1
|
Bąk KM, Trzaskowski B, Chmielewski MJ. Anion-templated synthesis of a switchable fluorescent [2]catenane with sulfate sensing capability. Chem Sci 2024; 15:1796-1809. [PMID: 38303949 PMCID: PMC10829038 DOI: 10.1039/d3sc05086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024] Open
Abstract
Anion templation strategies have facilitated the synthesis of various catenane and rotaxane hosts capable of strong and selective binding of anions in competitive solvents. However, this approach has primarily relied on positively charged precursors, limiting the structural diversity and the range of potential applications of the anion-templated mechanically interlocked molecules. Here we demonstrate the synthesis of a rare electroneutral [2]catenane using a powerful, doubly charged sulfate template and a complementary diamidocarbazole-based hydrogen bonding precursor. Owing to the unique three-dimensional hydrogen bonding cavity and the embedded carbazole fluorophores, the resulting catenane receptor functions as a sensitive fluorescent turn-ON sensor for the highly hydrophilic sulfate, even in the presence of a large excess of water. Importantly, the [2]catenane exhibits enhanced binding affinity and selectivity for sulfate over its parent macrocycle and other acyclic diamidocarbazole-based receptors. We demonstrate also, for the first time, that the co-conformation of the catenane may be controlled by reversible acid/base induced protonation and deprotonation of the anionic template, SO42-. This approach pioneers a new strategy to induce molecular motion of interlocked components using switchable anionic templates.
Collapse
Affiliation(s)
- Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
2
|
A Non-Invasive Tool for Real-Time Measurement of Sulfate in Living Cells. Int J Mol Sci 2020; 21:ijms21072572. [PMID: 32272790 PMCID: PMC7177696 DOI: 10.3390/ijms21072572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 01/19/2023] Open
Abstract
Sulfur (S) is an essential element for all forms of life. It is involved in numerous essential processes because S is considered as the primary source of one of the essential amino acids, methionine, which plays an important role in biological events. For the control and regulation of sulfate in a metabolic network through fluxomics, a non-invasive tool is highly desirable that opens the door to monitor the level of the sulfate in real time and space in living cells without fractionation of the cells or tissue. Here, we engineered a FRET (fluorescence resonance energy transfer) based sensor for sulfate, which is genetically-encoded and named as FLIP-SP (Fluorescent indicator protein for sulfate). The FLIP-SP can measure the level of the sulfate in live cells. This sensor was constructed by the fusion of fluorescent proteins at the N- and C-terminus of sulfate binding protein (sbp). The FLIP-SP is highly specific to sulfate, and showed pH stability. Real-time monitoring of the level of sulfate in prokaryotic and eukaryotic cells showed sensor bio-compatibility with living cells. We expect that this sulfate sensor offers a valuable strategy in the understanding of the regulation of the flux of sulfate in the metabolic network.
Collapse
|
3
|
Fernández M, Rico-Jiménez M, Ortega Á, Daddaoua A, García García AI, Martín-Mora D, Torres NM, Tajuelo A, Matilla MA, Krell T. Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. Int J Mol Sci 2019; 20:ijms20205156. [PMID: 31627455 PMCID: PMC6829864 DOI: 10.3390/ijms20205156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
Solute binding proteins (SBPs) form a heterogeneous protein family that is found in all kingdoms of life. In bacteria, the ligand-loaded forms bind to transmembrane transporters providing the substrate. We present here the SBP repertoire of Pseudomonas aeruginosa PAO1 that is composed of 98 proteins. Bioinformatic predictions indicate that many of these proteins have a redundant ligand profile such as 27 SBPs for proteinogenic amino acids, 13 proteins for spermidine/putrescine, or 9 proteins for quaternary amines. To assess the precision of these bioinformatic predictions, we have purified 17 SBPs that were subsequently submitted to high-throughput ligand screening approaches followed by isothermal titration calorimetry studies, resulting in the identification of ligands for 15 of them. Experimentation revealed that PA0222 was specific for γ-aminobutyrate (GABA), DppA2 for tripeptides, DppA3 for dipeptides, CysP for thiosulphate, OpuCC for betaine, and AotJ for arginine. Furthermore, RbsB bound D-ribose and D-allose, ModA bound molybdate, tungstate, and chromate, whereas AatJ recognized aspartate and glutamate. The majority of experimentally identified ligands were found to be chemoattractants. Data show that the ligand class recognized by SPBs can be predicted with confidence using bioinformatic methods, but experimental work is necessary to identify the precise ligand profile.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
- present address: Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Isabel García García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Noel Mesa Torres
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Tajuelo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| |
Collapse
|
4
|
Borges A, Gillespie D, Nag A. Biological applications of amide and amino acid containing synthetic macrocycles. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1650178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ariane Borges
- Department of Chemistry, Clark University, Worcester, MA, USA
| | - Dylan Gillespie
- Department of Chemistry, Clark University, Worcester, MA, USA
| | - Arundhati Nag
- Department of Chemistry, Clark University, Worcester, MA, USA
| |
Collapse
|
5
|
Open Conformation of the Escherichia coli Periplasmic Murein Tripeptide Binding Protein, MppA, at High Resolution. BIOLOGY 2018; 7:biology7020030. [PMID: 29783769 PMCID: PMC6022919 DOI: 10.3390/biology7020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
Periplasmic ligand-binding proteins (PBPs) bind ligands with a high affinity and specificity. They undergo a large conformational change upon ligand binding, and they have a robust protein fold. These physical features have made them ideal candidates for use in protein engineering projects to develop novel biosensors and signaling molecules. The Escherichia coli MppA (murein peptide permease A) PBP binds the murein tripeptide, l-alanyl-γ-d-glutamyl-meso-diaminopimelate, (l-Ala-γ-d-Glu-meso-Dap), which contains both a D-amino acid and a gamma linkage between two of the amino acids. We have solved a high-resolution X-ray crystal structure of E. coli MppA at 1.5 Å resolution in the unliganded, open conformation. Now, structures are available for this member of the PBP protein family in both the liganded/closed form and the unliganded/open form.
Collapse
|
6
|
Abbas YM, Toye AM, Rubinstein JL, Reithmeier RA. Band 3 function and dysfunction in a structural context. Curr Opin Hematol 2018; 25:163-170. [DOI: 10.1097/moh.0000000000000418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Pereira CT, Roesler C, Faria JN, Fessel MR, Balan A. Sulfate-Binding Protein (Sbp) from Xanthomonas citri: Structure and Functional Insights. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:578-588. [PMID: 28562158 DOI: 10.1094/mpmi-02-17-0032-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The uptake and transport of sulfate in bacteria is mediated by an ATP-binding cassette transporter (ABC transporter) encoded by sbpcysUWA genes, whose importance has been widely demonstrated due to their relevance in cysteine synthesis and bacterial growth. In Xanthomonas citri, the causative agent of canker disease, the expression of components from this ABC transporter and others related to uptake of organic sulfur sources has been shown during in vitro growth cultures. In this work, based on gene reporter and proteomics analyses, we showed the activation of the promoter that controls the sbpcysUWA operon in vitro and in vivo and the expression of sulfate-binding protein (Sbp), a periplasmic-binding protein, indicating that this protein plays an important function during growth and that the transport system is active during Citrus sinensis infection. To characterize Sbp, we solved its three-dimensional structure bound to sulfate at 1.14 Å resolution and performed biochemical and functional characterization. The results revealed that Sbp interacts with sulfate without structural changes, but the interaction induces a significant increasing of protein thermal stability. Altogether, the results presented in this study show the evidence of the functionality of the ABC transporter for sulfate in X. citri and its relevance during infection.
Collapse
Affiliation(s)
- Cristiane Tambascia Pereira
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
- 3 Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cássia Roesler
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
| | - Jéssica Nascimento Faria
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
| | - Melissa Regina Fessel
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Andrea Balan
- 3 Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis. Curr Genet 2016; 63:553-576. [DOI: 10.1007/s00294-016-0664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/26/2023]
|
9
|
Allen KN, Dunaway-Mariano D. Catalytic scaffolds for phosphoryl group transfer. Curr Opin Struct Biol 2016; 41:172-179. [PMID: 27526404 DOI: 10.1016/j.sbi.2016.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022]
Abstract
A single genome encodes a large number of phosphoryl hydrolases for the purposes of phosphate recycling, primary and secondary metabolism, signal transduction and regulation, and protection from xenobiotics. Phosphate monoester hydrolysis faces a high kinetic barrier, yet there are multiple solutions to the problem both in terms of catalytic mechanisms and three-dimensional structure of the hydrolases. Recent structural and mechanistic findings highlight the trigonal-bipyramidal nature of the transition state for enzyme promoted phosphate monoester hydrolysis and the evolution and role of inserted loops/domains in governing substrate specificity and promiscuity. Important questions remain as to how electrostatics modulate water networks and critical proton-transfer events. How substrate targeting and catalysis is achieved by the independently evolved catalytic platforms is compared and contrasted in this article.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215-2521, USA.
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
10
|
Keegan R, Waterman DG, Hopper DJ, Coates L, Taylor G, Guo J, Coker AR, Erskine PT, Wood SP, Cooper JB. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein fromStenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:933-43. [DOI: 10.1107/s2059798316010433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 01/27/2023]
Abstract
During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) fromAlcaligenessp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement usingMOLREPin which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in theMOLREPpeak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. ABLASTsearch then indicated that the molecule was most probably a phosphate-binding protein fromStenotrophomonas maltophilia(UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of theS. maltophiliaprotein has been refined to anRfactor of 10.15% and anRfreeof 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate anion is bound tightly between the two domains of the protein and interacts with conserved residues and a number of helix dipoles.
Collapse
|
11
|
|
12
|
Geertsma ER, Chang YN, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 2015; 22:803-8. [PMID: 26367249 DOI: 10.1038/nsmb.3091] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
Abstract
The SLC26 family of membrane proteins combines a variety of functions within a conserved molecular scaffold. Its members, besides coupled anion transporters and channels, include the motor protein Prestin, which confers electromotility to cochlear outer hair cells. To gain insight into the architecture of this protein family, we characterized the structure and function of SLC26Dg, a facilitator of proton-coupled fumarate symport, from the bacterium Deinococcus geothermalis. Its modular structure combines a transmembrane unit and a cytoplasmic STAS domain. The membrane-inserted domain consists of two intertwined inverted repeats of seven transmembrane segments each and resembles the fold of the unrelated transporter UraA. It shows an inward-facing, ligand-free conformation with a potential substrate-binding site at the interface between two helix termini at the center of the membrane. This structure defines the common framework for the diverse functional behavior of the SLC26 family.
Collapse
Affiliation(s)
- Eric R Geertsma
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yung-Ning Chang
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Farooque R Shaik
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Yvonne Neldner
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Els Pardon
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Sippel KH, Quiocho FA. Ion-dipole interactions and their functions in proteins. Protein Sci 2015; 24:1040-6. [PMID: 25866296 DOI: 10.1002/pro.2685] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
Ion-dipole interactions in biological macromolecules are formed between atomic or molecular ions and neutral protein dipolar groups through either hydrogen bond or coordination. Since their discovery 30 years ago, these interactions have proven to be a frequent occurrence in protein structures, appearing in everything from transporters and ion channels to enzyme active sites to protein-protein interfaces. However, their significance and roles in protein functions are largely underappreciated. We performed PDB data mining to identify a sampling of proteins that possess these interactions. In this review, we will define the ion-dipole interaction and discuss several prominent examples of their functional roles in nature.
Collapse
Affiliation(s)
- Katherine H Sippel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030
| | - Florante A Quiocho
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
14
|
Samet M, Fattahi A, Kass SR. Stereoelectronic effects: a simple yet powerful tool to manipulate anion affinity. Org Biomol Chem 2015; 13:2170-6. [PMID: 25535926 DOI: 10.1039/c4ob02470b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stereoelectronic effects on anion binding were examined, IR spectroscopy was used to probe structures, and a well aligned non-interacting group can be more significant than a hydrogen bond donor.
Collapse
Affiliation(s)
- Masoud Samet
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | - Alireza Fattahi
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Steven R. Kass
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
15
|
Sippel KH, Bacik J, Quiocho FA, Fisher SZ. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station. Acta Crystallogr F Struct Biol Commun 2014; 70:819-22. [PMID: 24915101 PMCID: PMC4051545 DOI: 10.1107/s2053230x14009704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP-phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4-) and dibasic (HPO4(2-)) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily.
Collapse
Affiliation(s)
- K. H. Sippel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - J. Bacik
- Bioscience Division B-11, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - F. A. Quiocho
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - S. Z. Fisher
- Scientific Activities Division, European Spallation Source, 221 00 Lund, Sweden
| |
Collapse
|
16
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Structural and physiological analyses of the alkanesulphonate-binding protein (SsuA) of the citrus pathogen Xanthomonas citri. PLoS One 2013; 8:e80083. [PMID: 24282519 PMCID: PMC3839906 DOI: 10.1371/journal.pone.0080083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Background The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. Methodology/Principal Findings A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. Conclusions/Significance The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen.
Collapse
|
18
|
Jurček O, Cametti M, Pontini M, Kolehmainen E, Rissanen K. A zinc-salophen/bile-acid conjugate receptor solubilized by CTABr micelles binds phosphate in water. Org Biomol Chem 2013; 11:4585-90. [PMID: 23774968 DOI: 10.1039/c3ob40724a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Receptor 1, composed of two deoxycholic acid moieties appended to a Zn-salophen complex, was prepared, characterized and tested for anion binding by (1)H NMR and UV-vis spectroscopic techniques. While in polar DMSO, 1 is able to bind phosphate (K = ∼700 M(-1)), the addition of water severely diminishes the association. In a 1 : 9 water-DMSO mixture, the binding constant K is only ca. 20 M(-1). Notably, in an aqueous solution of CTABr micelles (CTABr 10 mM, cmc = ∼1 mM), the zinc-salophen conjugate 1, due to its two non-polar bile-acid moieties, becomes solubilized and, most importantly, it almost completely recovers its binding ability towards phosphate, displaying a remarkable affinity (K = ∼450 M(-1)) in water.
Collapse
Affiliation(s)
- Ondřej Jurček
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 35, 40014, Jyväskylä, Finland
| | | | | | | | | |
Collapse
|
19
|
Sheet T, Supakar S, Banerjee R. Conformational preference of 'CαNN' short peptide motif towards recognition of anions. PLoS One 2013; 8:e57366. [PMID: 23516403 PMCID: PMC3596363 DOI: 10.1371/journal.pone.0057366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Among several ‘anion binding motifs’, the recently described ‘CαNN’ motif occurring in the loop regions preceding a helix, is conserved through evolution both in sequence and its conformation. To establish the significance of the conserved sequence and their intrinsic affinity for anions, a series of peptides containing the naturally occurring ‘CαNN’ motif at the N-terminus of a designed helix, have been modeled and studied in a context free system using computational techniques. Appearance of a single interacting site with negative binding free-energy for both the sulfate and phosphate ions, as evidenced in docking experiments, establishes that the ‘CαNN’ segment has an intrinsic affinity for anions. Molecular Dynamics (MD) simulation studies reveal that interaction with anion triggers a conformational switch from non-helical to helical state at the ‘CαNN’ segment, which extends the length of the anchoring-helix by one turn at the N-terminus. Computational experiments substantiate the significance of sequence/structural context and justify the conserved nature of the ‘CαNN’ sequence for anion recognition through “local” interaction.
Collapse
Affiliation(s)
- Tridip Sheet
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
| | - Subhrangshu Supakar
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
| | - Raja Banerjee
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
- * E-mail:
| |
Collapse
|
20
|
Cametti M, Rissanen K. Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state. Chem Soc Rev 2012. [PMID: 23188119 DOI: 10.1039/c2cs35439j] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fluoride anion has recently gained well deserved attention among the scientific community for its importance in many fields of human activities, but also for concerns on its effect on health and the environment. Although surprisingly overlooked in systematic studies in the past, fluoride has nowadays become a topical target in the field of anion recognition. A multitude of scientific reports are published every year where the establishment of efficient and specific interaction with fluoride is sought in polar and aqueous media. Here, the emphasis is directed to a detailed description of the most interesting contemporary studies in the field, with a particular focus given to those published in the last few years.
Collapse
Affiliation(s)
- Massimo Cametti
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Via Mancinelli 7, I-20131, Milan, Italy.
| | | |
Collapse
|
21
|
Moyer BA, Custelcean R, Hay BP, Sessler JL, Bowman-James K, Day VW, Kang SO. A case for molecular recognition in nuclear separations: sulfate separation from nuclear wastes. Inorg Chem 2012; 52:3473-90. [PMID: 23134587 DOI: 10.1021/ic3016832] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this paper, we present the case for molecular-recognition approaches for sulfate removal from radioactive wastes via the use of anion-sequestering systems selective for sulfate, using either liquid-liquid extraction or crystallization. Potential benefits of removing sulfate from the waste include improved vitrification of the waste, reduced waste-form volume, and higher waste-form performance, all of which lead to potential cleanup schedule acceleration and cost savings. The need for sulfate removal from radioactive waste, especially legacy tank wastes stored at the Hanford site, is reviewed in detail and primarily relates to the low solubility of sulfate in borosilicate glass. Traditional methods applicable to the separation of sulfate from radioactive wastes are also reviewed, with the finding that currently no technology has been identified and successfully demonstrated to meet this need. Fundamental research in the authors' laboratories targeting sulfate as an important representative of the class of oxoanions is based on the hypothesis that designed receptors may provide the needed ability to recognize sulfate under highly competitive conditions, in particular where the nitrate anion concentration is high. Receptors that have been shown to have promising affinity for sulfate, either in extraction or in crystallization experiments, include hexaurea tripods, tetraamide macrocycles, cyclo[8]pyrroles, calixpyrroles, and self-assembled urea-lined cages. Good sulfate selectivity observed in the laboratory provides experimental support for the proposed molecular-recognition approach.
Collapse
Affiliation(s)
- Bruce A Moyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6119, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Madzelan P, Labunska T, Wilson MA. Influence of peptide dipoles and hydrogen bonds on reactive cysteine pKa values in fission yeast DJ-1. FEBS J 2012; 279:4111-20. [PMID: 22971103 DOI: 10.1111/febs.12004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/04/2012] [Accepted: 09/11/2012] [Indexed: 12/18/2022]
Abstract
Cysteine residues with depressed pK(a) values are critical for the functions of many proteins. Several types of interactions can stabilize cysteine thiolate anions, including hydrogen bonds between thiol(ate)s and nearby residues as well as electrostatic interactions involving charged residues or dipoles. Dipolar stabilization of thiolates by peptide groups has been suggested to play a particularly important role near the N-termini of α-helices. Using a combination of X-ray crystallography, site-directed mutagenesis and spectroscopic methods, we show that the reactive cysteine residue (Cys111) in Schizosaccharomyces pombe DJ-1 experiences a 0.6 unit depression of its thiol pK(a) as a consequence of a hydrogen bond donated by a threonine side chain (Thr114) to a nearby peptide carbonyl oxygen at the N-terminus of an α-helix. This extended hydrogen bonded interaction is consistent with a sum of dipoles model whereby the distal hydrogen bond polarizes and strengthens the direct hydrogen bond between the proximal amide hydrogen and the cysteine thiol(ate). Therefore, our results suggest that the local dipolar enhancement of hydrogen bonds can appreciably stabilize cysteine thiolate formation. However, the substitution of a valine residue with a proline at the i + 3 position has only a minor effect (0.3 units) on the pK(a) of Cys111. As proline has a reduced peptide dipole moment, this small effect suggests that a more extended helix macrodipolar effect does not play a major role in this system.
Collapse
Affiliation(s)
- Peter Madzelan
- Department of Biochemistry, University of Nebraska, Lincoln, USA
| | | | | |
Collapse
|
23
|
Bianchi A, Giorgi C, Ruzza P, Toniolo C, Milner-White EJ. A synthetic hexapeptide designed to resemble a proteinaceous p-loop nest is shown to bind inorganic phosphate. Proteins 2012; 80:1418-24. [DOI: 10.1002/prot.24038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 12/19/2011] [Accepted: 12/29/2011] [Indexed: 11/09/2022]
|
24
|
Read RJ, Adams PD, Arendall WB, Brunger AT, Emsley P, Joosten RP, Kleywegt GJ, Krissinel EB, Lütteke T, Otwinowski Z, Perrakis A, Richardson JS, Sheffler WH, Smith JL, Tickle IJ, Vriend G, Zwart PH. A new generation of crystallographic validation tools for the protein data bank. Structure 2012; 19:1395-412. [PMID: 22000512 PMCID: PMC3195755 DOI: 10.1016/j.str.2011.08.006] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 11/26/2022]
Abstract
This report presents the conclusions of the X-ray Validation Task Force of the worldwide Protein Data Bank (PDB). The PDB has expanded massively since current criteria for validation of deposited structures were adopted, allowing a much more sophisticated understanding of all the components of macromolecular crystals. The size of the PDB creates new opportunities to validate structures by comparison with the existing database, and the now-mandatory deposition of structure factors creates new opportunities to validate the underlying diffraction data. These developments highlighted the need for a new assessment of validation criteria. The Task Force recommends that a small set of validation data be presented in an easily understood format, relative to both the full PDB and the applicable resolution class, with greater detail available to interested users. Most importantly, we recommend that referees and editors judging the quality of structural experiments have access to a concise summary of well-established quality indicators.
Collapse
Affiliation(s)
- Randy J Read
- CIMR, University of Cambridge, Cambridge CB2 0XY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hamorsky KT, Ensor CM, Pasini P, Daunert S. A protein switch sensing system for the quantification of sulfate. Anal Biochem 2011; 421:172-80. [PMID: 22067979 DOI: 10.1016/j.ab.2011.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 02/01/2023]
Abstract
Protein engineering has generated versatile methods and technologies that have been instrumental in advancements in the fields of sensing, therapeutics, and diagnostics. Herein, we demonstrate the employment of rational design to engineer a unique bioluminescence-based protein switch. A fusion protein switch combines two totally unrelated proteins, with distinct characteristics, in a manner such that the function of one protein is dependent on another. Herein we report a protein switch sensing system by insertion of the sulfate-binding protein (SBP) into the structure of the photoprotein aequorin (AEQ). In the presence of sulfate, SBP undergoes a conformational change bringing the two segments of AEQ together, "turning on" bioluminescence in a dose-dependent fashion, thus allowing quantitative detection of sulfate. A calibration plot was obtained by correlating the amount of bioluminescence generated with the concentration of sulfate present. The switch demonstrated selectivity and reproducibility, and a detection limit of 1.6×10(-4)M for sulfate. Moreover, the sensing system was validated by performing sulfate detection in clinical and environmental samples, such as, serum, urine, and tap water. The detection limits and working ranges in all three samples fall within the average normal/recommended sulfate levels in the respective matrices.
Collapse
|
26
|
Parker Siburt CJ, Mietzner TA, Crumbliss AL. FbpA--a bacterial transferrin with more to offer. Biochim Biophys Acta Gen Subj 2011; 1820:379-92. [PMID: 21933698 DOI: 10.1016/j.bbagen.2011.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol. SCOPE OF REVIEW The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane. MAJOR CONCLUSIONS Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe-chelate carrier, and finally a member of the larger family of periplasmic binding proteins. GENERAL SIGNIFICANCE An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
27
|
Aguilar-Barajas E, Díaz-Pérez C, Ramírez-Díaz MI, Riveros-Rosas H, Cervantes C. Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 2011; 24:687-707. [PMID: 21301930 DOI: 10.1007/s10534-011-9421-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/26/2011] [Indexed: 12/29/2022]
Affiliation(s)
- Esther Aguilar-Barajas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana, Edificio B-3, Ciudad Universitaria, 58030 Morelia, Michoacan, Mexico
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Stefan Kubik
- Fachbereich Chemie-Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
29
|
Suzuki R, Wada J, Katayama T, Fushinobu S, Wakagi T, Shoun H, Sugimoto H, Tanaka A, Kumagai H, Ashida H, Kitaoka M, Yamamoto K. Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I. J Biol Chem 2008; 283:13165-73. [PMID: 18332142 DOI: 10.1074/jbc.m709777200] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, a gene cluster involving a phosphorylase specific for lacto-N-biose I (LNB; Galbeta1-3GlcNAc) and galacto-N-biose (GNB; Galbeta1-3GalNAc) has been found in Bifidobacterium longum. We showed that the solute-binding protein of a putative ATP-binding cassette-type transporter encoded in the cluster crystallizes only in the presence of LNB or GNB, and therefore we named it GNB/LNB-binding protein (GL-BP). Isothermal titration calorimetry measurements revealed that GL-BP specifically binds LNB and GNB with K(d) values of 0.087 and 0.010 microm, respectively, and the binding process is enthalpy-driven. The crystal structures of GL-BP complexed with LNB, GNB, and lacto-N-tetraose (Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc) were determined. The interactions between GL-BP and the disaccharide ligands mainly occurred through water-mediated hydrogen bonds. In comparison with the LNB complex, one additional hydrogen bond was found in the GNB complex. These structural characteristics of ligand binding are in agreement with the thermodynamic properties. The overall structure of GL-BP was similar to that of maltose-binding protein; however, the mode of ligand binding and the thermodynamic properties of these proteins were significantly different.
Collapse
Affiliation(s)
- Ryuichiro Suzuki
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Heymann JJ, Weaver KD, Mietzner TA, Crumbliss AL. Sulfate as a synergistic anion facilitating iron binding by the bacterial transferrin FbpA: the origins and effects of anion promiscuity. J Am Chem Soc 2007; 129:9704-12. [PMID: 17630737 PMCID: PMC3674819 DOI: 10.1021/ja0709268] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ferric binding protein, FbpA, has been demonstrated to facilitate the transport of naked Fe3+ across the periplasmic space of several Gram-negative bacteria. The sequestration of iron by FbpA is facilitated by the presence of a synergistic anion, such as phosphate or sulfate. Here we report the sequestration of Fe3+ by FbpA in the presence of sulfate, at an assumed periplasmic pH of 6.5 to form FeFbpA-SO4 with K'(eff) = 1.7 x 10(16) M(-1) (at 20 degrees C, 50 mM MES, 200 mM KCl). The iron affinity of the FeFbpA-SO4 protein assembly is 2 orders of magnitude lower than when bound with phosphate and is the lowest of any of the FeFbpA-X assemblies yet reported. Iron reduction at the cytosolic membrane receptor may be an essential aspect of the periplasmic iron-transport process, and with an E(1/2) of -158 mV (NHE), FeFbpA-SO4 is the most easily reduced of all FeFbpA-X assemblies yet studied. The variation of FeFbpA-X assembly stability (K'(eff)) and ease of reduction (E(1/2)) with differing synergistic anions X(n-) are correlated over a range of 14 kJ, suggesting that the variations in redox potentials are due to stabilization of Fe3+ in FeFbpA-X by X(n-). Anion promiscuity of FbpA in the diverse composition of the periplasmic space is illustrated by the ex vivo exchange kinetics of FeFbpA-SO4 with phosphate and arsenate, where first-order kinetics with respect to FeFbpA-SO4 (k = 30 s(-1)) are observed at pH 6.5, independent of entering anion concentration and identity. Anion lability and influence on the iron affinity and reduction potential for FeFbpA-X support the hypothesis that synergistic anion exchange may be an important regulator in iron delivery to the cytosol. This structural and thermodynamic analysis of anion binding in FeFbpA-X provides additional insight into anion promiscuity and importance.
Collapse
Affiliation(s)
- J. J. Heymann
- Department of Chemistry, Duke University, Durham, NC 27708−0346
| | - K. D. Weaver
- Department of Chemistry, Duke University, Durham, NC 27708−0346
| | - T. A. Mietzner
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - A. L. Crumbliss
- Department of Chemistry, Duke University, Durham, NC 27708−0346
| |
Collapse
|
31
|
Rucktooa P, Antoine R, Herrou J, Huvent I, Locht C, Jacob-Dubuisson F, Villeret V, Bompard C. Crystal structures of two Bordetella pertussis periplasmic receptors contribute to defining a novel pyroglutamic acid binding DctP subfamily. J Mol Biol 2007; 370:93-106. [PMID: 17499270 DOI: 10.1016/j.jmb.2007.04.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 04/10/2007] [Accepted: 04/17/2007] [Indexed: 11/22/2022]
Abstract
Gram-negative bacteria have developed several different transport systems for solute uptake. One of these, the tripartite ATP independent periplasmic transport system (TRAP-T), makes use of an extracytoplasmic solute receptor (ESR) which captures specific solutes with high affinity and transfers them to their partner permease complex located in the bacterial inner membrane. We hereby report the structures of DctP6 and DctP7, two such ESRs from Bordetella pertussis. These two proteins display a high degree of sequence and structural similarity and possess the "Venus flytrap" fold characteristic of ESRs, comprising two globular alpha/beta domains hinged together to form a ligand binding cleft. DctP6 and DctP7 both show a closed conformation due to the presence of one pyroglutamic acid molecule bound by highly conserved residues in their respective ligand binding sites. BLAST analyses have revealed that the DctP6 and DctP7 residues involved in ligand binding are strictly present in a number of predicted TRAP-T ESRs from other bacteria. In most cases, the genes encoding these TRAP-T systems are located in the vicinity of a gene coding for a pyroglutamic acid metabolising enzyme. Both the high degree of conservation of these ligand binding residues and the genomic context of these TRAP-T-coding operons in a number of bacterial species, suggest that DctP6 and DctP7 constitute the prototypes of a novel TRAP-T DctP subfamily involved in pyroglutamic acid transport.
Collapse
Affiliation(s)
- Prakash Rucktooa
- UMR 8161 CNRS Institut de Biologie de Lille, Laboratoire de Cristallographie Macromoléculaire, Université des Sciences et Technologies de Lille, Université de Lille 2, Institut Pasteur de Lille IFR142, Lille cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kubik S, Reyheller C, Stüwe S. Recognition of Anions by Synthetic Receptors in Aqueous Solution. J INCL PHENOM MACRO 2005. [DOI: 10.1007/s10847-005-0601-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Faraldo-Gómez JD, Roux B. Electrostatics of Ion Stabilization in a ClC Chloride Channel Homologue from Escherichia coli. J Mol Biol 2004; 339:981-1000. [PMID: 15165864 DOI: 10.1016/j.jmb.2004.04.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/02/2004] [Accepted: 04/06/2004] [Indexed: 11/17/2022]
Abstract
The structural determinants of electrostatics of ion stabilization within EcClC, a ClC-type chloride channel homologue from Escherichia coli, are studied using a continuum dielectric approximation. Specifically, the ion occupancy is investigated in the wild-type protein and a mutant thereof, and the contribution to the electrostatic binding free energy of local and non-local interactions is characterized at the single-residue level. This analysis shows that, in spite of the desolvation cost and the strong ion-ion repulsion, all previously reported binding sites can be occupied simultaneously. The stabilizing effect of the protein arises from hydrogen bonding as well as from longer-range favorable interactions, such as with the strictly conserved Lys131 side-chain. The latter is involved in the stabilization of the conserved GSGIP motif that delimits two of the binding sites. Interestingly, an additional low-affinity binding site, mediated by a structurally analogous motif including the side-chain of Arg340, can be identified on the extracellular side of the permeation pathway. Finally, it is shown that, in contrast to K-channels, and in analogy to the SBP/PBP sulfate/phosphate-binding proteins, the contribution of helix macrodipoles to chloride binding in EcClC is only marginal.
Collapse
Affiliation(s)
- José D Faraldo-Gómez
- Department of Biochemistry, Weill Medical College of Cornell University, Whitney Building, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
34
|
Richardson JS, Bryan WA, Richardson DC. New tools and data for improving structures, using all-atom contacts. Methods Enzymol 2004; 374:385-412. [PMID: 14696383 DOI: 10.1016/s0076-6879(03)74018-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Jane S Richardson
- Department of Biochemistry, Duke University, Duke Building, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
35
|
Vyas NK, Vyas MN, Quiocho FA. Crystal structure of M tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by ion-dipole interactions. Structure 2003; 11:765-74. [PMID: 12842040 DOI: 10.1016/s0969-2126(03)00109-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 2.16 A structure of the phosphate-bound PstS-1, the primary extracellular receptor for the ABC phosphate transporter and immunodominant species-specific antigen of Mycobacterium tuberculosis, has been determined. The phosphate, completely engulfed in the cleft between two domains, is bound by 13 hydrogen bonds, 11 of which are formed with NH and OH dipolar donor groups. The further presence of two acidic residues, which serve as acceptors of the protonated phosphate, is key to conferring stringent specificity. The ion-dipole interactions between the phosphate and dipolar groups compensate the ligand's isolated negative charges. Moreover, the surprise finding that the electrostatic surface in and around the cleft is intensely negative demonstrates the power of ion-dipole interactions in anion binding and electrostatic balance. Additional functional features include both the flexible N-terminal segment that tethers PstS-1 on the cell surface and the hinge between the two domains, which should facilitate snaring the phosphate in the medium.
Collapse
Affiliation(s)
- Nand K Vyas
- Verna and Marrs McLean Department, Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
36
|
de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW. Construction of a fluorescent biosensor family. Protein Sci 2002; 11:2655-75. [PMID: 12381848 PMCID: PMC2373719 DOI: 10.1110/ps.021860] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacterial periplasmic binding proteins (bPBPs) are specific for a wide variety of small molecule ligands. bPBPs undergo a large, ligand-mediated conformational change that can be linked to reporter functions to monitor ligand concentrations. This mechanism provides the basis of a general system for engineering families of reagentless biosensors that share a common physical signal transduction functionality and detect many different analytes. We demonstrate the facility of designing optical biosensors based on fluorophore conjugates using 8 environmentally sensitive fluorophores and 11 bPBPs specific for diverse ligands, including sugars, amino acids, anions, cations, and dipeptides. Construction of reagentless fluorescent biosensors relies on identification of sites that undergo a local conformational change in concert with the global, ligand-mediated hinge-bending motion. Construction of cysteine mutations at these locations then permits site-specific coupling of environmentally sensitive fluorophores that report ligand binding as changes in fluorescence intensity. For 10 of the bPBPs presented in this study, the three-dimensional receptor structure was used to predict the location of reporter sites. In one case, a bPBP sensor specific for glutamic and aspartic acid was designed starting from genome sequence information and illustrates the potential for discovering novel binding functions in the microbial genosphere using bioinformatics.
Collapse
Affiliation(s)
- Robert M de Lorimier
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mao Y, Chen J, Maynard JA, Zhang B, Quiocho FA. A novel all helix fold of the AP180 amino-terminal domain for phosphoinositide binding and clathrin assembly in synaptic vesicle endocytosis. Cell 2001; 104:433-40. [PMID: 11239400 DOI: 10.1016/s0092-8674(01)00230-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clathrin-mediated endocytosis plays a major role in retrieving synaptic vesicles from the plasma membrane following exocytosis. This endocytic process requires AP180 (or a homolog), which promotes the assembly and restricts the size of clathrin-coated vesicles. The highly conserved 33 kDa amino-terminal domain of AP180 plays a critical role in binding to phosphoinositides and in regulating the clathrin assembly activity of AP180. The crystal structure of the amino-terminal domain reported herein reveals a novel fold consisting of a large double layer of sheets of ten alpha helices and a unique site for binding phosphoinositides. The finding that the clathrin-box motif is mostly buried and lies in a helix indicates a different site and mechanism for binding of the domain to clathrins than previously assumed.
Collapse
Affiliation(s)
- Y Mao
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
38
|
Gunner MR, Saleh MA, Cross E, ud-Doula A, Wise M. Backbone dipoles generate positive potentials in all proteins: origins and implications of the effect. Biophys J 2000; 78:1126-44. [PMID: 10692303 PMCID: PMC1300716 DOI: 10.1016/s0006-3495(00)76671-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Asymmetry in packing the peptide amide dipole results in larger positive than negative regions in proteins of all folding motifs. The average side chain potential in 305 proteins is 109 +/- 30 mV (2. 5 +/- 0.7 kcal/mol/e). Because the backbone has zero net charge, the non-zero potential is unexpected. The larger oxygen at the negative and smaller proton at the positive end of the amide dipole yield positive potentials because: 1) at allowed phi and psi angles residues come off the backbone into the positive end of their own amide dipole, avoiding the large oxygen; and 2) amide dipoles with their carbonyl oxygen surface exposed and amine proton buried make the protein interior more positive. Twice as many amides have their oxygens exposed than their amine protons. The distribution of acidic and basic residues shows the importance of the bias toward positive backbone potentials. Thirty percent of the Asp, Glu, Lys, and Arg are buried. Sixty percent of buried residues are acids, only 40% bases. The positive backbone potential stabilizes ionization of 20% of the acids by >3 pH units (-4.1 kcal/mol). Only 6.5% of the bases are equivalently stabilized by negative regions. The backbone stabilizes bound anions such as phosphates and rarely stabilizes bound cations.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department, City College of New York, New York 10031, USA.
| | | | | | | | | |
Collapse
|
39
|
Roux B, MacKinnon R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 1999; 285:100-2. [PMID: 10390357 DOI: 10.1126/science.285.5424.100] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The electrostatic influence of the central cavity and pore alpha helices in the potassium ion channel from Streptomyces lividans (KcsA K+ channel) was analyzed by solving the finite difference Poisson equation. The cavity and helices overcome the destabilizing influence of the membrane and stabilize a cation at the membrane center. The electrostatic effect of the pore helices is large compared to that described for water-soluble proteins because of the low dielectric membrane environment. The combined contributions of the ion self-energy and the helix electrostatic field give rise to selectivity for monovalent cations in the water-filled cavity. Thus, the K+ channel uses simple electrostatic principles to solve the fundamental problem of ion destabilization by the cell membrane lipid bilayer.
Collapse
Affiliation(s)
- B Roux
- GRTM, Dipartements de Physique et Chimie, Université de Montréal, Case Postal 6128, succursale Centre-Ville, Montréal, Canada H3C 3J7
| | | |
Collapse
|
40
|
Wan WY, Milner-White EJ. A recurring two-hydrogen-bond motif incorporating a serine or threonine residue is found both at alpha-helical N termini and in other situations. J Mol Biol 1999; 286:1651-62. [PMID: 10064721 DOI: 10.1006/jmbi.1999.2551] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Side-chain hydroxyl residues in protein crystal structures often form hydrogen bonds with main-chain atoms. The most common bond arrangement is a four to five residue motif in which a serine or threonine is the first residue forming two characteristic hydrogen bonds to residues ahead of it in sequence. We call them ST-motifs, by analogy with the term Asx-motif we suggested for the related motifs with aspartate and asparagine residues. ST-motifs are common, there being just under one and a half in a typical protein subunit. Asx-motifs are even more common, such that 9 % of the residues of an average protein consist of Asx or ST-motifs. Of the ST-motifs, three-quarters are at helical N termini, and the rest occur by themselves or in conjunction with beta-bulge loops. A third of all alpha-helices have either ST-motifs or Asx-motifs at their N termini. Previous work has emphasised the occurrence of the capping box at alpha-helical N termini, but the capping box occurs in only 5 % of alpha-helical N termini; also, we point out that it can be regarded as a subset of the ST-motif (or, occasionally, of the Asx-motif). By comparing related sequences, the rates which amino acid residues at the first position of ST or Asx-motifs interchange during evolution are examined. Serine <==> threonine, and aspartate <==> asparagine, interchange is rapid; inter-pair exchange is slower, but much faster than exchange with other amino acid residues. This is consistent with the general similarity of ST-motifs and Asx-motifs combined with some subtle structural differences between them that are described.
Collapse
Affiliation(s)
- W Y Wan
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | |
Collapse
|
41
|
Wan WY, Milner-White EJ. A natural grouping of motifs with an aspartate or asparagine residue forming two hydrogen bonds to residues ahead in sequence: their occurrence at alpha-helical N termini and in other situations. J Mol Biol 1999; 286:1633-49. [PMID: 10064720 DOI: 10.1006/jmbi.1999.2552] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Examination of the ways side-chain carboxylate and amide groups in high-resolution protein crystal structures form hydrogen bonds with main-chain atoms reveals that the most common category is a two-hydrogen-bond four to five residue motif with an aspartate or asparagine (Asx) at the first residue, for which we propose the name Asx-motif. Similar motifs with glutamate or glutamine residues at that position are rare. Asx-motifs occur typically as (1) a common feature of the N termini of alpha-helices called the Asx N-cap motif; (2) an independent motif, usually a beta-turn with an appropriately hydrogen-bonded Asx as the first residue; and (3) a motif incorporated in a beta-bulge loop. Asx-motifs are common, there being just under two-and-a-half in an average-sized protein subunit; of these, about 55 % are Asx N-cap motifs. Because they occur often in many situations, it seems that these motifs have an inherent propensity to form on their own rather than just being a feature stabilised at the end of a helix. Asx-motifs also occur in functionally interesting situations in aspartyl proteases, citrate synthase, EF hands, haemoglobins, lipocalins, glutathione reductase and the alpha/beta hydrolases.
Collapse
Affiliation(s)
- W Y Wan
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | |
Collapse
|
42
|
Lawson DM, Williams CE, Mitchenall LA, Pau RN. Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 A resolution crystal structure of Azotobacter vinelandii ModA. Structure 1998; 6:1529-39. [PMID: 9862806 DOI: 10.1016/s0969-2126(98)00151-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND . Periplasmic receptors constitute a diverse class of binding proteins that differ widely in size, sequence and ligand specificity. Nevertheless, almost all of them display a common beta/alpha folding motif and have similar tertiary structures consisting of two globular domains. The ligand is bound at the bottom of a deep cleft, which lies at the interface between these two domains. The oxyanion-binding proteins are notable in that they can discriminate between very similar ligands. RESULTS . Azotobacter vinelandii is unusual in that it possesses two periplasmic molybdate-binding proteins. The crystal structure of one of these with bound ligand has been determined at 1.2 A resolution. It superficially resembles the structure of sulphate-binding protein (SBP) from Salmonella typhimurium and uses a similar constellation of hydrogen-bonding interactions to bind its ligand. However, the detailed interactions are distinct from those of SBP and the more closely related molybdate-binding protein of Escherichia coli. CONCLUSIONS . Despite differences in the residues involved in binding, the volumes of the binding pockets in the A. vinelandii and E. coli molybdate-binding proteins are similar and are significantly larger than that of SBP. We conclude that the discrimination between molybdate and sulphate shown by these binding proteins is largely dependent upon small differences in the sizes of these two oxyanions.
Collapse
Affiliation(s)
- D M Lawson
- Nitrogen Fixation Laboratory John Innes Centre Norwich NR4 7UH UK.
| | | | | | | |
Collapse
|
43
|
Ledvina PS, Tsai AL, Wang Z, Koehl E, Quiocho FA. Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface: equilibrium, kinetic, and crystallographic studies. Protein Sci 1998; 7:2550-9. [PMID: 9865949 PMCID: PMC2143890 DOI: 10.1002/pro.5560071208] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stringent specificity and complementarity between the receptor, a periplasmic phosphate-binding protein (PBP) with a two-domain structure, and the completely buried and dehydrated phosphate are achieved by hydrogen bonding or dipolar interactions. We recently found that the surface charge potential of the cleft between the two domains that contains the anion binding site is intensely electronegative. This novel finding prompted the study reported here of the effect of ionic strength on the equilibrium and rapid kinetics of phosphate binding. To facilitate this study, Ala197, located on the edge of the cleft, was replaced by a Trp residue (A197W PBP) to generate a fluorescence reporter group. The A197W PBP-phosphate complex retains wild-type Kd and X-ray structure beyond the replacement residue. The Kd (0.18 microM) at no salt is increased by 20-fold at greater than 0.30 M NaCl. Stopped-flow fluorescence kinetic studies indicate a two-step binding process: (1) The phosphate (L) binds, at near diffusion-controlled rate, to the open cleft form (Po) of PBP to produce an intermediate, PoL. This rate decreases with increasing ionic strength. (2) The intermediate isomerizes to the closed-conformation form, PcL. The results indicate that the high specificity, affinity, and rate of phosphate binding are not influenced by the noncomplementary electronegative surface potential of the cleft. That binding depends almost entirely on local dipolar interactions with the receptor has important ramification in electrostatic interactions in protein structures and in ligand recognition.
Collapse
Affiliation(s)
- P S Ledvina
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Abstract
Effects of different salts (NaCl, MgCl2, CaCl2, GdmCl, NaBr, NaClO4, NaH2PO4, Na2SO4) on the stability of the ubiquitin molecule at pH 2.0 have been studied by differential scanning calorimetry, circular dichroism, and Tyr fluorescence spectroscopies. It is shown that all of the salts studied significantly increase the thermostability of the ubiquitin molecule, and that this stabilization can be interpreted in terms of anion binding. Estimated thermodynamic parameters of binding for Cl- show that this binding is relatively weak (Kd = 0.15 M) and is characterized by a negative enthalpy of -15 kJ/mol per site. Particularly surprising was the observed stabilizing effect of GdmCl through the entire concentration range studied (0.01-2 M), however, to a lesser extent than stabilization by NaCl. This stabilizing effect of GdmCl appears to arise from the binding of Cl- ions. Analysis of the observed changes in the stability of the ubiquitin molecule in the presence of GdmCl can be adequately described by combining the thermodynamic model of denaturant binding with Cl- binding effects.
Collapse
Affiliation(s)
- G I Makhatadze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409-1061, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
A majority of the standard texts dealing with proteins portray the peptide link as a mixture of two resonance forms, in one of which the nitrogen atom has a positive charge. As a consequence, it is often believed that the nitrogen atom has a net positive charge. This is in apparent contradiction with the partial negative charge on the nitrogen that is used in force fields for molecular modeling. However, charges on resonance forms are best regarded as formal rather than actual charges and current evidence clearly favors a net negative charge for the nitrogen atom. In the course of the discussion, new ideas about the electronic structure of amides and the peptide bond are presented.
Collapse
Affiliation(s)
- E J Milner-White
- Division of Biochemistry and Molecular Biology, Glasgow University, United Kingdom.
| |
Collapse
|
47
|
Clarkson J, Tonge PJ, Taylor KL, Dunaway-Mariano D, Carey PR. Raman study of the polarizing forces promoting catalysis in 4-chlorobenzoate-CoA dehalogenase. Biochemistry 1997; 36:10192-9. [PMID: 9254617 DOI: 10.1021/bi970941x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The enzyme 4-chlorobenzoate-CoA dehalogenase catalyzes the hydrolysis of 4-chlorobenzoate-CoA (4-CBA-CoA) to 4-hydroxybenzoyl-CoA (4-HBA-CoA). In order to facilitate electrophilic catalysis, the dehalogenase utilizes a strong polarizing interaction between the active site residues and the benzoyl portion of the substrate [Taylor, K. L., et al. (1995) Biochemistry 34, 13881]. As a result of this interaction, the normal modes of the benzoyl moiety of the bound 4-HBA-CoA undergo a drastic rearrangement as shown by Raman spectroscopy. Here, we present Raman difference spectroscopic data on the product-enzyme complex where the product's benzoyl carbonyl is labeled with 18O (C=18O) or 13C (13C=O) or where the 4-OH group is labeled with 18O. The data demonstrate that the carbonyl group participates in the most intense normal modes occurring in the Raman spectrum in the 1520-1560 cm-1 region. The substrate analog 4-methylbenzoate-CoA (4-MeBA-CoA) has also been characterized by Raman difference spectroscopy in its free form and bound to the dehalogenase. Upon binding, the 4-MeBA-CoA shows evidence of polarization within the delocalized pi-electrons, but to a lesser extent compared to that seen for the product. The use of 4-MeBA-CoA labeled with 18O at the carbonyl enables us to estimate the degree of electron polarization within the C=O group of the bound 4-MeBA-CoA. The C=O stretching frequency occurs near 1663 cm-1 in non-hydrogen bonding solvents such as CCl4, near 1650 cm-1 in aqueous solution, and near 1610 cm-1 in the active site of dehalogenase. From model studies, we can estimate that in the active site the carbonyl group behaves as though it is being polarized by hydrogen bonds approximately 57 kJ mol-1 in strength. Major contributions to this polarization come from hydrogen bonds from the peptide NHs of Gly114 and Phe64. However, an additional contribution, which may account for up to half of the observed shift in nuC=O, originates in the electrostatic field due to the alpha-helix dipole from residues 121-114. The helix which terminates at Gly114, near the C=O group of the bound benzoyl, provides a dipolar electrostatic component which contributes to the polarization of the C=O bond and to the polarization of the entire benzoyl moiety. The effect of both the helix dipole and the hydrogen bonds on the C=O is a "pull" of electrons onto the carbonyl oxygen, which, in turn, polarizes the electron distribution within the benzoyl pi-electron system. The ability of these two factors to polarize the electrons within the benzoyl moiety is increased by the environment about the benzoyl ring; it is surrounded by hydrophobic residues which provide a low-dielectric constant microenvironment. Electron polarization promotes catalysis by reducing electron density at the C4 position of the benzoyl ring, thereby assisting attack by the side chain of Asp145. An FTIR study on the model compound 4-methylbenzoyl S-ethyl thioester, binding to a number of hydrogen bonding donors in CCl4, is described and is used to relate the observed shift of the C=O stretching mode of 4-MeBA-CoA in the active site to the hydrogen bonding strength value. Since the shift of the C=O frequency upon binding is due to hydrogen bonding and helix dipole effects, we refer to this bonding strength as the effective hydrogen bonding strength.
Collapse
Affiliation(s)
- J Clarkson
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
48
|
Ledvina PS, Yao N, Choudhary A, Quiocho FA. Negative electrostatic surface potential of protein sites specific for anionic ligands. Proc Natl Acad Sci U S A 1996; 93:6786-91. [PMID: 8692896 PMCID: PMC39105 DOI: 10.1073/pnas.93.13.6786] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Determination of the crystal structure of an "open" unliganded active mutant (T141D) form of the Escherichia coli phosphate receptor for active transport has allowed calculation of the electrostatic surface potential for it and two other comparably modeled receptor structures (wild type and D137N). A discovery of considerable implication is the intensely negative potential of the phosphate-binding cleft. We report similar findings for a sulfate transport receptor, a DNA-binding protein, and, even more dramatically, redox proteins. Evidently, for proteins such as these, which rely almost exclusively on hydrogen bonding for anion interactions and electrostatic balance, a noncomplementary surface potential is not a barrier to binding. Moreover, experimental results show that the exquisite specificity and high affinity of the phosphate and sulfate receptors for unions are insensitive to modulations of charge potential, but extremely sensitive to conditions that leave a hydrogen bond donor or acceptor unpaired.
Collapse
Affiliation(s)
- P S Ledvina
- Howard Hughes Medical Institute and Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
49
|
Quiocho FA, Ledvina PS. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 1996; 20:17-25. [PMID: 8861200 DOI: 10.1111/j.1365-2958.1996.tb02484.x] [Citation(s) in RCA: 409] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Crystallographic structure refinement at very high resolutions of a dozen periplasmic receptors has revealed that, though they have different sizes (26 to 60 kDa) and little sequence homology, they have high tertiary structure similarity. They consist of two distinct globular domains bisected by a cleft or groove wherein the ligand binds and is buried by a hinge-bending motion between the two domains. Structural analysis also reveals how hydrogen-bonding interactions can be tailored to a wide spectrum of specificity, ranging from the stringent specificity for phosphate and sulphate to the more loose specificity for peptides.
Collapse
Affiliation(s)
- F A Quiocho
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
50
|
Quiocho FA. Atomic basis of the exquisite specificity of phosphate and sulfate transport receptors. Kidney Int 1996; 49:943-6. [PMID: 8691741 DOI: 10.1038/ki.1996.132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have determined, by the method of x-ray crystallography, the 1.7 A resolution three-dimensional structures of the ligand-bound form of the phosphate receptor as well as the sulfate receptor. These protein structures provide an unprecedented atomic-level understanding of the mechanism governing the exquisite specificity of each receptor. Although they lack amino acid sequence homology, both receptors have very similar three-dimensional structure. The structure consists of two globular domains separated by a deep cleft which contains the ligand-binding site. The bound phosphate and sulfate are totally devoid of water of hydration. The bound phosphate is tightly held in place by 12 hydrogen bonds, 11 with donor and 1 with acceptor groups. The acceptor group (an Asp carboxylate side chain) plays three key roles. It confers specificity by directly recognizing one proton of either the monobasic or dibasic phosphate. It also assists in the recognition of another proton of the monobasic phosphate. Finally, because of charge repulsion, it disallows binding of fully ionized sulfate. The sulfate bound to the sulfate receptor makes seven hydrogen bonds with uncharged polar groups exclusively. The absence of an acceptor group in the binding site of the sulfate receptor is not conducive to phosphate binding.
Collapse
Affiliation(s)
- F A Quiocho
- Howard Hughes Medical Institute, Houston, Texas, USA
| |
Collapse
|