1
|
Li Q, Min J, Zhang J, Reches M, Shen Y, Su R, Wang Y, Qi W. Enzyme-Driven, Switchable Catalysis Based on Dynamic Self-Assembly of Peptides. Angew Chem Int Ed Engl 2023; 62:e202309830. [PMID: 37602955 DOI: 10.1002/anie.202309830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
Covalent regulatory systems of enzymes are widely used to modulate biological enzyme activities. Inspired by the regulation of reactive-site phosphorylation in organisms, we developed peptide-based catecholase mimetics with switchable catalytic activity and high selectivity through the co-assembly of nanofibers comprising peptides and copper ions (Cu2+ ). Through careful design and modification of the peptide backbone structure based on the change in the free energy of the system, we identified the peptide with the most effective reversible catalytic activity. Kinase/phosphatase switches were used to control the reversible transition of nanofiber formation and depolymerization, as well as to modulate the active-site microenvironment. Notably, the self-assembly and disassembly processes of nanofibers were simulated using coarse-grained molecular dynamics. Furthermore, theoretical calculations confirmed the coordination of the peptide and Cu2+ , forming a zipper-like four-ligand structure at the catalytically active center of the nanofibers. Additionally, we conducted a comprehensive analysis of the catalytic mechanism. This study opens novel avenues for designing biomimetic enzymes with ordered structures and dynamic catalytic activities.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Meital Reches
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Dixit G, Stowe RB, Bates A, Jaycox CK, Escobar JR, Harding BD, Drew DL, New CP, Sahu ID, Edelmann RE, Dabney-Smith C, Sanders CR, Lorigan GA. Purification and membrane interactions of human KCNQ1 100-370 potassium ion channel. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184010. [PMID: 35870481 PMCID: PMC11524546 DOI: 10.1016/j.bbamem.2022.184010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
KCNQ1 (Kv7.1 or KvLQT1) is a voltage-gated potassium ion channel that is involved in the ventricular repolarization following an action potential in the heart. It forms a complex with KCNE1 in the heart and is the pore forming subunit of slow delayed rectifier potassium current (Iks). Mutations in KCNQ1, leading to a dysfunctional channel or loss of activity have been implicated in a cardiac disorder, long QT syndrome. In this study, we report the overexpression, purification, biochemical characterization of human KCNQ1100-370, and lipid bilayer dynamics upon interaction with KCNQ1100-370. The recombinant human KCNQ1 was expressed in Escherichia coli and purified into n-dodecylphosphocholine (DPC) micelles. The purified KCNQ1100-370 was biochemically characterized by SDS-PAGE electrophoresis, western blot and nano-LC-MS/MS to confirm the identity of the protein. Circular dichroism (CD) spectroscopy was utilized to confirm the secondary structure of purified protein in vesicles. Furthermore, 31P and 2H solid-state NMR spectroscopy in DPPC/POPC/POPG vesicles (MLVs) indicated a direct interaction between KCNQ100-370 and the phospholipid head groups. Finally, a visual inspection of KCNQ1100-370 incorporated into MLVs was confirmed by transmission electron microscopy (TEM). The findings of this study provide avenues for future structural studies of the human KCNQ1 ion channel to have an in depth understanding of its structure-function relationship.
Collapse
Affiliation(s)
- Gunjan Dixit
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Rebecca B Stowe
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Alison Bates
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Colleen K Jaycox
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Jorge R Escobar
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Benjamin D Harding
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Christopher P New
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Richard E Edelmann
- Center for Advanced Microscopy and Imaging, Miami University, Oxford, OH 45056, USA
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
3
|
Du H, Zhang J, Wang S, Manyande A, Wang J. Effect of high-intensity ultrasonic treatment on the physicochemical, structural, rheological, behavioral, and foaming properties of pumpkin (Cucurbita moschata Duch.)-seed protein isolates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
A bound iron porphyrin is redox active in hybrid bacterial reaction centers modified to possess a four-helix bundle domain. Photochem Photobiol Sci 2021; 21:91-99. [PMID: 34850374 DOI: 10.1007/s43630-021-00142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
In this paper we report the design of hybrid reaction centers with a novel redox-active cofactor. Reaction centers perform the primary photochemistry of photosynthesis, namely the light-induced transfer of an electron from the bacteriochlorophyll dimer to a series of electron acceptors. Hybrid complexes were created by the fusion of an artificial four-helix bundle to the M-subunit of the reaction center. Despite the large modification, optical spectra show that the purified hybrid reaction centers assemble as active complexes that retain the characteristic cofactor absorption peaks and are capable of light-induced charge separation. The four-helix bundle could bind iron-protoporphyrin in either a reduced and oxidized state. After binding iron-protoporphyrin to the hybrid reaction centers, light excitation results in a new derivative signal with a maximum at 402 nm and minimum at 429 nm. This signal increases in amplitude with longer light durations and persists in the dark. No signal is observed when iron-protoporphyrin is added to reaction centers without the four-helix bundle domain or when a redox-inactive zinc-protoporphyrin is bound. The results are consistent with the signal arising from a new redox reaction, electron transfer from the iron-protoporphyrin to the oxidized bacteriochlorophyll dimer. These outcomes demonstrate the feasibility of binding porphyrins to the hybrid reaction centers to gain new light-driven functions.
Collapse
|
5
|
Cocrystallization-like strategy for the codelivery of hydrophobic and hydrophilic drugs in a single carrier material formulation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Wang J, Li Q, Hu L, Wang Y, Qi W, Su R, He Z. Self-Assembly of Ferrocenyl Phenylalanine into Nanohelical Arrays via Kinetic Control. ACS APPLIED BIO MATERIALS 2021; 4:4744-4752. [PMID: 35007024 DOI: 10.1021/acsabm.0c00607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spontaneous alignment of self-assembled chiral nanostructures at macroscopic scales is appealing because of their unique structural features and physicochemical properties. Here we present the construction of highly ordered bioorganometallic nanohelical arrays on the basis of the hierarchical chiral self-assembly of the simple ferrocenyl l-phenylalanine (Fc-l-F). The formation of nanohelical arrays is under kinetic control, which can be controlled by changing the growth time and the vapor temperature. The chiral nanoarrays can generate circularly polarized luminescence by the incorporation of fluorescent dyes. Moreover, due to the redox activity of the Fc moiety, the nanohelical arrays show enhanced electrical capacity compared with previously reported peptide nanomaterials. The results shed light on the highly ordered chiral self-assembled nanomaterials, which have potential applications in fields of optics, sensing, and energy storage.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Liuping Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
7
|
Li Q, Zhang G, Wu Y, Wang Y, Liang Y, Yang X, Qi W, Su R, He Z. Control of peptide hydrogel formation and stability via heating treatment. J Colloid Interface Sci 2021; 583:234-242. [PMID: 33002695 DOI: 10.1016/j.jcis.2020.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Heating treatment is widely used in the preparation of metallic materials with controlled phase behavior and mechanical properties. However, for the soft materials assembled by short peptides, especially simple dipeptides, the detailed influences of heating treatment on the structures and functions of the materials remain largely unexplored. Here we showed that by thermal annealing or quenching of aromatic peptide solutions under kinetic control, we are able to control the self-assembly of peptide into materials with distinct phase behavior and macroscopic properties. The thermal annealing of the heated peptide solutions will lead to the formation of large nanobelts or bundles in solution, and no gels will be formed. However, by quenching the heated peptide solution, a self-supporting hydrogel will be formed quickly. Structure analysis revealed that the peptides preferred to self-assembled into much thinner and flexible nanohelices during quenching treatment. Moreover, the stability of the gels further increased with the repeated heating and quenching cycling of the peptide solutions. The results demonstrated that the heat treatment can be used to control the structure and function of self-assembled materials in a way similar to that of the conventional metallic or alloy materials.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yifei Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xin Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
8
|
Matsuo K, Gekko K. Circular-Dichroism and Synchrotron-Radiation Circular-Dichroism Spectroscopy as Tools to Monitor Protein Structure in a Lipid Environment. Methods Mol Biol 2020; 2003:253-279. [PMID: 31218622 DOI: 10.1007/978-1-4939-9512-7_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Circular-dichroism (CD) spectroscopy is a powerful tool for the secondary-structure analysis of proteins. The structural information obtained by CD does not have atomic-level resolution (unlike X-ray crystallography and NMR spectroscopy), but it has the great advantage of being applicable to both nonnative and native proteins in a wide range of solution conditions containing lipids and detergents. The development of synchrotron-radiation CD (SRCD) instruments has greatly expanded the utility of this method by extending the spectra to the vacuum-ultraviolet region below 190 nm and producing information that is unobtainable by conventional CD instruments. Combining SRCD data with bioinformatics provides new insight into the conformational changes of proteins in a membrane environment.
Collapse
Affiliation(s)
- Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kunihiko Gekko
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
9
|
Matsuo K, Kumashiro M, Gekko K. Characterization of the mechanism of interaction between α1‐acid glycoprotein and lipid membranes by vacuum‐ultraviolet circular‐dichroism spectroscopy. Chirality 2020; 32:594-604. [DOI: 10.1002/chir.23208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Koichi Matsuo
- Hiroshima Synchrotron Radiation CenterHiroshima University Higashi‐Hiroshima Japan
| | - Munehiro Kumashiro
- Department of Physical Science, Graduate School of ScienceHiroshima University Higashi‐Hiroshima Japan
| | - Kunihiko Gekko
- Hiroshima Synchrotron Radiation CenterHiroshima University Higashi‐Hiroshima Japan
| |
Collapse
|
10
|
Littlewood S, Tattersall H, Hughes CS, Hussain R, Ma P, Harding SE, Nakayama J, Phillips-Jones MK. The gelatinase biosynthesis-activating pheromone binds and stabilises the FsrB membrane protein in Enterococcus faecalis quorum sensing. FEBS Lett 2019; 594:553-563. [PMID: 31598959 PMCID: PMC7028047 DOI: 10.1002/1873-3468.13634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Quorum‐sensing mechanisms regulate gene expression in response to changing cell‐population density detected through pheromones. In Enterococcus faecalis, Fsr quorum sensing produces and responds to the gelatinase biosynthesis‐activating pheromone (GBAP). Here we establish that the enterococcal FsrB membrane protein has a direct role connected with GBAP by showing that GBAP binds to purified FsrB. Far‐UV CD measurements demonstrated a predominantly α‐helical protein exhibiting a small level of conformational flexibility. Fivefold (400 μm) GBAP stabilised FsrB (80 μm) secondary structure. FsrB thermal denaturation in the presence and absence of GBAP revealed melting temperatures of 70.1 and 60.8 °C, respectively, demonstrating GBAP interactions and increased thermal stability conferred by GBAP. Addition of GBAP also resulted in tertiary structural changes, confirming GBAP binding.
Collapse
Affiliation(s)
- Sean Littlewood
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Helena Tattersall
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Charlotte S Hughes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK.,Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Pikyee Ma
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
11
|
Fry HC, Silveira GDQ, Cohn HM, Lee B. Diverse Bilayer Morphologies Achieved via α-Helix-to-β-Sheet Transitions in a Short Amphiphilic Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8961-8967. [PMID: 31192607 DOI: 10.1021/acs.langmuir.9b00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transmembrane proteins are functional macromolecules that direct the flow of small molecules and ions across a lipid bilayer. Here, we propose the development of helical peptide amphiphiles that will serve as both the bilayer and the functional unit of a self-assembled peptide bilayer membrane. The peptide, K3L12, was designed not only to possess dimensions similar to that of a lipid bilayer but also to yield a structurally robust, α-helical bilayer. The formation of α-helices is pH-dependent, and upon annealing the sample, a transition from α-helices to β-sheets can be controlled, as indicated by optical and vibrational spectroscopies. Imaging the materials confirms morphologies similar to that of a lipid bilayer but rich in α-helices. Annealing the samples yields a shift in the morphology from bilayers to curled disks, fibers, and sheets. The structural robustness of the material can facilitate the incorporation of many functions into the bilayer assembly.
Collapse
|
12
|
Disorder-to-helix conformational conversion of the human immunomodulatory peptide LL-37 induced by antiinflammatory drugs, food dyes and some metabolites. Int J Biol Macromol 2019; 129:50-60. [DOI: 10.1016/j.ijbiomac.2019.01.209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
13
|
Zheng T, Chen Y, Shi Y, Feng H. High efficiency liposome fusion induced by reducing undesired membrane peptides interaction. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA full membrane fusion model which attains both complete lipid mixing and content mixing liposomal membranes mediated by coiled-coil forming lipopeptides LPK [L-PEG12-(KIAALKE)3] and LPE [L-PEG12-(EIAALEK)3] is presented. The electrostatic effects of lipid anchored peptides on fusion efficiency was investigated. For this, the original amino acid sequence of the membrane bound LPK was varied at its ‘f’-position of the helical structure, i.e. via mutating the anionic glutamate residues by either neutral serines or cationic lysines. Both CD and fluorescence measurements showed that replacing the negatively charged glutamate did not significantly alter the peptide ability to form a coiled coil, but lipid mixing and content mixing assays showed more efficient liposome-liposome fusion resulting in almost quantitative content mixing for the lysine mutated analogue (LPKK) in conjunction with LPE. A mechanism is proposed for a fusion model triggered by membrane destabilizing effects mediated by the membrane destabilizing activety of LPK in cooperation with the electrostatic activity of LPE. This new insight may enlightens the further development of a promising nano carrier tool for biomedical applications.
Collapse
Affiliation(s)
- Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Shenzhen, China
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Yun Chen
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Yu Shi
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Huanhuan Feng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
14
|
Dixit G, Sahu ID, Reynolds WD, Wadsworth TM, Harding BD, Jaycox CK, Dabney-Smith C, Sanders CR, Lorigan GA. Probing the Dynamics and Structural Topology of the Reconstituted Human KCNQ1 Voltage Sensor Domain (Q1-VSD) in Lipid Bilayers Using Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2019; 58:965-973. [PMID: 30620191 DOI: 10.1021/acs.biochem.8b01042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
KCNQ1 (Kv7.1 or KvLQT1) is a potassium ion channel protein found in the heart, ear, and other tissues. In complex with the KCNE1 accessory protein, it plays a role during the repolarization phase of the cardiac action potential. Mutations in the channel have been associated with several diseases, including congenital deafness and long QT syndrome. Nuclear magnetic resonance (NMR) structural studies in detergent micelles and a cryo-electron microscopy structure of KCNQ1 from Xenopus laevis have shown that the voltage sensor domain (Q1-VSD) of the channel has four transmembrane helices, S1-S4, being overall structurally similar with other VSDs. In this study, we describe a reliable method for the reconstitution of Q1-VSD into (POPC/POPG) lipid bilayer vesicles. Site-directed spin labeling electron paramagnetic resonance spectroscopy was used to probe the structural dynamics and topology of several residues of Q1-VSD in POPC/POPG lipid bilayer vesicles. Several mutants were probed to determine their location and corresponding immersion depth (in angstroms) with respect to the membrane. The dynamics of the bilayer vesicles upon incorporation of Q1-VSD were studied using 31P solid-state NMR spectroscopy by varying the protein:lipid molar ratios confirming the interaction of the protein with the bilayer vesicles. Circular dichroism spectroscopic data showed that the α-helical content of Q1-VSD is higher for the protein reconstituted in vesicles than in previous studies using DPC detergent micelles. This study provides insight into the structural topology and dynamics of Q1-VSD reconstituted in a lipid bilayer environment, forming the basis for more advanced structural and functional studies.
Collapse
Affiliation(s)
- Gunjan Dixit
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Warren D Reynolds
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Tessa M Wadsworth
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Benjamin D Harding
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Colleen K Jaycox
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry , Miami University , 651 East High Street , Oxford , Ohio 45056 , United States
| |
Collapse
|
15
|
Rončević T, Vukičević D, Ilić N, Krce L, Gajski G, Tonkić M, Goić-Barišić I, Zoranić L, Sonavane Y, Benincasa M, Juretić D, Maravić A, Tossi A. Antibacterial Activity Affected by the Conformational Flexibility in Glycine–Lysine Based α-Helical Antimicrobial Peptides. J Med Chem 2018; 61:2924-2936. [DOI: 10.1021/acs.jmedchem.7b01831] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomislav Rončević
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Damir Vukičević
- Department of Mathematics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Nada Ilić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Marija Tonkić
- Department of Clinical Microbiology, University Hospital of Split, 21000 Split, Croatia
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Goić-Barišić
- Department of Clinical Microbiology, University Hospital of Split, 21000 Split, Croatia
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Larisa Zoranić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Yogesh Sonavane
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davor Juretić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
16
|
González Flecha FL. Kinetic stability of membrane proteins. Biophys Rev 2017; 9:563-572. [PMID: 28921106 DOI: 10.1007/s12551-017-0324-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022] Open
Abstract
Although membrane proteins constitute an important class of biomolecules involved in key cellular processes, study of the thermodynamic and kinetic stability of their structures is far behind that of soluble proteins. It is known that many membrane proteins become unstable when removed by detergent extraction from the lipid environment. In addition, most of them undergo irreversible denaturation, even under mild experimental conditions. This process was found to be associated with partial unfolding of the polypeptide chain exposing hydrophobic regions to water, and it was proposed that the formation of kinetically trapped conformations could be involved. In this review, we will describe some of the efforts toward understanding the irreversible inactivation of membrane proteins. Furthermore, its modulation by phospholipids, ligands, and temperature will be herein discussed.
Collapse
Affiliation(s)
- F Luis González Flecha
- Universidad de Buenos Aires, CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Metola A, Bouchet AM, Alonso-Mariño M, Diercks T, Mäler L, Goñi FM, Viguera AR. Purification and characterization of the colicin A immunity protein in detergent micelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2181-2192. [PMID: 28803731 DOI: 10.1016/j.bbamem.2017.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022]
Abstract
The immunity proteins against pore-forming colicins represent a family of integral membrane proteins that reside in the inner membrane of producing cells. Cai, the colicin A immunity protein, was characterized here in detergent micelles by circular dichroism (CD), size exclusion chromatography, chemical cross-linking, nuclear magnetic resonance (NMR) spectroscopy, cysteine accessibility, and colicin A binding in detergent micelles. Bile-salt derivatives induced extensive protein polymerization that precluded further investigation. The physical characterization of detergent-solubilized protein indicates that phosphate-containing detergents are more efficient in extracting, solubilizing and maintaining Cai in a monomeric state. Yet, their capacity to ensure protein activity, reconstitution, helix packing, and high-quality NMR spectra was inferior to that of milder detergents. Solvent ionic strength and composition greatly modified the solubilizing capacity of milder detergents. Most importantly, binding to the colicin A pore-forming domain (pf-ColA) occurred almost exclusively in sugar-derived detergents. The relative performance of the different detergents in each experiment depends on their impact not only on Cai structure, solubility and oligomerization state, but also on other reaction components and technical aspects. Thus, proteoliposomes were best obtained from protein in LDAO micelles, possibly also due to indirect effects on the lipidic bilayer. The compatibility of a detergent with Cai/pf-ColA complex formation is influenced by its effect on the conformational landscape of each protein, where detergent-mediated pf-ColA denaturation could also lead to negative results. The NMR spectra were greatly affected by the solubility, monodispersity, fold and dynamics of the protein-detergent complexes, and none of those tested here provided NMR spectra of sufficient quality to allow for peak assignment. Cai function could be proven in alkyl glycosides and not in those detergents that afforded the best solubility, reconstitution efficiency or spectral quality indicating that these criteria cannot be taken as unambiguous proof of nativeness without the support of direct activity measurements.
Collapse
Affiliation(s)
- Ane Metola
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Ana M Bouchet
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Marian Alonso-Mariño
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Tammo Diercks
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia Ed. 800, 48160 Derio, Spain
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa. Spain
| | - Ana R Viguera
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain.
| |
Collapse
|
18
|
pH-controllable cell-penetrating polypeptide that exhibits cancer targeting. Acta Biomater 2017; 57:187-196. [PMID: 28528116 DOI: 10.1016/j.actbio.2017.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
Abstract
Helical peptides were naturally-occurring ordered conformations that mediated various biological functions essential for biotechnology. However, it was difficult for natural helical polypeptides to be applied in biomedical fields due to low bioavailability. To avoid these problems, synthetic alpha-helical polypeptides have recently been introduced by further modifying pendants in the side chain. In spite of an attractive biomimetic helical motif, these systems could not be tailored for targeted delivery mainly due to nonspecific binding events. To address these issues, we created a conformation-transformable polypeptide capable of eliciting a pH-activated cell-penetrating property solely at the cancer region. The developed novel polypeptide showed that the bare helical conformation had a function at physiological conditions while the pH-induced helical motif provided an active cell-penetrating characteristic at a tumor extracellular matrix pH. The unusual conformation-transformable system can elicit bioactive properties exclusively at mild acidic pH. STATEMENT OF SIGNIFICANCE We developed pH-controllable cell-penetrating polypeptides (PCCPs) undergoing pH-induced conformational transitions. Unlike natural cell-penetrating peptides, PCCPs was capable of penetrating the plasma membranes dominantly at tumor pH, driven by pH-controlled helicity. The conformation of PCCPs at neutral pH showed low helical propensity because of dominant electrostatic attractions within the side chains. However, the helicity of PCCPs was considerably augmented by the balance of electrostatic interactions, thereby inducing selective cellular penetration. Three polypeptides undergoing different conformational transitions were prepared to verify the selective cellular uptake influenced by their structures. The PCCP undergoing low-to-high helical conformation provided the tumor specificity and enhanced uptake efficiency. pH-induced conformation-transformable polypeptide might provide a novel platform for stimuli-triggered targeting systems.
Collapse
|
19
|
Schwarzer TS, Hermann M, Krishnan S, Simmel FC, Castiglione K. Preparative refolding of small monomeric outer membrane proteins. Protein Expr Purif 2017; 132:171-181. [DOI: 10.1016/j.pep.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/16/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022]
|
20
|
Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Sci Rep 2017; 7:40800. [PMID: 28084464 PMCID: PMC5234007 DOI: 10.1038/srep40800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.
Collapse
|
21
|
Matsuo K, Maki Y, Namatame H, Taniguchi M, Gekko K. Conformation of membrane-bound proteins revealed by vacuum-ultraviolet circular-dichroism and linear-dichroism spectroscopy. Proteins 2016; 84:349-59. [PMID: 26756612 DOI: 10.1002/prot.24981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/09/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
Abstract
Knowledge of the conformations of a water-soluble protein bound to a membrane is important for understanding the membrane-interaction mechanisms and the membrane-mediated functions of the protein. In this study we applied vacuum-ultraviolet circular-dichroism (VUVCD) and linear-dichroism (LD) spectroscopy to analyze the conformations of α-lactalbumin (LA), thioredoxin (Trx), and β-lactoglobulin (LG) bound to phosphatidylglycerol liposomes. The VUVCD analysis coupled with a neural-network analysis showed that these three proteins have characteristic helix-rich conformations involving several helical segments, of which two amphiphilic or hydrophobic segments take part in interactions with the liposome. The LD analysis predicted the average orientations of these helix segments on the liposome: two amphiphilic helices parallel to the liposome surface for LA, two hydrophobic helices perpendicular to the liposome surface for Trx, and a hydrophobic helix perpendicular to and an amphiphilic helix parallel to the liposome surface for LG. This sequence-level information about the secondary structures and orientations was used to formulate interaction models of the three proteins at the membrane surface. This study demonstrates the validity of a combination of VUVCD and LD spectroscopy in conformational analyses of membrane-binding proteins, which are difficult targets for X-ray crystallography and nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| | - Yasuyuki Maki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, 376-8515, Japan
| | - Hirofumi Namatame
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| | - Masaki Taniguchi
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan.,Department of Physical Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Kunihiko Gekko
- Institute for Sustainable Sciences and Development, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
22
|
Lung SC, Smith MD, Weston JK, Gwynne W, Secord N, Chuong SDX. The C-terminus of Bienertia sinuspersici Toc159 contains essential elements for its targeting and anchorage to the chloroplast outer membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:722. [PMID: 25566294 PMCID: PMC4274882 DOI: 10.3389/fpls.2014.00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/30/2014] [Indexed: 05/11/2023]
Abstract
Most nucleus-encoded chloroplast proteins rely on an N-terminal transit peptide (TP) as a post-translational sorting signal for directing them to the organelle. Although Toc159 is known to be a receptor for specific preprotein TPs at the chloroplast surface, the mechanism for its own targeting and integration into the chloroplast outer membrane is not completely understood. In a previous study, we identified a novel TP-like sorting signal at the C-terminus (CT) of a Toc159 homolog from the single-cell C4 species, Bienertia sinuspersici. In the current study, we have extended our understanding of the sorting signal using transient expression of fluorescently-tagged fusion proteins of variable-length, and with truncated and swapped versions of the CT. As was shown in the earlier study, the 56 residues of the CT contain crucial sorting information for reversible interaction of the receptor with the chloroplast envelope. Extension of this region to 100 residues in the current study stabilized the interaction via membrane integration, as demonstrated by more prominent plastid-associated signals and resistance of the fusion protein to alkaline extraction. Despite a high degree of sequence similarity, the plastid localization signals of the equivalent CT regions of Arabidopsis thaliana Toc159 homologs were not as strong as that of the B. sinuspersici counterparts. Together with computational and circular dichroism analyses of the CT domain structures, our data provide insights into the critical elements of the CT for the efficient targeting and anchorage of Toc159 receptors to the dimorphic chloroplasts in the single-cell C4 species.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong KongHong Kong SAR, China
| | - Matthew D. Smith
- Department of Biology, Wilfrid Laurier UniversityWaterloo, ON, Canada
| | - J. Kyle Weston
- Department of Biology, Wilfrid Laurier UniversityWaterloo, ON, Canada
| | - William Gwynne
- Department of Biology, University of WaterlooWaterloo, ON, Canada
| | - Nathan Secord
- Department of Biology, University of WaterlooWaterloo, ON, Canada
| | | |
Collapse
|
23
|
Hansen JE, Leslie L, Swamy-Mruthinti S. The kinetics of thermal stress induced denaturation of Aquaporin 0. Biochem Biophys Res Commun 2014; 450:1668-72. [DOI: 10.1016/j.bbrc.2014.07.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/12/2014] [Indexed: 11/28/2022]
|
24
|
Bermejo IL, Arnulphi C, Ibáñez de Opakua A, Alonso-Mariño M, Goñi FM, Viguera AR. Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin. Biophys J 2014; 105:1432-43. [PMID: 24047995 DOI: 10.1016/j.bpj.2013.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022] Open
Abstract
The colicins are bacteriocins that target Escherichia coli and kill bacterial cells through different mechanisms. Colicin A forms ion channels in the inner membranes of nonimmune bacteria. This activity resides exclusively in its C-terminal fragment (residues 387-592). The soluble free form of this domain is a 10 α-helix bundle. The hydrophobic helical hairpin, H8-H9, is buried inside the structure and shielded by eight amphipathic surface helices. The interaction of the C-terminal colicin A domain and several chimeric variants with lipidic vesicles was examined here by isothermal titration calorimetry. In the mutant constructions, natural sequences of the hydrophobic helices H8 and H9 were either removed or substituted by polyalanine or polyleucine. All the constructions fully associated with DOPG liposomes including the mutant that lacked helices H8 and H9, indicating that amphipathic rather than hydrophobic helices were the major determinants of the exothermic binding reactions. Alanine is not specially favored in the lipid-bound form; the chimeric construct with polyalanine produced lower enthalpy gain. On the other hand, the large negative heat capacities associated with partitioning, a characteristic feature of the hydrophobic effect, were found to be dependent on the sequence hydrophobicity of helices H8 and H9.
Collapse
Affiliation(s)
- Ivan L Bermejo
- Unidad de Biofísica (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Circular-dichroism and synchrotron-radiation circular-dichroism spectroscopy as tools to monitor protein structure in a lipid environment. Methods Mol Biol 2013; 974:151-76. [PMID: 23404276 DOI: 10.1007/978-1-62703-275-9_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Circular-dichroism (CD) spectroscopy is a powerful tool for the secondary-structure analysis of proteins. The structural information obtained by CD does not have atomic-level resolution (unlike X-ray crystallography and NMR spectroscopy), but it has the great advantage of being applicable to both nonnative and native proteins in a wide range of solution conditions containing lipids and detergents. The development of synchrotron-radiation CD (SRCD) instruments has greatly expanded the utility of this method by extending the spectra to the vacuum-ultraviolet region below 190 nm and producing information that is unobtainable by conventional CD instruments. Combining SRCD data with bioinformatics provides new insight into the conformational changes of proteins in a membrane environment.
Collapse
|
26
|
Rusconi B, Maranhao AC, Fuhrer JP, Krotee P, Choi SH, Grun F, Thireou T, Dimitratos SD, Woods DF, Marinotti O, Walter MF, Eliopoulos E. Mapping the Anopheles gambiae odorant binding protein 1 (AgamOBP1) using modeling techniques, site directed mutagenesis, circular dichroism and ligand binding assays. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:947-53. [PMID: 22564768 PMCID: PMC3380166 DOI: 10.1016/j.bbapap.2012.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/19/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022]
Abstract
The major malaria vector in Sub-Saharan Africa is the Anopheles gambiae mosquito. This species is a key target of malaria control measures. Mosquitoes find humans primarily through olfaction, yet the molecular mechanisms associated with host-seeking behavior remain largely unknown. To further understand the functionality of A. gambiae odorant binding protein 1 (AgamOBP1), we combined in silico protein structure modeling and site-directed mutagenesis to generate 16 AgamOBP1 protein analogues containing single point mutations of interest. Circular dichroism (CD) and ligand-binding assays provided data necessary to probe the effects of the point mutations on ligand binding and the overall structure of AgamOBP1. Far-UV CD spectra of mutated AgamOBP1 variants displayed both substantial decreases to ordered α-helix structure (up to22%) and increases to disordered α-helix structure(up to 15%) with only minimal changes in random coil (unordered) structure. In mutations Y54A, Y122A and W114Q, aromatic side chain removal from the binding site significantly reduced N-phenyl-1-naphthylamine binding. Several non-aromatic mutations (L15T, L19T, L58T, L58Y, M84Q, M84K, H111A, Y122A and L124T) elicited changes to protein conformation with subsequent effects on ligand binding. This study provides empirical evidence for the in silico predicted functions of specific amino acids in AgamOBP1 folding and ligand binding characteristics.
Collapse
Affiliation(s)
- B Rusconi
- Developmental Biology Center, University of California, Irvine, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abdul-Gader A, Miles AJ, Wallace BA. A reference dataset for the analyses of membrane protein secondary structures and transmembrane residues using circular dichroism spectroscopy. Bioinformatics 2011; 27:1630-6. [PMID: 21505036 DOI: 10.1093/bioinformatics/btr234] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
MOTIVATION Empirical analyses of protein secondary structures based on circular dichroism (CD) and synchrotron radiation circular dichroism (SRCD) spectroscopic data rely on the availability of reference datasets comprised of spectra of relevant proteins, whose crystal structures have been determined. Datasets comprised of only soluble proteins have not proven suitable for analysing the spectra of membrane proteins. RESULTS A new reference dataset, MP180, has been created containing the spectra of 30 membrane proteins encompassing the secondary structure and fold space covered by all known membrane protein structures. In addition a mixed soluble and membrane protein dataset, SMP180, has been created, which includes 98 soluble protein spectra (SP) plus the MP180 spectra. Calculations of both membrane and soluble protein secondary structures using SMP180 are significantly improved with respect to those produced, using soluble protein-only datasets. The SMP180 dataset also enables determination of the percentage of transmembrane residues, thus enhancing the information previously obtainable from CD spectroscopy. AVAILABILITY AND IMPLEMENTATION Reference dataset online at the DichroWeb analysis server (http://dichroweb.cryst.bbk.ac.uk); individual protein spectra in the Protein Circular Dichroism Data Bank (http://pcddb.cryst.bbk.ac.uk).
Collapse
Affiliation(s)
- Ali Abdul-Gader
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | | | | |
Collapse
|
28
|
Abstract
Circular dichroism (CD) spectroscopy is a well-established technique for the study of proteins. Synchrotron radiation circular dichroism (SRCD) spectroscopy extends the utility of conventional CD spectroscopy (i.e. using laboratory-based instruments) because the high light flux from a synchrotron enables collection of data to lower wavelengths, detection of spectra with higher signal-to-noise levels and measurements in the presence of strongly absorbing non-chiral components such as salts, buffers, lipids and detergents. This review describes developments in instrumentation, methodologies and bioinformatics that have enabled new applications of the SRCD technique for the study of proteins. It includes examples of the use of SRCD spectroscopy for providing static and dynamic structural information on molecules, including determinations of secondary structures of intact proteins and domains, assessment of protein stability, detection of conformational changes associated with ligand and drug binding, monitoring of environmental effects, examination of the processes of protein folding and membrane insertion, comparisons of mutant and modified proteins, identification of intermolecular interactions and complex formation, determination of the dispositions of proteins in membranes, identification of natively disordered proteins and their binding partners and examination of the carbohydrate components of glycoproteins. It also discusses how SRCD can be used in conjunction with macromolecular crystallography and other biophysical techniques to provide a more complete picture of protein structures and functions, including how proteins interact with other macromolecules and ligands. This review also includes a discussion of potential new applications in structural and functional genomics using SRCD spectroscopy and future instrumentation and bioinformatics developments that will enable such studies. Finally, the appendix describes a number of computational/bioinformatics resources for secondary structure analyses that take advantage of the improved data quality available from SRCD. In summary, this review discusses how SRCD can be used for a wide range of structural and functional studies of proteins.
Collapse
|
29
|
Ivanova MV, Hoang T, McSorley FR, Krnac G, Smith MD, Jelokhani-Niaraki M. A comparative study on conformation and ligand binding of the neuronal uncoupling proteins. Biochemistry 2010; 49:512-21. [PMID: 20000716 DOI: 10.1021/bi901742g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial uncoupling proteins of the nervous system (UCPs 2, 4, and 5) have potential roles in the function and protection of the central nervous system (CNS). In the absence of structural information, conformations of the hexahistidine-tagged versions of all five human UCPs in liposomes were investigated for the first time, using far- and near-UV CD and fluorescence spectroscopy. Highly pure UCPs 1-5 were reconstituted in detergents and stable small unilamellar vesicles, appropriate for spectroscopic studies. All UCPs formed dominantly helical conformations in negatively charged phospholipid vesicles (palmitoyloleoylphosphatidylcholine/palmitoyloleoylphosphatidylglycerol, 7:3 molar ratio). UCPs 2 and 5 exhibited comparable helical conformations with possible association in lipid bilayers, whereas UCP4 had a different helical profile that can be related to its less associated form. Interaction of reconstituted UCPs with GDP and GTP, inhibitors of the prototypic UCP1, was detected by near-UV CD and fluorescence spectroscopy, utilizing the sensitivity of these techniques to microenvironments around Trp residues close to the nucleotide binding site. Binding of UCP4 to purine nucleotides was also different from other UCPs. Binding of fatty acids, activators of proton transport in UCPs, to UCPs could not be unambiguously detected, implying a nonbinding conformation/orientation of the proteoliposomes. Interaction of CoA with UCPs was comparable to nucleotide binding, suggesting a possible binding of this molecule at the nucleotide binding site. Despite dissimilar primary sequences, neuronal UCPs share common structural and functional properties with UCPs 1 and 3, supporting a common physiological role in addition to their specific roles in the CNS.
Collapse
Affiliation(s)
- Marina V Ivanova
- Departments of Chemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Goormaghtigh E, Gasper R, Bénard A, Goldsztein A, Raussens V. Protein secondary structure content in solution, films and tissues: redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1332-43. [PMID: 19540367 DOI: 10.1016/j.bbapap.2009.06.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/25/2009] [Accepted: 06/03/2009] [Indexed: 11/27/2022]
Abstract
The paper presents a simple and robust method to determine protein secondary structure from circular dichroism, transmission and attenuated total reflection (ATR) Fourier transform infrared spectra. It is found that the different spectroscopic methods bring valuable but roughly identical information on the secondary structure of proteins. ATR and transmission FTIR spectra display distinct differences, yet the secondary structure can be predicted from their spectra with roughly the same success. It is also found that one wavenumber or wavelength includes the large majority of the information correlated with secondary structure content and no more than 3 significant independent wavenumbers/wavelengths could be found for any of the spectroscopic data. This finding indicates that more complex linear combinations of the absorbance or ellipticities will not further improve secondary structure predictions. Furthermore, the information content in CD, transmission and ATR FTIR spectra is largely redundant. If combining CD and FTIR results in some improvement of structure prediction quality, the improvement is too modest to prompt spectroscopists to collect different spectroscopic data for structure prediction purposes. On the other hand, the data collected show that the quality of the FTIR spectrometers is such that biosensors or imaging methods sampling from 10(-9) to 10(-15) g yield spectra of sufficient quality to analyze protein secondary structure. These new techniques open the way to a new area of research, both in protein conformational response to ligand and imaging at sub-cellular scales.
Collapse
Affiliation(s)
- Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine CP206/02; Université Libre de Bruxelles, Bld du Triomphe 2, CP206/2, B1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
31
|
Rucktäschel R, Thoms S, Sidorovitch V, Halbach A, Pechlivanis M, Volkmer R, Alexandrov K, Kuhlmann J, Rottensteiner H, Erdmann R. Farnesylation of pex19p is required for its structural integrity and function in peroxisome biogenesis. J Biol Chem 2009; 284:20885-96. [PMID: 19451657 DOI: 10.1074/jbc.m109.016584] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved CaaX box peroxin Pex19p is known to be modified by farnesylation. The possible involvement of this lipid modification in peroxisome biogenesis, the degree to which Pex19p is farnesylated, and its molecular function are unknown or controversial. We resolve these issues by first showing that the complete pool of Pex19p is processed by farnesyltransferase in vivo and that this modification is independent of peroxisome induction or the Pex19p membrane anchor Pex3p. Furthermore, genomic mutations of PEX19 prove that farnesylation is essential for proper matrix protein import into peroxisomes, which is supposed to be caused indirectly by a defect in peroxisomal membrane protein (PMP) targeting or stability. This assumption is corroborated by the observation that mutants defective in Pex19p farnesylation are characterized by a significantly reduced steady-state concentration of prominent PMPs (Pex11p, Ant1p) but also of essential components of the peroxisomal import machinery, especially the RING peroxins, which were almost depleted from the importomer. In vivo and in vitro, PMP recognition is only efficient when Pex19p is farnesylated with affinities differing by a factor of 10 between the non-modified and wild-type forms of Pex19p. Farnesylation is likely to induce a conformational change in Pex19p. Thus, isoprenylation of Pex19p contributes to substrate membrane protein recognition for the topogenesis of PMPs, and our results highlight the importance of lipid modifications in protein-protein interactions.
Collapse
Affiliation(s)
- Robert Rucktäschel
- Department for Systems Biochemistry, Institute for Physiological Chemistry, University of Bochum, Universitätsstrasse 150, 44780 Bochum
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Brenzel S, Cebi M, Reiß P, Koert U, Mootz HD. Expanding the Scope of ProteinTrans-Splicing to Fragment Ligation of an Integral Membrane Protein: Towards Modulation of Porin-Based Ion Channels by Chemical Modification. Chembiochem 2009; 10:983-6. [DOI: 10.1002/cbic.200900039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Runke G, Maier E, O'Neil JD, Benz R, Court DA. Functional characterization of the conserved "GLK" motif in mitochondrial porin from Neurospora crassa. J Bioenerg Biomembr 2009; 32:563-70. [PMID: 15254370 DOI: 10.1023/a:1005618510502] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial porin facilitates the diffusion of small hydrophilic molecules across the mitochondrial outer membrane. Despite low sequence similarity among porins from different species, a "glycine-leucine-lysine" (GLK) motif is conserved in mitochondrial and Neisseria porins. To investigate the possible roles of these conserved residues, including their hypothesized participation in ATP binding by the protein, we replaced the lysine residue of the GLK motif of Neurospora crassa porin with glutamic acid through site-directed mutagenesis of the corresponding gene. Although the pores formed by this protein have size and gating characteristics similar to those of the wild-type protein, the channels formed by GLEporin are less anion selective than the wild-type pores. The GLEporin retains the ability to be cross linked to [alpha-(32)P]ATP, indicating that the GLK sequence is not essential for ATP binding. Furthermore, the pores formed by both GLEporin and the wild-type protein become more cation selective in the presence of ATP. Taken together, these results support structural models that place the GLK motif in a part of the ion-selective beta-barrel that is not directly involved in ATP binding.
Collapse
Affiliation(s)
- G Runke
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | | | |
Collapse
|
34
|
The Full-Length Mu-Opioid Receptor: A Conformational Study by Circular Dichroism in Trifluoroethanol and Membrane-Mimetic Environments. J Membr Biol 2008; 223:49-57. [DOI: 10.1007/s00232-008-9112-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
|
35
|
Thermal stability of CopA, a polytopic membrane protein from the hyperthermophile Archaeoglobus fulgidus. Arch Biochem Biophys 2008; 471:198-206. [DOI: 10.1016/j.abb.2007.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/21/2022]
|
36
|
Lorizate M, Huarte N, Sáez-Cirión A, Nieva JL. Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1624-39. [PMID: 18222166 PMCID: PMC7094410 DOI: 10.1016/j.bbamem.2007.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 12/02/2022]
Abstract
Membrane fusion and fission underlie two limiting steps of enveloped virus replication cycle: access to the interior of the host-cell (entry) and dissemination of viral progeny after replication (budding), respectively. These dynamic processes proceed mediated by specialized proteins that disrupt and bend the lipid bilayer organization transiently and locally. We introduced Wimley–White membrane-water partitioning free energies of the amino acids as an algorithm for predicting functional domains that may transmit protein conformational energy into membranes. It was found that many viral products possess unusually extended, aromatic-rich pre-transmembrane stretches predicted to stably reside at the membrane interface. Here, we review structure–function studies, as well as data reported on the interaction of representative peptides with model membranes, all of which sustain a functional role for these domains in viral fusion and fission. Since pre-transmembrane sequences also constitute antigenic determinants in a membrane-bound state, we also describe some recent results on their recognition and blocking at membrane interface by neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - José L. Nieva
- Corresponding author. Unidad de Biofísica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain. Tel.: +34 94 6013353; fax: +34 94 6013360.
| |
Collapse
|
37
|
Bringezu F, Majerowicz M, Maltseva E, Wen S, Brezesinski G, Waring AJ. Penetration of the Antimicrobial Peptide Dicynthaurin into Phospholipid Monolayers at the Liquid–Air Interface. Chembiochem 2007; 8:1038-47. [PMID: 17492697 DOI: 10.1002/cbic.200600503] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This work focuses on the adsorption kinetics of dicynthaurin with lipid monolayers, the effect of peptide adsorption on the structure of the lipid condensed chain lattice, peptide orientation and secondary structure in the adsorbed state. The studies with DPPG as model system revealed strong adsorption and massive incorporation of the peptide into the monolayer. Infrared reflection absorption spectroscopy (IRRAS) experiments showed that the secondary structure of the peptide is maintained upon adsorption. Specular X-ray reflectivity showed the destabilization of the condensed phase of the pure lipid monolayer and revealed a tilted orientation of the long axis of the peptide helix of about 40 degrees from the surface normal. Incorporation of the peptide was found to be pressure dependent, and at high pressure a "squeeze-out" was observed; however, the peptide remained localized to the interface, as suggested by infrared data. These findings were supported by optical fluorescence microscopy measurements which showed the squeeze-out of the peptide on water, but not under physiological conditions. The results suggest that dicynthaurin is able to adsorb to the phosphatidylglycerol-rich inner cytoplasmic membrane of bacteria and alter membrane integrity. To identify and interact with membrane motifs that are characteristic of microbes, but which are absent in eukaryotic cells, might be an intrinsic ability of peptide antibiotics.
Collapse
Affiliation(s)
- Frank Bringezu
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Duarte AMS, Wolfs CJAM, van Nuland NAJ, Harrison MA, Findlay JBC, van Mierlo CPM, Hemminga MA. Structure and localization of an essential transmembrane segment of the proton translocation channel of yeast H+-V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:218-27. [PMID: 16962559 DOI: 10.1016/j.bbamem.2006.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/12/2006] [Accepted: 07/28/2006] [Indexed: 11/17/2022]
Abstract
Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an alpha-helical conformation for peptide MTM7 and in DMSO three alpha-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an alpha-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase.
Collapse
Affiliation(s)
- Afonso M S Duarte
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Arnold T, Poynor M, Nussberger S, Lupas AN, Linke D. Gene duplication of the eight-stranded beta-barrel OmpX produces a functional pore: a scenario for the evolution of transmembrane beta-barrels. J Mol Biol 2006; 366:1174-84. [PMID: 17217961 DOI: 10.1016/j.jmb.2006.12.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 11/23/2022]
Abstract
The repeating unit of outer membrane beta-barrels from Gram-negative bacteria is the beta-hairpin, and representatives of this protein family always have an even strand number between eight and 22. Two dominant structural forms have eight and 16 strands, respectively, suggesting gene duplication as a possible mechanism for their evolution. We duplicated the sequence of OmpX, an eight-stranded beta-barrel protein of known structure, and obtained a beta-barrel, designated Omp2X, which can fold in vitro and in vivo. Using single-channel conductance measurements and PEG exclusion assays, we found that Omp2X has a pore size similar to that of OmpC, a natural 16-stranded barrel. Fusions of the homologous proteins OmpX, OmpA and OmpW were able to fold in vitro in all combinations tested, revealing that the general propensity to form a beta-barrel is sufficient to evolve larger barrels by simple genetic events.
Collapse
Affiliation(s)
- Thomas Arnold
- Max Planck Institute for Developmental Biology, Department Protein Evolution, Spemannstr. 35, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
40
|
Lorizate M, Gómara MJ, de la Torre BG, Andreu D, Nieva JL. Membrane-transferring sequences of the HIV-1 Gp41 ectodomain assemble into an immunogenic complex. J Mol Biol 2006; 360:45-55. [PMID: 16813835 DOI: 10.1016/j.jmb.2006.04.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 11/24/2022]
Abstract
The membrane-proximal stem region of gp41 has been postulated to host the two conserved membrane-transferring domains that promote HIV-1 fusion: the amino-terminal fusion peptide (FP) and the highly aromatic pre-transmembrane sequence. Our results confirm that the hydrophobic FP and membrane-proximal sequences come into contact and form structurally defined complexes. These complexes are immunogenic and evoke responses in rabbits that compete with the recognition of native functional gp41 by the 2F5 monoclonal antibody. We conclude that co-assembly of the FP and the pre-transmembrane sequences might exert a constraint that helps maintain a gp41 stem region pre-fusion structure.
Collapse
Affiliation(s)
- Maier Lorizate
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry Department, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
41
|
Runke G, Maier E, Summers WAT, Bay DC, Benz R, Court DA. Deletion variants of Neurospora mitochondrial porin: electrophysiological and spectroscopic analysis. Biophys J 2006; 90:3155-64. [PMID: 16500966 PMCID: PMC1432131 DOI: 10.1529/biophysj.105.072520] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial porins are predicted to traverse the outer membrane as a series of beta-strands, but the precise structure of the resulting beta-barrel has remained elusive. Toward determining the positions of the membrane-spanning segments, a series of small deletions was introduced into several of the predicted beta-strands of the Neurospora crassa porin. Overall, three classes of porin variants were identified: i), those producing large, stable pores, indicating deletions likely outside of beta-strands; ii), those with minimal pore-forming ability, indicating disruptions in key beta-strands or beta-turns; and iii), those that formed small unstable pores with a variety of gating and ion-selectivity properties. The latter class presumably results from a subset of proteins that adopt an alternative barrel structure upon the loss of stabilizing residues. Some variants were not sufficiently stable in detergent for structural analysis; circular dichroism spectropolarimetry of those that were did not reveal significant differences in the overall structural composition among the detergent-solubilized porin variants and the wild-type protein. Several of the variants displayed altered tryptophan fluorescence profiles, indicative of differing microenvironments surrounding these residues. Based on these results, modifications to the existing models for porin structure are proposed.
Collapse
Affiliation(s)
- Greg Runke
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | | | | | | | | | | |
Collapse
|
42
|
Visudtiphole V, Thomas M, Chalton D, Lakey J. Refolding of Escherichia coli outer membrane protein F in detergent creates LPS-free trimers and asymmetric dimers. Biochem J 2006; 392:375-81. [PMID: 16153185 PMCID: PMC1316273 DOI: 10.1042/bj20051257] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Escherichia coli OmpF (outer-membrane protein F; matrix porin) is a homotrimeric beta-barrel and a member of the bacterial porin superfamily. It is the best characterized porin protein, but has resisted attempts to refold it efficiently in vitro. In the present paper, we report the discovery of detergent-based folding conditions, including dodecylglucoside, which can create pure samples of trimeric OmpF. Whereas outer membrane LPS (lipopolysaccharide) is clearly required for in vivo folding, the artificially refolded and LPS-free trimer has properties identical with those of the outer-membrane-derived form. Thus LPS is not required either for in vitro folding or for structural integrity. Dimeric forms of OmpF have been observed in vivo and are proposed to be folding intermediates. In vitro, dimers occur transiently in refolding of trimeric OmpF and, in the presence of dodecylmaltoside, pure dimer can be prepared. This form has less beta-structure by CD and shows lower thermal stability than the trimer. Study of these proteins at the single-molecule level is possible because each OmpF subunit forms a distinct ion channel. Whereas each trimer contains three channels of equal conductance, each dimer always contains two distinct channel sizes. This provides clear evidence that the two otherwise identical monomers adopt different structures in the dimer and indicates that the asymmetric interaction, characteristic of C3 symmetry, is formed at the dimer stage. This asymmetric dimer may be generally relevant to the folding of oligomeric proteins with odd numbers of subunits such as aspartate transcarbamoylase.
Collapse
Affiliation(s)
- Virak Visudtiphole
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
| | - Matthew B. Thomas
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
| | - David A. Chalton
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
| | - Jeremy H. Lakey
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Abstract
Analysis of circular dichroism spectra of proteins provides information about protein secondary structure. Analytical methods developed for such an analysis use structures and spectra of a set of reference proteins. The reference protein sets currently in use include soluble proteins with a wide range of secondary structures, and perform quite well in analyzing CD spectra of soluble proteins. The utility of soluble protein reference sets in analyzing membrane protein CD spectra, however, has been questioned in a recent study that found current reference protein sets to be inadequate for analyzing membrane proteins. We have examined the performance of reference protein sets available in the CDPro software package for analyzing CD spectra of 13 membrane proteins with available crystal structures. Our results indicate that the reference protein sets currently available for CD analysis perform reasonably well in analyzing membrane protein CD spectra, with performance indices comparable to those for soluble proteins. Soluble + membrane protein reference sets, which were constructed by combining membrane proteins with soluble protein reference sets, gave improved performance in both soluble and membrane protein CD analysis.
Collapse
Affiliation(s)
- Narasimha Sreerama
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
44
|
Oberg KA, Ruysschaert JM, Goormaghtigh E. The optimization of protein secondary structure determination with infrared and circular dichroism spectra. ACTA ACUST UNITED AC 2004; 271:2937-48. [PMID: 15233789 DOI: 10.1111/j.1432-1033.2004.04220.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have used the circular dichroism and infrared spectra of a specially designed 50 protein database [Oberg, K.A., Ruysschaert, J.M. & Goormaghtigh, E. (2003) Protein Sci. 12, 2015-2031] in order to optimize the accuracy of spectroscopic protein secondary structure determination using multivariate statistical analysis methods. The results demonstrate that when the proteins are carefully selected for the diversity in their structure, no smaller subset of the database contains the necessary information to describe the entire set. One conclusion of the paper is therefore that large protein databases, observing stringent selection criteria, are necessary for the prediction of unknown proteins. A second important conclusion is that only the comparison of analyses run on circular dichroism and infrared spectra independently is able to identify failed solutions in the absence of known structure. Interestingly, it was also found in the course of this study that the amide II band has high information content and could be used alone for secondary structure prediction in place of amide I.
Collapse
Affiliation(s)
- Keith A Oberg
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Free University of Brussels (ULB), Belgium
| | | | | |
Collapse
|
45
|
de Antonio C, Farías ME, de Lacoba MG, Espinosa M. Features of the plasmid pMV158-encoded MobM, a protein involved in its mobilization. J Mol Biol 2004; 335:733-43. [PMID: 14687570 DOI: 10.1016/j.jmb.2003.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The streptococcal promiscuous plasmid pMV158 can be mobilized between a number of bacterial species by means of three elements: (i) the plasmid-encoded nicking-closing protein MobM, involved in the initiation and termination of the conjugative transfer; (ii) the DNA sequence where the MobM-mediated nick takes place (the oriT(pMV158)); and (iii) the function(s) provided by auxiliary plasmids. MobM belongs to the Pre/Mob family of plasmid-encoded DNA-relaxing proteins (relaxases). Purified MobM protein has been used to assay cleavage conditions on plasmid supercoiled DNA. Some structural features of MobM have been addressed by analytical ultracentrifugation, circular dichroism, thermal denaturation, and fluorescence emission. The protein behaved as a dimer of identical subunits with an ellipsoidal shape. MobM showed a high (about 60%) alpha-helical content and a midpoint denaturation of about 40 degrees C. Cell fractionation assays showed that MobM was associated to the cell membrane. This association was abolished when a great alteration was introduced within a putative coiled-coil located at the C-terminal region of the protein. Emission fluorescence suggested that the three Trp residues of MobM are located within a hydrophobic environment. A molecular model of MobM on the known structure of colicin Ia has been built.
Collapse
Affiliation(s)
- Carmen de Antonio
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velazquez, 144, E-28006 Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Arevalo E, Estephan R, Madeo J, Arshava B, Dumont M, Becker JM, Naider F. Biosynthesis and biophysical analysis of domains of a yeast G protein-coupled receptor. Biopolymers 2003; 71:516-31. [PMID: 14517901 DOI: 10.1002/bip.10491] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The alpha-factor receptor(Ste2p) is required for the sexual conjugation of the yeast Saccharomyces cerevisiae. Ste2p belongs to the G protein-coupled receptor (GPCR) family sharing a common heptahelical transmembrane structure. Biological synthesis of regions of Ste2p fused to a leader protein in Escherichia coli yielded milligram quantities of polypeptides that corresponded to one or two transmembrane domains. Fusion proteins were characterized by polyacrylamide gel electrophoresis, high performance liquid chromatography, and mass spectrometry. CD studies on the fusion proteins in trifluoroethanol:water mixtures indicated the existence of alpha-helical structures in the single- and the double-transmembrane domains. NMR experiments were performed in CDCl(3):CD(3)OH:H(2)O (4:4:1) on the (15)N-labeled single-transmembrane peptide showing a clear dispersion of the nitrogen-amide proton correlation cross peaks indicative of a high-purity, uniformly labeled molecule. The results indicate that single- and double-transmembrane domains of a GPCR can be produced by biosynthetic methods in quantities and purity sufficient for biophysical studies.
Collapse
Affiliation(s)
- Enrique Arevalo
- Department of Chemistry, College of Staten Island, The City University of New York, Staten Island, NY 10314, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Nguyen HH, Imhof D, Kronen M, Gräfe U, Reissmann S. Circular dichroism studies of ampullosporin-A analogues. J Pept Sci 2003; 9:714-28. [PMID: 14658791 DOI: 10.1002/psc.459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ampullosporin A (AmpA), a 15mer peptalbol containing seven Aib residues is able to induce pigmentation on Phoma destructiva and hypothermia in mice, as well as to exhibit a neuroleptic effect. A circular dichroism study of ampullosporin A and its analogues was carried out in organic solvents with different polarities and detergent micelles to determine the relationship between their conformational flexibility and biological activities. The analogues were obtained by modifying the N- and C-termini of ampullosporin A. Furthermore, Gln and Leu were systematically substituted by Ala and Aib residues were replaced by Ala and/or Ac6c. To estimate the helicity of the analogues, the CD spectrum of AmpA recorded in acetonitrile was correlated to its crystal structure. All analogues displayed similar CD curve shapes in organic solvents with the ratio between two negative band intensities R = [theta]n-pi*/[theta]pi-pi* < 1. In acetonitrile, most of the analogues adopted a 70%-85% helical structure, which was higher than the average of 40%-60% obtained in TFE. In detergent micelles, the analogues were distinguishable by their CD profiles. For most of the biologically active analogues, the CD spectra in detergent micelles were characterized by a R ratio > 1 and increased helicity compared with those recorded in TFE, suggesting that the interaction of the peptides with the membrane and peptide association was necessary for their hypothermic effect.
Collapse
Affiliation(s)
- Hoai-Huong Nguyen
- Institut für Biochemie und Biophysik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany
| | | | | | | | | |
Collapse
|
48
|
Halevy R, Rozek A, Kolusheva S, Hancock REW, Jelinek R. Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides 2003; 24:1753-61. [PMID: 15019207 DOI: 10.1016/j.peptides.2003.08.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Accepted: 08/13/2003] [Indexed: 11/26/2022]
Abstract
Membrane binding and relative penetration of indolicidin analogs were studied using lipid/polydiacetylene (PDA) chromatic biomimetic membranes. Colorimetric and fluorescence analyses determined that an indolicidin analog with a proline and tryptophan residue substituted with lysines showed more pronounced bilayer surface interactions, while indolicidin and particularly an indolicidin analog in which all prolines were replaced with alanine residues exhibited deeper insertion into the lipid bilayer. The colorimetric data demonstrated that more pronounced blue-red transitions were observed when the chromatic vesicles incorporated lipopolysaccharide (LPS) within the lipid bilayer, indicating that LPS promoted preferred binding and incorporation of the peptides at the lipid/water interface. The fluorescence quenching experiments further confirmed this outcome. The results indicate that the antibacterial activity of indolicidin most likely requires initial binding to the LPS moieties within bacterial membranes, as well as disruption of the bilayer interface. The degree of hemolysis induced by the analogs, on the other hand, correlated to the extent of penetration into the hydrophobic core of the lipid assembly.
Collapse
Affiliation(s)
- Revital Halevy
- Department of Chemistry and Stadler Minerva Center for Mesoscopic Macromolecular Engineering, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | | | | | | | | |
Collapse
|
49
|
Bay DC, Court DA. Origami in the outer membrane: the transmembrane arrangement of mitochondrial porins. Biochem Cell Biol 2003; 80:551-62. [PMID: 12440696 DOI: 10.1139/o02-149] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent anion-selective channels (VDAC), also known as mitochondrial porins, are key regulators of metabolite flow across the mitochondrial outer membrane. Porins from a wide variety of organisms share remarkably similar electrophysiological properties, in spite of considerable sequence dissimilarity, indicating that they share a common structure. Based on primary sequence considerations, analogy with bacterial porins, and circular dichroism analysis, it is agreed that VDAC spans the outer membrane as a beta-barrel. However, the residues that form the antiparallel beta-strands comprising this barrel remain unknown. Various predictive methods, largely based on the known structures of bacterial beta-barrels, have been applied to the primary sequences of VDAC. Refinement and confirmation of these predictions have developed through numerous investigations of wild-type and variant porins, both in mitochondria and in artificial membranes. These experiments have involved VDAC from several sources, precluding the generation of a unified model. Herein, using the Neurospora VDAC sequence as a template, the published structural information and predictions have been reassessed to delineate a model that satisfies most of the available data.
Collapse
Affiliation(s)
- Denice C Bay
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
50
|
McGhie EJ, Hume PJ, Hayward RD, Torres J, Koronakis V. Topology of the Salmonella invasion protein SipB in a model bilayer. Mol Microbiol 2002; 44:1309-21. [PMID: 12068811 DOI: 10.1046/j.1365-2958.2002.02958.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A critical early event in Salmonella infection is entry into intestinal epithelial cells. The Salmonella invasion protein SipB is required for the delivery of bacterial effector proteins into target eukaryotic cells, which subvert signal transduction pathways and cytoskeletal dynamics. SipB inserts into the host plasma membrane during infection, and the purified protein has membrane affinity and heterotypic membrane fusion activity in vitro. We used complementary biochemical and biophysical techniques to investigate the topology of purified SipB in a model membrane. We show that the 593 residue SipB is predominantly alpha-helical in aqueous solution, and that no significant change in secondary structural content accompanies lipid interaction. SipB contains two -helical transmembrane domains (residues 320-353 and 409-427), which insert deeply into the bilayer. Their integration allowed the hydrophilic region between the hydrophobic domains (354-408) to cross the bilayer. SipB membrane integration required both the hydrophobic domains and an additional helical C-terminal region (428-593). Further spectroscopic analysis of these domains in isolation showed that the hydrophobic regions insert obliquely into the bilayer, whereas the C-terminal domain associates with the bilayer surface, tilted parallel to the membrane. The combined data suggest a topological model for membrane-inserted SipB.
Collapse
Affiliation(s)
- Emma J McGhie
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|