF workflow that can both identify the IgG2 disulfide linkages and provide a semi-quantitative assessment of the distribution of the disulfide isoforms. We established signature disulfide-bonded IgG2 hinge peptides that correspond to the A, A/B, and B disulfide isoforms and can be applied to the fast classification of IgG2 isoforms in heterogeneous mixtures.
Collapse
Affiliation(s)
- Anja Resemann
- a BioPharma Solutions R&D , BALS, Bruker Daltonik , Bremen , Germany
| | - Lily Liu-Shin
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA.,c Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | | | - Arun Malhotra
- c Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Adam Fung
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Fang Wang
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Gayathri Ratnaswamy
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Detlev Suckau
- a BioPharma Solutions R&D , BALS, Bruker Daltonik , Bremen , Germany
| |
Collapse
|
16
|
Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, Sun J, Li N, Wang D, Nowak C, Neill A, Ponniah G, King C, Mason B, Beck A, Liu H. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs 2018; 10:513-538. [PMID: 29513619 PMCID: PMC5973765 DOI: 10.1080/19420862.2018.1438797] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
Process changes are inevitable in the life cycle of recombinant monoclonal antibody therapeutics. Products made using pre- and post-change processes are required to be comparable as demonstrated by comparability studies to qualify for continuous development and commercial supply. Establishment of comparability is a systematic process of gathering and evaluating data based on scientific understanding and clinical experience of the relationship between product quality attributes and their impact on safety and efficacy. This review summarizes the current understanding of various modifications of recombinant monoclonal antibodies. It further outlines the critical steps in designing and executing successful comparability studies to support process changes at different stages of a product's lifecycle.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Biologics Analytical Operations, Pharmaceutical & Biologics Development, Gilead Sciences, Ocean Ranch Blvd, Oceanside, CA
| | - Stephen Gozo
- Analytical Research & Development-Biologics, Celgene Corporation, Morris Avenue, Summit, NJ
| | - Amit Katiyar
- Analytical Development, Bristol-Myers Squibb, Pennington Rocky Road, Pennington, NJ
| | - Shara Dellatore
- Biologics & Vaccines Bioanalytics, MRL, Merck & Co., Inc., Galloping Hill Road, Kenilworth, NJ USA
| | - Yune Kune
- Fortress Biologicals, Sawyer Road, Suite, Waltham, MA
| | - Ram Bhat
- Millennium Research laboratories, New Boston Street, Woburn, MA
| | - Joanne Sun
- Product Development, Innovent Biologics, Dongping Street, Suzhou Industrial Park, China
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Old Saw Mill River Road, Tarrytown, NY
| | - Dongdong Wang
- Analytical Department, BioAnalytix, Inc., Memorial Drive, Cambridge, MA
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alyssa Neill
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | | | - Cory King
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Bruce Mason
- Pre-formulation, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alain Beck
- Analytical Chemistry, NBEs, Center d'Immunologie Pierre Fabre, St Julien-en-Genevois Cedex, France
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| |
Collapse
|
17
|
Frutos S, Jordan JB, Bio MM, Muir TW, Thiel OR, Vila-Perelló M. Access to site-specific Fc-cRGD peptide conjugates through streamlined expressed protein ligation. Org Biomol Chem 2018; 14:9549-9553. [PMID: 27722696 DOI: 10.1039/c6ob01833e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ideal drug should be highly effective, non-toxic and be delivered by a convenient and painless single dose. We are still far from such optimal treatment but peptides, with their high target selectivity and low toxicity profiles, provide a very attractive platform from which to strive towards it. One of the major limitations of peptide drugs is their high clearance rates, which limit dosage regimen options. Conjugation to antibody Fc domains is a viable strategy to improve peptide stability by increasing their hydrodynamic radius and hijacking the Fc recycling pathway. We report the use of a split-intein based semi-synthetic approach to site-specifically conjugate a synthetic integrin binding peptide to an Fc domain. The strategy described here allows conjugating synthetic peptides to Fc domains, which is not possible via genetic methods, fully maintaining the ability of both the Fc domain and the bioactive peptide to interact with their binding partners.
Collapse
Affiliation(s)
- S Frutos
- ProteoDesign S.L., Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - J B Jordan
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - M M Bio
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - T W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - O R Thiel
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - M Vila-Perelló
- ProteoDesign S.L., Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
18
|
Yang C, Gao X, Gong R. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics. Front Immunol 2018; 8:1860. [PMID: 29375551 PMCID: PMC5766897 DOI: 10.3389/fimmu.2017.01860] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023] Open
Abstract
Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo. However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa, which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo.
Collapse
Affiliation(s)
- Chunpeng Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Gao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
19
|
Nowak C, K Cheung J, M Dellatore S, Katiyar A, Bhat R, Sun J, Ponniah G, Neill A, Mason B, Beck A, Liu H. Forced degradation of recombinant monoclonal antibodies: A practical guide. MAbs 2017; 9:1217-1230. [PMID: 28853987 DOI: 10.1080/19420862.2017.1368602] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Forced degradation studies have become integral to the development of recombinant monoclonal antibody therapeutics by serving a variety of objectives from early stage manufacturability evaluation to supporting comparability assessments both pre- and post- marketing approval. This review summarizes the regulatory guidance scattered throughout different documents to highlight the expectations from various agencies such as the Food and Drug Administration and European Medicines Agency. The various purposes for forced degradation studies, commonly used conditions and the major degradation pathways under each condition are also discussed.
Collapse
Affiliation(s)
- Christine Nowak
- a Product Characterization, Alexion Pharmaceuticals , New Haven , CT , USA
| | - Jason K Cheung
- b Sterile Formulation Sciences, MRL , Merck & Co., Inc. , Kenilworth , NJ, USA , USA
| | - Shara M Dellatore
- c Biologics and Vaccines Bioanalytics, MRL , Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Amit Katiyar
- d Analytical Development, Bristol-Myers Squibb , Pennington , NJ , USA
| | - Ram Bhat
- e Millennium Research laboratories , Woburn , MA , USA
| | - Joanne Sun
- f Product Development, Innovent Biologics , Suzhou Industrial Park, China
| | | | - Alyssa Neill
- a Product Characterization, Alexion Pharmaceuticals , New Haven , CT , USA
| | - Bruce Mason
- a Product Characterization, Alexion Pharmaceuticals , New Haven , CT , USA
| | - Alain Beck
- g Analytical Chemistry, NBEs, Center d'Immunology Pierre Fabre , Cedex , France
| | - Hongcheng Liu
- a Product Characterization, Alexion Pharmaceuticals , New Haven , CT , USA
| |
Collapse
|
20
|
Estimating Extrinsic Dyes for Fluorometric Online Monitoring of Antibody Aggregation in CHO Fed-Batch Cultivations. Bioengineering (Basel) 2017; 4:bioengineering4030065. [PMID: 28952544 PMCID: PMC5615311 DOI: 10.3390/bioengineering4030065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Multi-wavelength fluorescence spectroscopy was evaluated in this work as tool for real-time monitoring of antibody aggregation in CHO fed-batch cultivations via partial least square (PLS) modeling. Therefore, we used the extrinsic fluorescence dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4,4′-bis-1-anilinonaphthalene-8-sulfonate (Bis-ANS), or Thioflavin T (ThT) as medium additives. This is a new application area, since these dyes are commonly used for aggregate detection during formulation development. We determined the half maximum inhibitory concentrations of ANS (203 ± 11 µmol·L−1), Bis-ANS (5 ± 0.5 µmol·L−1), and ThT (3 ± 0.2 µmol·L−1), and selected suitable concentrations for this application. The results showed that the emission signals of non-covalent dye antibody aggregate interaction superimposed the fluorescence signals originating from feed medium and cell culture. The fluorescence datasets were subsequently used to build PLS models, and the dye-related elevated fluorescence signals dominated the model calibration. The soft sensors based on ANS and Bis-ANS signals showed high predictability with a low error of prediction (1.7 and 2.3 mg·mL−1 aggregates). In general, the combination of extrinsic dye and used concentration influenced the predictability. Furthermore, the ThT soft sensor indicated that the intrinsic fluorescence of the culture might be sufficient to predict antibody aggregation online.
Collapse
|
21
|
Chung WK, Russell B, Yang Y, Handlogten M, Hudak S, Cao M, Wang J, Robbins D, Ahuja S, Zhu M. Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability. Biotechnol Bioeng 2017; 114:1264-1274. [PMID: 28186329 PMCID: PMC5413809 DOI: 10.1002/bit.26265] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 11/06/2022]
Abstract
Antibody disulfide bond reduction during monoclonal antibody (mAb) production is a phenomenon that has been attributed to the reducing enzymes from CHO cells acting on the mAb during the harvest process. However, the impact of antibody reduction on the downstream purification process has not been studied. During the production of an IgG2 mAb, antibody reduction was observed in the harvested cell culture fluid (HCCF), resulting in high fragment levels. In addition, aggregate levels increased during the low pH treatment step in the purification process. A correlation between the level of free thiol in the HCCF (as a result of antibody reduction) and aggregation during the low pH step was established, wherein higher levels of free thiol in the starting sample resulted in increased levels of aggregates during low pH treatment. The elevated levels of free thiol were not reduced over the course of purification, resulting in carry-over of high free thiol content into the formulated drug substance. When the drug substance with high free thiols was monitored for product degradation at room temperature and 2-8°C, faster rates of aggregation were observed compared to the drug substance generated from HCCF that was purified immediately after harvest. Further, when antibody reduction mitigations (e.g., chilling, aeration, and addition of cystine) were applied, HCCF could be held for an extended period of time while providing the same product quality/stability as material that had been purified immediately after harvest. Biotechnol. Bioeng. 2017;114: 1264-1274. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Wai Keen Chung
- Purification Process Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland
| | - Brian Russell
- Cell Culture and Fermentation Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland
| | - Yanhong Yang
- Analytical Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland
| | | | - Suzanne Hudak
- Formulation Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland
| | - Mingyan Cao
- Analytical Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland
| | - Jihong Wang
- Analytical Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland
| | - David Robbins
- Purification Process Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland
| | - Min Zhu
- Protein Science, Boehringer Ingelheim Fremont Inc, Fremont, California
| |
Collapse
|
22
|
Identification and characterization of monoclonal antibody fragments cleaved at the complementarity determining region using orthogonal analytical methods. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:121-129. [DOI: 10.1016/j.jchromb.2017.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 11/20/2022]
|
23
|
Liu L, Jacobsen FW, Everds N, Zhuang Y, Yu YB, Li N, Clark D, Nguyen MP, Fort M, Narayanan P, Kim K, Stevenson R, Narhi L, Gunasekaran K, Bussiere JL. Biological Characterization of a Stable Effector Functionless (SEFL) Monoclonal Antibody Scaffold in Vitro. J Biol Chem 2016; 292:1876-1883. [PMID: 27994063 DOI: 10.1074/jbc.m116.748707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/11/2016] [Indexed: 01/23/2023] Open
Abstract
The stable effector functionLess (SEFL) antibody was designed as an IgG1 antibody with a constant region that lacks the ability to interact with Fcγ receptors. The engineering and stability and pharmacokinetic assessments of the SEFL scaffold is described in the accompanying article (Jacobsen, F. W., Stevenson, R., Li, C., Salimi-Moosavi, H., Liu, L., Wen, J., Luo, Q., Daris, K., Buck, L., Miller, S., Ho, S-Y., Wang, W., Chen, Q., Walker, K., Wypych, J., Narhi, L., and Gunasekaran, K. (2017) J. Biol. Chem 292). The biological properties of these SEFL antibodies were assessed in a variety of human and cynomolgus monkey in vitro assays. Binding of parent molecules and their SEFL variants to human and cynomolgus monkey FcγRs were evaluated using flow cytometry-based binding assays. The SEFL variants tested showed decreased binding affinity to human and cynomolgus FcγRs compared with the wild-type IgG1 antibody. In addition, SEFL variants demonstrated no antibody-dependent cell-mediated cytotoxicity in vitro against Daudi cells with cynomolgus monkey peripheral blood mononuclear cells, and had minimal complement-dependent cytotoxicity activity similar to that of the negative control IgG2 in a CD20+ human Raji lymphoma cell line. SEFL mutations eliminated off-target antibody-dependent monocyte phagocytosis of cynomolgus monkey platelets, and cynomolgus platelet activation in vitro These experiments demonstrate that the SEFL modifications successfully eliminated Fc-associated effector binding and functions.
Collapse
Affiliation(s)
- Ling Liu
- From the Department of Biologic Optimization, Thousand Oaks, California 91320.
| | | | - Nancy Everds
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Yao Zhuang
- Department of Clinical Immunology, Thousand Oaks, California 91320
| | - Yan Bin Yu
- Department of Clinical Immunology, Thousand Oaks, California 91320
| | - Nianyu Li
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Darcey Clark
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Mai Phuong Nguyen
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Madeline Fort
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Padma Narayanan
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Kei Kim
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| | - Riki Stevenson
- Process Development, Amgen Inc., Thousand Oaks, California 91320
| | - Linda Narhi
- Process Development, Amgen Inc., Thousand Oaks, California 91320
| | - Kannan Gunasekaran
- From the Department of Biologic Optimization, Thousand Oaks, California 91320
| | - Jeanine L Bussiere
- Departments of Comparative Biology and Safety Sciences, Thousand Oaks, California 91320
| |
Collapse
|
24
|
Liu B, Guo H, Xu J, Qin T, Xu L, Zhang J, Guo Q, Zhang D, Qian W, Li B, Dai J, Hou S, Guo Y, Wang H. Acid-induced aggregation propensity of nivolumab is dependent on the Fc. MAbs 2016; 8:1107-17. [PMID: 27310175 DOI: 10.1080/19420862.2016.1197443] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nivolumab, an anti-programmed death (PD)1 IgG4 antibody, has shown notable success as a cancer treatment. Here, we report that nivolumab was susceptible to aggregation during manufacturing, particularly in routine purification steps. Our experimental results showed that exposure to low pH caused aggregation of nivolumab, and the Fc was primarily responsible for an acid-induced unfolding phenomenon. To compare the intrinsic propensity of acid-induced aggregation for other IgGs subclasses, tocilizumab (IgG1), panitumumab (IgG2) and atezolizumab (aglyco-IgG1) were also investigated. The accurate pH threshold of acid-induced aggregation for individual IgG Fc subclasses was identified and ranked as: IgG1 < aglyco-IgG1 < IgG2 < IgG4. This result was cross-validated by thermostability and conformation analysis. We also assessed the effect of several protein stabilizers on nivolumab, and found mannitol ameliorated the acid-induced aggregation of the molecule. Our results provide valuable insight into downstream manufacturing process development, especially for immune checkpoint modulating molecules with a human IgG4 backbone.
Collapse
Affiliation(s)
- Boning Liu
- a School of Bioscience and Bioengineering , South China University of Technology , Guangzhou , China.,b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China
| | - Huaizu Guo
- c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China.,d Shanghai Zhangjiang Biotechnology Co. , Shanghai , China
| | - Jin Xu
- c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China.,d Shanghai Zhangjiang Biotechnology Co. , Shanghai , China
| | - Ting Qin
- a School of Bioscience and Bioengineering , South China University of Technology , Guangzhou , China.,b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China
| | - Lu Xu
- a School of Bioscience and Bioengineering , South China University of Technology , Guangzhou , China.,b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China
| | - Junjie Zhang
- a School of Bioscience and Bioengineering , South China University of Technology , Guangzhou , China.,b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China
| | - Qingcheng Guo
- b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China
| | - Dapeng Zhang
- b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China
| | - Weizhu Qian
- c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China.,d Shanghai Zhangjiang Biotechnology Co. , Shanghai , China
| | - Bohua Li
- b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China
| | - Jianxin Dai
- b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China
| | - Sheng Hou
- b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China
| | - Yajun Guo
- a School of Bioscience and Bioengineering , South China University of Technology , Guangzhou , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China.,e School of Pharmacy , Liaocheng University , Liaocheng , China
| | - Hao Wang
- b International Joint Cancer Institute , Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai Key Laboratory of Cell Engineering ; Shanghai , China.,e School of Pharmacy , Liaocheng University , Liaocheng , China
| |
Collapse
|
25
|
Purdie JL, Kowle RL, Langland AL, Patel CN, Ouyang A, Olson DJ. Cell culture media impact on drug product solution stability. Biotechnol Prog 2016; 32:998-1008. [DOI: 10.1002/btpr.2289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/20/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Jennifer L. Purdie
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Ronald L. Kowle
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Amie L. Langland
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Chetan N. Patel
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Anli Ouyang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Donald J. Olson
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| |
Collapse
|
26
|
Production, Characterization, and Biological Evaluation of Well-Defined IgG1 Fc Glycoforms as a Model System for Biosimilarity Analysis. J Pharm Sci 2016; 105:559-574. [PMID: 26869419 DOI: 10.1016/j.xphs.2015.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022]
Abstract
Four different well-defined IgG1 Fc glycoforms are proposed as a model system to examine important biological and physicochemical features for protein drug biosimilar analyses. The IgG1 Fc glycoforms were produced by yeast expression combined with in vitro enzymatic synthesis as a series of sequentially truncated high-mannose IgG1 Fc glycoforms with an anticipated range of biological activity and structural stability. Initial characterization with mass spectrometry, SDS-PAGE, size exclusion HPLC, and capillary isoelectric focusing confirmed that the glycoproteins are overall highly similar with the only major difference being glycosylation state. Binding to the activating Fc receptor, FcγRIIIa was used to evaluate the potential biological activity of the IgG1 Fc glycoproteins. Two complementary methods using biolayer interferometry, 1 with protein G-immobilized IgG1 Fc and the other with streptavidin-immobilized FcγRIIIa, were developed to assess FcγRIIIa affinity in kinetic binding studies. The high-mannose IgG1 Fc and Man5-IgG1 Fc glycoforms were highly similar to one another with high affinity for FcγRIIIa, whereas GlcNAc-Fc had weak affinity, and the nonglycosylated N297Q-Fc had no measurable affinity for FcγRIIIa. These 4 IgG1 Fc glycoforms were also evaluated in terms of physical and chemical stability profiles and then used as a model system to mathematically assess overall biosimilarity, as described in a series of companion articles.
Collapse
|
27
|
Pacholarz KJ, Peters SJ, Garlish RA, Henry AJ, Taylor RJ, Humphreys DP, Barran PE. Molecular Insights into the Thermal Stability of mAbs with Variable-Temperature Ion-Mobility Mass Spectrometry. Chembiochem 2015; 17:46-51. [PMID: 26534882 DOI: 10.1002/cbic.201500574] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/14/2022]
Abstract
The aggregation of protein-based therapeutics such as monoclonal antibodies (mAbs) can affect the efficacy of the treatment and can even induce effects that are adverse to the patient. Protein engineering is used to shift the mAb away from an aggregation-prone state by increasing the thermodynamic stability of the native fold, which might in turn alter conformational flexibility. We have probed the thermal stability of three types of intact IgG molecules and two Fc-hinge fragments by using variable-temperature ion-mobility mass spectrometry (VT-IM-MS). We observed changes in the conformations of isolated proteins as a function of temperature (300-550 K). The observed differences in thermal stability between IgG subclasses can be rationalized in terms of changes to higher-order structural organization mitigated by the hinge region. VT-IM-MS provides insights into mAbs structural thermodynamics and is presented as a promising tool for thermal-stability studies for proteins of therapeutic interest.
Collapse
Affiliation(s)
- Kamila J Pacholarz
- MIB and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | | | | | | | - Perdita E Barran
- MIB and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
28
|
Hasegawa H, Woods CE, Kinderman F, He F, Lim AC. Russell body phenotype is preferentially induced by IgG mAb clones with high intrinsic condensation propensity: relations between the biosynthetic events in the ER and solution behaviors in vitro. MAbs 2015; 6:1518-32. [PMID: 25484054 DOI: 10.4161/mabs.36242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The underlying reasons for why some mAb (monoclonal antibody) clones are much more inclined to induce a Russell body (RB) phenotype during immunoglobulin biosynthesis remain elusive. Although RBs are morphologically understood as enlarged globular aggregates of immunoglobulins deposited in the endoplasmic reticulum (ER), little is known about the properties of the RB-inducing mAb clones as secretory cargo and their physical behaviors in the extracellular space. To elucidate how RB-inducing propensities, secretion outputs, and the intrinsic physicochemical properties of individual mAb clones are interrelated, we used HEK293 cells to study the biosynthesis of 5 human IgG mAbs for which prominent solution behavior problems were known a priori. All 5 model mAbs with inherently high condensation propensities induced RB phenotypes both at steady state and under ER-to-Golgi transport block, and resulted in low secretion titer. By contrast, one reference mAb that readily crystallized at neutral pH in vitro produced rod-shaped crystalline bodies in the ER without inducing RBs. Another reference mAb without notable solution behavior issues did not induce RBs and was secreted abundantly. Intrinsic physicochemical properties of individual IgG clones thus directly affected the biosynthetic steps in the ER, and thereby produced distinctive cellular phenotypes and influenced IgG secretion output. The findings implicated that RB formation represents a phase separation event or a loss of colloidal stability in the secretory pathway organelles. The process of RB induction allows the cell to preemptively reduce the extracellular concentration of potentially pathogenic, highly aggregation-prone IgG clones by selectively storing them in the ER.
Collapse
Key Words
- BFA, Brefeldin A
- CB, crystalline body
- DIC, differential interference contrast
- ER, endoplasmic reticulum;
- Fab, fragment antigen binding
- HC, heavy chain
- HEK, human embryonic kidney
- IgG, immunoglobulin G
- LC, light chain;
- RB, Russell body
- Russell body
- VH, heavy chain variable domain
- VL, light chain variable domain
- crystalline body
- endoplasmic reticulum
- gelation
- immunoglobulin
- mAb, monoclonal antibody
- phase separation
- protein aggregation
- protein condensation
- protein crystallization
Collapse
Affiliation(s)
- Haruki Hasegawa
- a Department of Therapeutic Discovery; Amgen ; Seattle , WA USA
| | | | | | | | | |
Collapse
|
29
|
Cao X, He Y, Smith J, Wirth MJ. Alleviating nonlinear behavior of disulfide isoforms in the reversed-phase liquid chromatography of IgG2. J Chromatogr A 2015; 1410:147-53. [PMID: 26256919 DOI: 10.1016/j.chroma.2015.07.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 10/23/2022]
Abstract
Reversed-phase chromatography is an established method for characterizing the disulfide isoforms of IgG2. This work explores the effect of mobile phase gradient profile and sample concentration on the separation of disulfide isoforms. The acidic mobile phase can alter the relative proportions of disulfide isoforms, but only when the level of the reactive A1 isoform is much higher than for typical conditions of separation and typical IgG2 samples. Otherwise, there is minimal disulfide scrambling. A slower gradient and flow rate modestly improve resolution, but the peaks remain heavily overlapped. Resolution is further improved and nonlinear chromatography lessened when injection is performed under non-stacking conditions. Non-stacking conditions also keep the concentration from spiking at the head of the column, reducing noncovalent associations that can promote disulfide scrambling. The higher resolution from non-stacking injection reveals the presence of at least seven species.
Collapse
Affiliation(s)
- Xiang Cao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Yan He
- Pfizer, Inc., AA4 700 Chesterfield Parkway North Chesterfield, MO 63017, USA
| | - Jacquelynn Smith
- Pfizer, Inc., AA4 700 Chesterfield Parkway North Chesterfield, MO 63017, USA
| | - Mary J Wirth
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
30
|
Characterization of cysteine related variants in an IgG2 antibody by LC–MS with an automated data analysis approach. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:30-7. [DOI: 10.1016/j.jchromb.2015.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 11/22/2022]
|
31
|
Arthur KK, Dinh N, Gabrielson JP. Technical Decision Making with Higher Order Structure Data: Utilization of Differential Scanning Calorimetry to Elucidate Critical Protein Structural Changes Resulting from Oxidation. J Pharm Sci 2015; 104:1548-54. [DOI: 10.1002/jps.24313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/05/2014] [Accepted: 11/19/2014] [Indexed: 11/05/2022]
|
32
|
Xia X, Longo LM, Blaber M. Mutation Choice to Eliminate Buried Free Cysteines in Protein Therapeutics. J Pharm Sci 2015; 104:566-76. [DOI: 10.1002/jps.24188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/11/2022]
|
33
|
Remmele RL, Bee JS, Phillips JJ, Mo WD, Higazi DR, Zhang J, Lindo V, Kippen AD. Characterization of Monoclonal Antibody Aggregates and Emerging Technologies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1202.ch005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Richard L. Remmele
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jared S. Bee
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jonathan J. Phillips
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Wenjun David Mo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel R. Higazi
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jifeng Zhang
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Vivian Lindo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Alistair D. Kippen
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| |
Collapse
|
34
|
Wang T, Liu YD, Cai B, Huang G, Flynn GC. Investigation of antibody disulfide reduction and re-oxidation and impact to biological activities. J Pharm Biomed Anal 2015; 102:519-28. [DOI: 10.1016/j.jpba.2014.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023]
|
35
|
Fincke A, Winter J, Bunte T, Olbrich C. Thermally induced degradation pathways of three different antibody-based drug development candidates. Eur J Pharm Sci 2014; 62:148-60. [DOI: 10.1016/j.ejps.2014.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/14/2014] [Accepted: 05/06/2014] [Indexed: 12/27/2022]
|
36
|
Hmiel LK, Brorson KA, Boyne MT. Post-translational structural modifications of immunoglobulin G and their effect on biological activity. Anal Bioanal Chem 2014; 407:79-94. [DOI: 10.1007/s00216-014-8108-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
|
37
|
Guo J, Kumar S, Prashad A, Starkey J, Singh SK. Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol- maleimide chemistry. Pharm Res 2014; 31:1710-23. [PMID: 24464270 DOI: 10.1007/s11095-013-1274-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE To provide a systematic biophysical approach towards a better understanding of impact of conjugation chemistry on higher order structure and physical stability of an antibody drug conjugate (ADC). METHODS ADC was prepared using thiol-maleimide chemistry. Physical stabilities of ADC and its parent IgG1 mAb were compared using calorimetric, spectroscopic and molecular modeling techniques. RESULTS ADC and mAb respond differently to thermal stress. Both the melting temperatures and heat capacities are substantially lower for the ADC. Spectroscopic experiments show that ADC and mAb have similar secondary and tertiary structures, but these are more easily destabilized by thermal stress on the ADC indicating reduced conformational stability. Molecular modeling calculations suggest a substantial decrease in the conformational energy of the mAb upon conjugation. The local surface around the conjugation sites also becomes more hydrophobic in the ADC, explaining the lower colloidal stability and greater tendency of the ADC to aggregate. CONCLUSIONS Computational and biophysical analyses of an ADC and its parent mAb have provided insights into impact of conjugation on physical stability and pinpointed reasons behind lower structural stability and increased aggregation propensity of the ADC. This knowledge can be used to design appropriate formulations to stabilize the ADC.
Collapse
Affiliation(s)
- Jianxin Guo
- Biotherapeutics Pharmaceutical Sciences, Pharmaceutical R&D, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | | | | | | | | |
Collapse
|
38
|
Rouet R, Lowe D, Christ D. Stability engineering of the human antibody repertoire. FEBS Lett 2013; 588:269-77. [PMID: 24291820 DOI: 10.1016/j.febslet.2013.11.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
Abstract
Human monoclonal antibodies often display limited thermodynamic and colloidal stabilities. This behavior hinders their production, and places limitations on the development of novel formulation conditions and therapeutic applications. Antibodies are highly diverse molecules, with much of the sequence variation observed within variable domain families and, in particular, their complementarity determining regions. This has complicated the development of comprehensive strategies for the stability engineering of the human antibody repertoire. Here we provide an overview of the field, and discuss recent advances in the development of robust and aggregation resistant antibody therapeutics.
Collapse
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - David Lowe
- MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
39
|
Neergaard MS, Nielsen AD, Parshad H, Van De Weert M. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass. J Pharm Sci 2013; 103:115-27. [PMID: 24282022 DOI: 10.1002/jps.23788] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/07/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
Few studies have so far directly compared the impact of antibody subclass on protein stability. This case study investigates two mAbs (one IgG1 and one IgG4 ) with identical variable region. Investigations of mAbs that recognize similar epitopes are necessary to identify possible differences between the IgG subclasses. Both physical and chemical stability were evaluated by applying a range of methods to measure formation of protein aggregates [size-exclusion chromatography (SEC)-HPLC and UV340 nm], structural integrity (circular dichroism and FTIR), thermodynamic stability (differential scanning calorimetry), colloidal interactions (dynamic light scattering), and fragmentation and deamidation (SEC-HPLC and capillary isoelectric focusing). The impact of pH (4-9) and ionic strength (10 and 150 mM) was investigated using highly-concentrated (150 mg/mL) mAb formulations. Lower conformational stability was identified for the IgG4 resulting in increased levels of soluble aggregates. The IgG1 was chemically less stable as compared with the IgG4 , presumably because of the higher flexibility in the IgG1 hinge region. The thermodynamic stability of individual mAb domains was also addressed in detail. The stability of our mAb molecules is clearly affected by the IgG framework, and this study suggests that subclass switching may alter aggregation propensity and aggregation pathway and thus potentially improve the overall formulation stability while retaining antigen specificity.
Collapse
Affiliation(s)
- Martin S Neergaard
- Section for Biologics, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
40
|
Ito T, Tsumoto K. Effects of subclass change on the structural stability of chimeric, humanized, and human antibodies under thermal stress. Protein Sci 2013; 22:1542-51. [PMID: 23963869 PMCID: PMC3831669 DOI: 10.1002/pro.2340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 01/22/2023]
Abstract
To address how changes in the subclass of antibody molecules affect their thermodynamic stability, we prepared three types of four monoclonal antibody molecules (chimeric, humanized, and human) and analyzed their structural stability under thermal stress by using size-exclusion chromatography, differential scanning calorimetry (DSC), circular dichroism (CD), and differential scanning fluoroscopy (DSF) with SYPRO Orange as a dye probe. All four molecules showed the same trend in change of structural stability; the order of the total amount of aggregates was IgG1 < IgG2 < IgG4. We thus successfully cross-validated the effects of subclass change on the structural stability of antibodies under thermal stress by using four methods. The T(h) values obtained with DSF were well correlated with the onset temperatures obtained with DSC and CD, suggesting that structural perturbation of the CH2 region could be monitored by using DSF. Our results suggested that variable domains dominated changes in structural stability and that the physicochemical properties of the constant regions of IgG were not altered, regardless of the variable regions fused.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- CHO Cells
- Calorimetry, Differential Scanning
- Chromatography, Gel
- Circular Dichroism
- Cricetulus
- Fluorescent Dyes
- Fluoroscopy
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/immunology
- Protein Stability
- Protein Structure, Secondary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Reproducibility of Results
- Stress, Physiological
- Temperature
- Thermodynamics
Collapse
Affiliation(s)
- Takahiko Ito
- Bio Process Research and Development Laboratories, Production DivisionKyowa Hakko Kirin Company Limited, 100-1 Hagiwara-machi, Takasaki, Gunma, 370-0013, Japan
- Institute of Medical Science, The University of Tokyo4–6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwa, 277–8562, Japan
| | - Kouhei Tsumoto
- Institute of Medical Science, The University of Tokyo4–6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwa, 277–8562, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of TokyoTokyo, 113-0024, Japan
- Department of Bioengineering, School of Engineering, The University of TokyoTokyo, 113-0024, Japan
| |
Collapse
|
41
|
Iwura T, Fukuda J, Yamazaki K, Kanamaru S, Arisaka F. Intermolecular interactions and conformation of antibody dimers present in IgG1 biopharmaceuticals. J Biochem 2013; 155:63-71. [PMID: 24155259 DOI: 10.1093/jb/mvt095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intermolecular interactions and conformation in dimer species of Palivizumab, a monoclonal antibody (IgG1), were investigated to elucidate the physical and chemical properties of the dimerized antibody. Palivizumab solution contains ∼1% dimer and 99% monomer. The dimer species was isolated by size-exclusion chromatography and analysed by a number of methods including analytical ultracentrifugation-sedimantetion velocity (AUC-SV). AUC-SV in the presence of sodium dodecyl sulphate indicated that approximately half of the dimer fraction was non-covalently associated, whereas the other half was dimerized by covalent bond. Disulphide bond and dityrosine formation were likely to be involved in the covalent dimerization. Limited proteolysis of the isolated dimer by Lys-C and mass spectrometry for the resultant products indicated that the dimer species were formed by Fab-Fc or Fab-Fab interactions, whereas Fc-Fc interactions were not found. It is thus likely that the dimerization occurs mainly via the Fab region. With regard to the conformation of the dimer species, the secondary and tertiary structures were shown to be almost identical to those of the monomer. Furthermore, the thermal stability turned out also to be very similar between the dimer and monomer.
Collapse
Affiliation(s)
- Takafumi Iwura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-9 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501; and Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd.; 100-1 Hagiwara-machi, Takasaki, Gunma 370-0013, Japan
| | | | | | | | | |
Collapse
|
42
|
Buchanan A, Clementel V, Woods R, Harn N, Bowen MA, Mo W, Popovic B, Bishop SM, Dall'Acqua W, Minter R, Jermutus L, Bedian V. Engineering a therapeutic IgG molecule to address cysteinylation, aggregation and enhance thermal stability and expression. MAbs 2013; 5:255-62. [PMID: 23412563 PMCID: PMC3893235 DOI: 10.4161/mabs.23392] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antibodies can undergo a variety of covalent and non-covalent degradation reactions that have adverse effects on efficacy, safety, manufacture and storage. We had identified an antibody to Angiopoietin 2 (Ang2 mAb) that neutralizes Ang2 binding to its receptor in vitro and inhibits tumor growth in vivo. Despite favorable pharmacological activity, the Ang2 mAb preparations were heterogeneous, aggregated rapidly and were poorly expressed. Here, we report the engineering of the antibody variable and constant domains to generate an antibody with reduced propensity to aggregate, enhanced homogeneity, 11°C elevated T(m), 26-fold improved level of expression and retained activity. The engineered molecule, MEDI-3617, is now compatible with the large scale material supply required for clinical trials and is currently being evaluated in Phase 1 in cancer patients. This is the first report to describe the stability engineering of a therapeutic antibody addressing non canonical cysteine residues and the design strategy reported here is generally applicable to other therapeutic antibodies and proteins.
Collapse
|
43
|
O-linked glucosylation of a therapeutic recombinant humanised monoclonal antibody produced in CHO cells. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Kim N, Remmele RL, Liu D, Razinkov VI, Fernandez EJ, Roberts CJ. Aggregation of anti-streptavidin immunoglobulin gamma‐1 involves Fab unfolding and competing growth pathways mediated by pH and salt concentration. Biophys Chem 2013; 172:26-36. [DOI: 10.1016/j.bpc.2012.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 11/29/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022]
|
45
|
Wang T, Fodor S, Hapuarachchi S, Jiang XG, Chen K, Apostol I, Huang G. Analysis and characterization of aggregation of a therapeutic Fc-fusion protein. J Pharm Biomed Anal 2013; 72:59-64. [DOI: 10.1016/j.jpba.2012.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/29/2012] [Accepted: 09/13/2012] [Indexed: 12/31/2022]
|
46
|
Characterization of critical reagents in ligand-binding assays: enabling robust bioanalytical methods and lifecycle management. Bioanalysis 2013; 5:227-44. [DOI: 10.4155/bio.12.304] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The effective management of validated ligand-binding assays used for PK, PD and immunogenicity assessments of biotherapeutics is vital to ensuring robust and consistent assay performance throughout the lifetime of the method. The structural integrity and functional quality of critical reagents is often linked to ligand-binding assay performance; therefore, physicochemical and biophysical characterization coupled with assessment of assay performance can enable the highest degree of reagent quality. The implementation of a systematic characterization process for monitoring critical reagent attributes, utilizing detailed analytical techniques such as LC–MS, can expedite assay troubleshooting and identify deleterious trends. In addition, this minimizes the potential for costly delays in drug development due to reagent instability or batch-to-batch variability. This article provides our perspectives on a proactive critical reagent QC process. Case studies highlight the analytical techniques used to identify chemical and molecular factors and the interdependencies that can contribute to protein heterogeneity and integrity.
Collapse
|
47
|
Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates. Pharm Res 2012; 30:641-54. [PMID: 23054090 DOI: 10.1007/s11095-012-0885-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/07/2012] [Indexed: 01/26/2023]
Abstract
PURPOSE To identify the aggregation mechanism and the stability characteristics of three different monoclonal antibodies under acidic conditions. METHODS The aggregation kinetics is analyzed by a combination of light scattering, size exclusion chromatography and fluorescence techniques and the aggregation data are correlated to protein structure, hydrophobicity, charge and antibody subclass. RESULTS In the investigated conditions, the antibody aggregation follows a mechanism consisting of two-steps: reversible monomer oligomerization followed by irreversible cluster-cluster aggregation. The kinetics of the two steps is differently affected by the operating conditions: mild destabilizing conditions induce formation of oligomers which are stable within weeks, while stronger denaturing conditions promote aggregation of oligomers to larger aggregates which eventually precipitate. For different antibodies significant differences in both oligomerization and growth rates are found, even for antibodies belonging to the same subclass. For all antibodies the aggregate formation is accompanied by a structure re-organization with an increase in the ordered β-sheet structures. At low pH the aggregation propensity of the investigated antibodies does not correlate with antibody subclass, surface net charge and hydrophobicity of the non-native state. CONCLUSIONS The aggregation mechanism of three antibodies in acidic conditions as well as differences and analogies in their stability behavior has been characterized.
Collapse
|
48
|
Kumru OS, Liu J, Ji JA, Cheng W, Wang YJ, Wang T, Joshi SB, Middaugh CR, Volkin DB. Compatibility, Physical Stability, and Characterization of an IgG4 Monoclonal Antibody After Dilution into Different Intravenous Administration Bags. J Pharm Sci 2012; 101:3636-50. [DOI: 10.1002/jps.23224] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/12/2012] [Accepted: 05/11/2012] [Indexed: 12/11/2022]
|
49
|
Liu H, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs 2012; 4:17-23. [PMID: 22327427 DOI: 10.4161/mabs.4.1.18347] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The disulfide bond structures established decades ago for immunoglobulins have been challenged by findings from extensive characterization of recombinant and human monoclonal IgG antibodies. Non-classical disulfide bond structure was first identified in IgG4 and later in IgG2 antibodies. Although, cysteine residues should be in the disulfide bonded states, free sulfhydryls have been detected in all subclasses of IgG antibodies. In addition, disulfide bonds are susceptible to chemical modifications, which can further generate structural variants such as IgG antibodies with trisulfide bond or thioether linkages. Trisulfide bond formation has also been observed for IgG of all subclasses. Degradation of disulfide bond through β-elimination generates free sulfhydryls disulfide and dehydroalanine. Further reaction between free sulfhydryl and dehydroalanine leads to the formation of a non-reducible cross-linked species. Hydrolysis of the dehydroalanine residue contributes substantially to antibody hinge region fragmentation. The effect of these disulfide bond variations on antibody structure, stability and biological function are discussed in this review.
Collapse
|
50
|
Zhang L, Chou CP, Moo-Young M. Disulfide bond formation and its impact on the biological activity and stability of recombinant therapeutic proteins produced by Escherichia coli expression system. Biotechnol Adv 2011; 29:923-9. [DOI: 10.1016/j.biotechadv.2011.07.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/17/2011] [Accepted: 07/21/2011] [Indexed: 11/28/2022]
|