1
|
Lima MP, Hornsby BD, Lim CS, Cheatham TE. Molecular Modeling of Single- and Double-Hydrocarbon-Stapled Coiled-Coil Inhibitors against Bcr-Abl: Toward a Treatment Strategy for CML. J Phys Chem B 2024; 128:6476-6491. [PMID: 38951498 PMCID: PMC11247501 DOI: 10.1021/acs.jpcb.4c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias and a subset of acute lymphoblastic leukemias. As a result of the so-called Philadelphia chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase, which promotes leukemogenesis by activation of cell cycle signaling pathways. Constitutive and oncogenic activation is mediated by an N-terminal coiled-coil oligomerization domain in Bcr (Bcr-CC), presenting a therapeutic target for inhibition of Bcr-Abl activity toward the treatment of Bcr-Abl+ leukemias. Previously, we demonstrated that a rationally designed Bcr-CC mutant, CCmut3, exerts a dominant negative effect upon Bcr-Abl activity by preferential oligomerization with Bcr-CC. Moreover, we have shown that conjugation to a leukemia-specific cell-penetrating peptide (CPP-CCmut3) improves intracellular delivery and activity. However, our full-length CPP-CCmut3 construct (81 aa) is encumbered by an intrinsically high degree of conformational variability and susceptibility to proteolytic degradation relative to traditional small-molecule therapeutics. Here, we iterate a new generation of CCmut3 inhibitors against Bcr-CC-mediated Bcr-Abl assembly designed to address these constraints through incorporation of all-hydrocarbon staples spanning i and i + 7 positions in α-helix 2 (CPP-CCmut3-st). We utilize computational modeling and biomolecular simulation to evaluate single- and double-stapled CCmut3 candidates in silico for dynamics and binding energetics. We further model a truncated system characterized by the deletion of α-helix 1 and the flexible loop linker, which are known to impart high conformational variability. To study the impact of the N-terminal cyclic CPP toward model stability and inhibitor activity, we also model the full-length and truncated systems devoid of the CPP, with a cyclized CPP, and with an open-configuration CPP, for a total of six systems that comprise our library. From this library, we present lead-stapled peptide candidates to be synthesized and evaluated experimentally as our next iteration of inhibitors against Bcr-Abl.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/metabolism
- Models, Molecular
- Molecular Dynamics Simulation
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell-Penetrating Peptides/chemistry
- Cell-Penetrating Peptides/pharmacology
- Cell-Penetrating Peptides/metabolism
Collapse
Affiliation(s)
- Maria
Carolina P. Lima
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Braxten D. Hornsby
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Carol S. Lim
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Thomas E. Cheatham
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Landry SJ, Mettu RR, Kolls JK, Aberle JH, Norton E, Zwezdaryk K, Robinson J. Structural Framework for Analysis of CD4+ T-Cell Epitope Dominance in Viral Fusion Proteins. Biochemistry 2023; 62:2517-2529. [PMID: 37554055 PMCID: PMC10483696 DOI: 10.1021/acs.biochem.3c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Indexed: 08/10/2023]
Abstract
Antigen conformation shapes CD4+ T-cell specificity through mechanisms of antigen processing, and the consequences for immunity may rival those from conformational effects on antibody specificity. CD4+ T cells initiate and control immunity to pathogens and cancer and are at least partly responsible for immunopathology associated with infection, autoimmunity, and allergy. The primary trigger for CD4+ T-cell maturation is the presentation of an epitope peptide in the MHC class II antigen-presenting protein (MHCII), most commonly on an activated dendritic cell, and then the T-cell responses are recalled by subsequent presentations of the epitope peptide by the same or other antigen-presenting cells. Peptide presentation depends on the proteolytic fragmentation of the antigen in an endosomal/lysosomal compartment and concomitant loading of the fragments into the MHCII, a multistep mechanism called antigen processing and presentation. Although the role of peptide affinity for MHCII has been well studied, the role of proteolytic fragmentation has received less attention. In this Perspective, we will briefly summarize evidence that antigen resistance to unfolding and proteolytic fragmentation shapes the specificity of the CD4+ T-cell response to selected viral envelope proteins, identify several remarkable examples in which the immunodominant CD4+ epitopes most likely depend on the interaction of processing machinery with antigen conformation, and outline how knowledge of antigen conformation can inform future efforts to design vaccines.
Collapse
Affiliation(s)
- Samuel J. Landry
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramgopal R. Mettu
- Department
of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jay K. Kolls
- John
W. Deming Department of Internal Medicine, Center for Translational
Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Judith H. Aberle
- Center
for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Elizabeth Norton
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kevin Zwezdaryk
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - James Robinson
- Department
of Pediatrics, Tulane University School
of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
3
|
Matveev EV, Safronov VV, Ponomarev GV, Kazanov MD. Predicting Structural Susceptibility of Proteins to Proteolytic Processing. Int J Mol Sci 2023; 24:10761. [PMID: 37445939 DOI: 10.3390/ijms241310761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The importance of 3D protein structure in proteolytic processing is well known. However, despite the plethora of existing methods for predicting proteolytic sites, only a few of them utilize the structural features of potential substrates as predictors. Moreover, to our knowledge, there is currently no method available for predicting the structural susceptibility of protein regions to proteolysis. We developed such a method using data from CutDB, a database that contains experimentally verified proteolytic events. For prediction, we utilized structural features that have been shown to influence proteolysis in earlier studies, such as solvent accessibility, secondary structure, and temperature factor. Additionally, we introduced new structural features, including length of protruded loops and flexibility of protein termini. To maximize the prediction quality of the method, we carefully curated the training set, selected an appropriate machine learning method, and sampled negative examples to determine the optimal positive-to-negative class size ratio. We demonstrated that combining our method with models of protease primary specificity can outperform existing bioinformatics methods for the prediction of proteolytic sites. We also discussed the possibility of utilizing this method for bioinformatics prediction of other post-translational modifications.
Collapse
Affiliation(s)
- Evgenii V Matveev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Moscow 127051, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117998, Russia
| | - Vyacheslav V Safronov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Gennady V Ponomarev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Moscow 127051, Russia
| | - Marat D Kazanov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Moscow 127051, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117998, Russia
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
4
|
Jaipuria G, Shet D, Malik S, Swain M, Atreya HS, Galea CA, Slomiany MG, Rosenzweig SA, Forbes BE, Norton RS, Mondal S. IGF-dependent dynamic modulation of a protease cleavage site in the intrinsically disordered linker domain of human IGFBP2. Proteins 2022; 90:1732-1743. [PMID: 35443068 PMCID: PMC9357107 DOI: 10.1002/prot.26350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
Functional regulation via conformational dynamics is well known in structured proteins but less well characterized in intrinsically disordered proteins and their complexes. Using NMR spectroscopy, we have identified a dynamic regulatory mechanism in the human insulin-like growth factor (IGF) system involving the central, intrinsically disordered linker domain of human IGF-binding protein-2 (hIGFBP2). The bioavailability of IGFs is regulated by the proteolysis of IGF-binding proteins. In the case of hIGFBP2, the linker domain (L-hIGFBP2) retains its intrinsic disorder upon binding IGF-1, but its dynamics are significantly altered, both in the IGF binding region and distantly located protease cleavage sites. The increase in flexibility of the linker domain upon IGF-1 binding may explain the IGF-dependent modulation of proteolysis of IGFBP2 in this domain. As IGF homeostasis is important for cell growth and function, and its dysregulation is a key contributor to several cancers, our findings open up new avenues for the design of IGFBP analogs inhibiting IGF-dependent tumors.
Collapse
Affiliation(s)
- Garima Jaipuria
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Divya Shet
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Nanobiophysics lab, Raman Research Institute, Sadashivnagar, Bangalore-80, India
| | - Shahid Malik
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Monalisa Swain
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Frederick National Laboratory for Cancer Research, Maryland-21701, USA
| | | | - Charles A. Galea
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Mark G. Slomiany
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Steven A. Rosenzweig
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Briony E. Forbes
- Flinders Health and Medical Research Institute, Flinders University, SA 5042, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia,ARC Centre for Fragment-Based Design, Monash University, Parkville 3052, Australia
| | - Somnath Mondal
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Univ. Bordeaux, Institut Européen de Chimie et Biologie and INSERM U1212, ARNA Laboratory, 2 rue Robert Escarpit, 33607 Pessac Cedex, Bordeaux, France
| |
Collapse
|
5
|
Moss DL, Mettu RR, Landry SJ. The Serpin-like Loop Insertion of Ovalbumin Increases the Stability and Decreases the OVA 323-339 Epitope Processing Efficiency. Biochemistry 2021; 60:1578-1586. [PMID: 33956428 PMCID: PMC8253479 DOI: 10.1021/acs.biochem.1c00095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chicken ovalbumin (cOVA) has been studied for decades primarily due to the robust genetic and molecular resources that are available for experimental investigations. cOVA is a member of the serpin superfamily of proteins that function as protease inhibitors, although cOVA does not exhibit this activity. As a serpin, cOVA possesses a protease-sensitive reactive center loop that lies adjacent to the OVA 323-339 CD4+ T-cell epitope. We took advantage of the previously described single-substitution variant, OVA R339T, which can undergo the dramatic structural transition observed in serpins, to study how changes in loop size and protein stability influence the processing and presentation of the OVA 323-339 epitope. We observed that the OVA R339T loop insertion increases the stability and protease resistance, resulting in the reduced presentation of the OVA 323-339 epitope in vitro. These findings have implications for the design of more effective vaccines for the treatment of infectious diseases and cancer as well as the development of more robust CD4+ T-cell epitope prediction tools.
Collapse
Affiliation(s)
- Daniel L Moss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| | - Ramgopal R Mettu
- Department of Computer Science, Tulane University, 6823 St Charles Avenue, New Orleans, Louisiana 70118, United States
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| |
Collapse
|
6
|
Palazzi L, Pasquato A, Vicario M, Roulin A, Polverino de Laureto P, Cendron L. C‐terminal tails mimicking bioactive intermediates cause different plasma degradation patterns and kinetics in neuropeptides γ‐MSH, α‐MSH, and neurotensin. J Pept Sci 2020; 26:e3279. [DOI: 10.1002/psc.3279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical and Pharmacological Sciences and CRIBI University of Padova Padova Italy
| | - Antonella Pasquato
- Institute of Microbiology University Hospital Center and University of Lausanne Lausanne Switzerland
| | | | - Alexandre Roulin
- Department of Ecology and Evolution, Faculty of Biology and Medicine University of Lausanne Lausanne Switzerland
| | | | - Laura Cendron
- Department of Biology University of Padova Padova Italy
| |
Collapse
|
7
|
DeColli AA, Zhang X, Heflin KL, Jordan F, Freel Meyers CL. Active Site Histidines Link Conformational Dynamics with Catalysis on Anti-Infective Target 1-Deoxy-d-xylulose 5-Phosphate Synthase. Biochemistry 2019; 58:4970-4982. [PMID: 31724401 DOI: 10.1021/acs.biochem.9b00878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The product of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase, DXP, feeds into the bacterial biosynthesis of isoprenoids, thiamin diphosphate (ThDP), and pyridoxal phosphate. DXP is essential for human pathogens but not utilized by humans; thus, DXP synthase is an attractive anti-infective target. The unique ThDP-dependent mechanism and structure of DXP synthase offer ideal opportunities for selective targeting. Upon reaction with pyruvate, DXP synthase uniquely stabilizes the predecarboxylation intermediate, C2α-lactylThDP (LThDP), in a closed conformation. Subsequent binding of d-glyceraldehyde 3-phosphate induces an open conformation that is proposed to destabilize LThDP, triggering decarboxylation. Evidence for the closed and open conformations has been revealed by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography, which indicate that H49 and H299 are involved in conformational dynamics and movement of the fork and spoon motifs away from the active site is important for the closed-to-open transition. Interestingly, H49 and H299 are critical for DXP formation and interact with the predecarboxylation intermediate in the closed conformation. H299 is removed from the active site in the open conformation of the postdecarboxylation state. In this study, we show that substitution at H49 and H299 negatively impacts LThDP formation by shifting the conformational equilibrium of DXP synthase toward an open conformation. We also present a method for monitoring the dynamics of the spoon motif that uncovered a previously undetected role for H49 in coordinating the closed conformation. Overall, our results suggest that H49 and H299 are critical for the closed, predecarboxylation state providing the first direct link between catalysis and conformational dynamics.
Collapse
Affiliation(s)
- Alicia A DeColli
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Xu Zhang
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
| | - Kathryn L Heflin
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Frank Jordan
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| |
Collapse
|
8
|
Schramm A, Bignon C, Brocca S, Grandori R, Santambrogio C, Longhi S. An arsenal of methods for the experimental characterization of intrinsically disordered proteins - How to choose and combine them? Arch Biochem Biophys 2019; 676:108055. [PMID: 31356778 DOI: 10.1016/j.abb.2019.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
In this review, we detail the most common experimental approaches to assess and characterize protein intrinsic structural disorder, with the notable exception of NMR and EPR spectroscopy, two ideally suited approaches that will be described in depth in two other reviews within this special issue. We discuss the advantages, the limitations, as well as the caveats of the various methods. We also describe less common and more demanding approaches that enable achieving further insights into the conformational properties of IDPs. Finally, we present recent developments that have enabled assessment of structural disorder in living cells, and discuss the currently available methods to model IDPs as conformational ensembles.
Collapse
Affiliation(s)
- Antoine Schramm
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Christophe Bignon
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sonia Longhi
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France.
| |
Collapse
|
9
|
Chacon SS, Reardon PN, Burgess CJ, Purvine S, Chu RK, Clauss TR, Walter E, Myrold DD, Washton N, Kleber M. Mineral Surfaces as Agents of Environmental Proteolysis: Mechanisms and Controls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3018-3026. [PMID: 30767514 DOI: 10.1021/acs.est.8b05583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigated the extent to which contact with mineral surfaces affected the molecular integrity of a model protein, with an emphasis on identifying the mechanisms (hydrolysis, oxidation) and conditions leading to protein alteration. To this end, we studied the ability of four mineral surface archetypes (negatively charged, positively charged, neutral, redox-active) to abiotically fragment a well-characterized protein (GB1) as a function of pH and contact time. GB1 was exposed to the soil minerals montmorillonite, goethite, kaolinite, and birnessite at pH 5 and pH 7 for 1, 8, 24, and 168 h and the supernatant was screened for peptide fragments using Tandem Mass Spectrometry. To distinguish between products of oxidative and hydrolytic cleavage, we combined results from the SEQUEST algorithm, which identifies protein fragments that were cleaved hydrolytically, with the output of a deconvolution algorithm (DECON-Routine) designed to identify oxidation fragments. All four minerals were able to induce protein cleavage. Manganese oxide was effective at both hydrolytic and oxidative cleavage. The fact that phyllosilicates-which are not redox active-induced oxidative cleavage indicates that surfaces acted as catalysts and not as reactants. Our results extend previous observations of proteolytic capabilities in soil minerals to the groups of phyllosilicates and Fe-oxides. We identified structural regions of the protein with particularly high susceptibility to cleavage (loops and β strands) as well as regions that were entirely unaffected (α helix).
Collapse
Affiliation(s)
- Stephany S Chacon
- Department of Crop and Soil Science , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Patrick N Reardon
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
- Oregon State University Nuclear Magnetic Resonance Facility , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Christopher J Burgess
- Department of Crop and Soil Science , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Samuel Purvine
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Rosalie K Chu
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Therese R Clauss
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Eric Walter
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - David D Myrold
- Department of Crop and Soil Science , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Nancy Washton
- Environmental Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Markus Kleber
- Department of Crop and Soil Science , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
10
|
Albareda M, Pacios LF, Palacios JM. Computational analyses, molecular dynamics, and mutagenesis studies of unprocessed form of [NiFe] hydrogenase reveal the role of disorder for efficient enzyme maturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:325-340. [PMID: 30703364 DOI: 10.1016/j.bbabio.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
Biological production and oxidation of hydrogen is mediated by hydrogenases, key enzymes for these energy-relevant reactions. Synthesis of [NiFe] hydrogenases involves a complex series of biochemical reactions to assemble protein subunits and metallic cofactors required for enzyme function. A final step in this biosynthetic pathway is the processing of a C-terminal tail (CTT) from its large subunit, thus allowing proper insertion of nickel in the unique NiFe(CN)2CO cofactor present in these enzymes. In silico modelling and Molecular Dynamics (MD) analyses of processed vs. unprocessed forms of Rhizobium leguminosarum bv. viciae (Rlv) hydrogenase large subunit HupL showed that its CTT (residues 582-596) is an intrinsically disordered region (IDR) that likely provides the required flexibility to the protein for the final steps of proteolytic maturation. Prediction of pKa values of ionizable side chains in both forms of the enzyme's large subunit also revealed that the presence of the CTT strongly modify the protonation state of some key residues around the active site. Furthermore, MD simulations and mutant analyses revealed that two glutamate residues (E27 in the N-terminal region and E589 inside the CTT) likely contribute to the process of nickel incorporation into the enzyme. Computational analysis also revealed structural details on the interaction of Rlv hydrogenase LSU with the endoprotease HupD responsible for the removal of CTT.
Collapse
Affiliation(s)
- Marta Albareda
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jose M Palacios
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
11
|
Laux H, Romand S, Nuciforo S, Farady CJ, Tapparel J, Buechmann‐Moeller S, Sommer B, Oakeley EJ, Bodendorf U. Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase‐1 knockout. Biotechnol Bioeng 2018; 115:2530-2540. [DOI: 10.1002/bit.26731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Holger Laux
- Integrated Biologics Profiling UnitNovartis Pharma AGBasel Switzerland
| | - Sandrine Romand
- Integrated Biologics Profiling UnitNovartis Pharma AGBasel Switzerland
| | - Sandro Nuciforo
- Integrated Biologics Profiling UnitNovartis Pharma AGBasel Switzerland
- Department of BiomedicineUniversity Hospital Basel, University of BaselBasel Switzerland
| | - Christopher J. Farady
- Autoimmunity, Transplantation & Inflammatory DiseaseNovartis Institutes for Biomedical ResearchBasel Switzerland
| | - Joel Tapparel
- Early Phase DevelopmentNovartis Pharma AGBasel Switzerland
| | - Stine Buechmann‐Moeller
- Autoimmunity, Transplantation & Inflammatory DiseaseNovartis Institutes for Biomedical ResearchBasel Switzerland
| | | | - Edward J. Oakeley
- Autoimmunity, Transplantation & Inflammatory DiseaseNovartis Institutes for Biomedical ResearchBasel Switzerland
| | - Ursula Bodendorf
- Autoimmunity, Transplantation & Inflammatory DiseaseNovartis Institutes for Biomedical ResearchBasel Switzerland
| |
Collapse
|
12
|
Ronin C, Costa DM, Tavares J, Faria J, Ciesielski F, Ciapetti P, Smith TK, MacDougall J, Cordeiro-da-Silva A, Pemberton IK. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design. PLoS One 2018; 13:e0193602. [PMID: 29543820 PMCID: PMC5854310 DOI: 10.1371/journal.pone.0193602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation.
Collapse
Affiliation(s)
- Céline Ronin
- NovAliX - Bioparc, Bd Sébastien Brant, Illkirch, France
| | - David Mendes Costa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
| | - Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
| | - Joana Faria
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
| | | | | | - Terry K. Smith
- BSRC, School of Biology, University of St Andrews, St Andrews, Scotland
| | | | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portuga
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
13
|
Cornillie SP, Bruno BJ, Lim CS, Cheatham TE. Computational Modeling of Stapled Peptides toward a Treatment Strategy for CML and Broader Implications in the Design of Lengthy Peptide Therapeutics. J Phys Chem B 2018. [DOI: 10.1021/acs.jpcb.8b01014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Williams PD, Pollock DD, Goldstein RA. Functionality and the Evolution of Marginal Stability in Proteins: Inferences from Lattice Simulations. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It has been known for some time that many proteins are marginally stable. This has inspired several explanations. Having noted that the functionality of many enzymes is correlated with subunit motion, flexibility, or general disorder, some have suggested that marginally stable proteins should have an evolutionary advantage over proteins of differing stability. Others have suggested that stability and functionality are contradictory qualities, and that selection for both criteria results in marginally stable proteins, optimised to satisfy the competing design pressures. While these explanations are plausible, recent research simulating the evolution of model proteins has shown that selection for stability, ignoring any aspects of functionality, can result in marginally stable proteins because of the underlying makeup of protein sequence-space. We extend this research by simulating the evolution of proteins, using a computational protein model that equates functionality with binding and catalysis. In the model, marginal stability is not required for ligand-binding functionality and we observe no competing design pressures. The resulting proteins are marginally stable, again demonstrating that neutral evolution is sufficient for explaining marginal stability in observed proteins.
Collapse
Affiliation(s)
- Paul D. Williams
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David D. Pollock
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Richard A. Goldstein
- Mathematical Biology, National Institute for Medical Sciences, The Ridgeway, Mill Hill, London MW7 1AA, UK
| |
Collapse
|
15
|
Alves J, Garay-Malpartida M, Occhiucci JM, Belizário JE. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker. Biochem Cell Biol 2017; 95:634-643. [PMID: 28658581 DOI: 10.1139/bcb-2016-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD198↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (kcat/KM) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.
Collapse
Affiliation(s)
- Juliano Alves
- a Department of Pharmacology, Institute of Biomedical Sciences, Avenida Lineu Prestes, 1524, São Paulo, SP, 05508-900, Brazil
| | - Miguel Garay-Malpartida
- b School of Arts, Communication and Humanity, University of São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP, 03828-000, Brazil
| | - João M Occhiucci
- a Department of Pharmacology, Institute of Biomedical Sciences, Avenida Lineu Prestes, 1524, São Paulo, SP, 05508-900, Brazil
| | - José E Belizário
- a Department of Pharmacology, Institute of Biomedical Sciences, Avenida Lineu Prestes, 1524, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
16
|
Abstract
Currently available computational tools, which are many, provide a researcher with the multitude of options for prediction of intrinsic disorder in a protein of interest and for finding at least some of its disorder-based functions. This chapter provides a highly subjective guideline on how not to be lost in the "dark forest" of available tools for the analysis of intrinsic disorder. By no means it gives a unique pathway through this forest, but simply presents some of the tools the author uses in his everyday research.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
17
|
Lieutaud P, Ferron F, Uversky AV, Kurgan L, Uversky VN, Longhi S. How disordered is my protein and what is its disorder for? A guide through the "dark side" of the protein universe. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1259708. [PMID: 28232901 DOI: 10.1080/21690707.2016.1259708] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022]
Abstract
In the last 2 decades it has become increasingly evident that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins lack a stable 3D structure, are ubiquitous and fulfill essential biological functions. Their conformational heterogeneity is encoded in their amino acid sequences, thereby allowing intrinsically disordered proteins or regions to be recognized based on properties of these sequences. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to structural determination with X-ray crystallization. This article discusses a comprehensive selection of databases and methods currently employed to disseminate experimental and putative annotations of disorder, predict disorder and identify regions involved in induced folding. It also provides a set of detailed instructions that should be followed to perform computational analysis of disorder.
Collapse
Affiliation(s)
- Philippe Lieutaud
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| | - François Ferron
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| | - Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University , Philadelphia, PA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University , Richmond, VA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sonia Longhi
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| |
Collapse
|
18
|
Kayode O, Wang R, Pendlebury DF, Cohen I, Henin RD, Hockla A, Soares AS, Papo N, Caulfield TR, Radisky ES. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis. J Biol Chem 2016; 291:26304-26319. [PMID: 27810896 DOI: 10.1074/jbc.m116.758417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/01/2016] [Indexed: 01/13/2023] Open
Abstract
The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.
Collapse
Affiliation(s)
| | | | | | - Itay Cohen
- the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | | | | | - Alexei S Soares
- the Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973
| | - Niv Papo
- the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Thomas R Caulfield
- Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224,
| | | |
Collapse
|
19
|
Costa JG, Duré AB. Immunochemical evaluation of two Toxoplasma gondii GRA8 sequences to detect acute toxoplasmosis infection. Microb Pathog 2016; 100:229-236. [DOI: 10.1016/j.micpath.2016.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/19/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
20
|
Ben Bdira F, Jiang J, Kallemeijn W, de Haan A, Florea BI, Bleijlevens B, Boot R, Overkleeft HS, Aerts JM, Ubbink M. Hydrophobic Interactions Contribute to Conformational Stabilization of Endoglycoceramidase II by Mechanism-Based Probes. Biochemistry 2016; 55:4823-35. [DOI: 10.1021/acs.biochem.6b00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fredj Ben Bdira
- Department
of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Jianbing Jiang
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Wouter Kallemeijn
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Annett de Haan
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Boris Bleijlevens
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Rolf Boot
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Johannes M. Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Marcellus Ubbink
- Department
of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
21
|
Hinzman MW, Essex ME, Park C. Salt bridge as a gatekeeper against partial unfolding. Protein Sci 2016; 25:999-1009. [PMID: 26916981 DOI: 10.1002/pro.2908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 11/06/2022]
Abstract
Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge.
Collapse
Affiliation(s)
- Mark W Hinzman
- Department of Medicinal Chemistry and Molecular Pharmacology, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907
| | - Morgan E Essex
- Department of Medicinal Chemistry and Molecular Pharmacology, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907
| | - Chiwook Park
- Department of Medicinal Chemistry and Molecular Pharmacology, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
22
|
Mettu RR, Charles T, Landry SJ. CD4+ T-cell epitope prediction using antigen processing constraints. J Immunol Methods 2016; 432:72-81. [PMID: 26891811 DOI: 10.1016/j.jim.2016.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes.
Collapse
Affiliation(s)
- Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA, USA; Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, LA, USA.
| | - Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
23
|
Tang C, Lew S, He D. Using a second-order differential model to fit data without baselines in protein isothermal chemical denaturation. Protein Sci 2016; 25:898-904. [PMID: 26757366 DOI: 10.1002/pro.2878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 11/06/2022]
Abstract
In vitro protein stability studies are commonly conducted via thermal or chemical denaturation/renaturation of protein. Conventional data analyses on the protein unfolding/(re)folding require well-defined pre- and post-transition baselines to evaluate Gibbs free-energy change associated with the protein unfolding/(re)folding. This evaluation becomes problematic when there is insufficient data for determining the pre- or post-transition baselines. In this study, fitting on such partial data obtained in protein chemical denaturation is established by introducing second-order differential (SOD) analysis to overcome the limitations that the conventional fitting method has. By reducing numbers of the baseline-related fitting parameters, the SOD analysis can successfully fit incomplete chemical denaturation data sets with high agreement to the conventional evaluation on the equivalent completed data, where the conventional fitting fails in analyzing them. This SOD fitting for the abbreviated isothermal chemical denaturation further fulfills data analysis methods on the insufficient data sets conducted in the two prevalent protein stability studies.
Collapse
Affiliation(s)
- Chuanning Tang
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Scott Lew
- Neotein Therapeutics, New York, New York, 10706, USA
| | - Dacheng He
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
24
|
Conformational dynamics is key to understanding loss-of-function of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands. Sci Rep 2016; 6:20331. [PMID: 26838129 PMCID: PMC4738246 DOI: 10.1038/srep20331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/30/2015] [Indexed: 12/25/2022] Open
Abstract
Protein dynamics is essential to understand protein function and stability, even though is rarely investigated as the origin of loss-of-function due to genetic variations. Here, we use biochemical, biophysical, cell and computational biology tools to study two loss-of-function and cancer-associated polymorphisms (p.R139W and p.P187S) in human NAD(P)H quinone oxidoreductase 1 (NQO1), a FAD-dependent enzyme which activates cancer pro-drugs and stabilizes several oncosuppressors. We show that p.P187S strongly destabilizes the NQO1 dimer in vitro and increases the flexibility of the C-terminal domain, while a combination of FAD and the inhibitor dicoumarol overcome these alterations. Additionally, changes in global stability due to polymorphisms and ligand binding are linked to the dynamics of the dimer interface, whereas the low activity and affinity for FAD in p.P187S is caused by increased fluctuations at the FAD binding site. Importantly, NQO1 steady-state protein levels in cell cultures correlate primarily with the dynamics of the C-terminal domain, supporting a directional preference in NQO1 proteasomal degradation and the use of ligands binding to this domain to stabilize p.P187S in vivo. In conclusion, protein dynamics are fundamental to understanding loss-of-function in p.P187S, and to develop new pharmacological therapies to rescue this function.
Collapse
|
25
|
Protein Structural Analysis via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:397-431. [PMID: 27975228 DOI: 10.1007/978-3-319-41448-5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.
Collapse
|
26
|
Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2015; 113:614-9. [PMID: 26719414 DOI: 10.1073/pnas.1516725113] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques containing misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies.
Collapse
|
27
|
Last D, Müller J, Dawood AWH, Moldenhauer EJ, Pavlidis IV, Bornscheuer UT. Highly efficient and easy protease-mediated protein purification. Appl Microbiol Biotechnol 2015; 100:1945-1953. [DOI: 10.1007/s00253-015-7206-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 11/29/2022]
|
28
|
Bioanalytical approaches to assess the proteolytic stability of therapeutic fusion proteins. Bioanalysis 2015; 7:3035-51. [DOI: 10.4155/bio.15.217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic fusion proteins (TFPs) are designed to improve the therapeutic profile of an endogenous protein or protein fragment with a limited dose frequency providing the desired pharmacological activity in vivo. Fusion of a therapeutic protein to a half-life extension or targeting domain can improve the disposition of the molecule or introduce a novel mechanism of action. Prolonged exposure and altered biodistribution of an endogenous protein through fusion technology increases the potential for local protein unfolding during circulation increasing the chance for partial proteolysis of the therapeutic domain. Characterizing the proteolytic liabilities of a TFP can guide engineering efforts to inhibit or hinder partial proteolysis. This review focuses on considerations and techniques for evaluating the stability of a TFP both in vivo and in vitro.
Collapse
|
29
|
Selzer L, Kant R, Wang JCY, Bothner B, Zlotnick A. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain. J Biol Chem 2015; 290:28584-28593. [PMID: 26405031 DOI: 10.1074/jbc.m115.678441] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle.
Collapse
Affiliation(s)
- Lisa Selzer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Ravi Kant
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Joseph C-Y Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.
| |
Collapse
|
30
|
Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:215-60. [DOI: 10.1007/978-3-319-20164-1_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Yadav LR, Rai S, Hosur MV, Varma AK. Functional assessment of intrinsic disorder central domains of BRCA1. J Biomol Struct Dyn 2015; 33:2469-78. [PMID: 25616417 DOI: 10.1080/07391102.2014.1000973] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The most studied function of BRCA1 is that of tumor suppression through its role in DNA repair and transcription regulation. Germline mutations discovered in a larger cohort of patients, abrogate BRCA1 interactions with reported cellular partners, and are responsible for breast and ovarian cancer. The different functional regions of BRCA1 interact with nearly 30 different cellular partners. Thus, it becomes clinically significant to understand the detailed protein-protein interactions associated with functional regions of BRCA1. Different overlapping central domains of BRCA1 have been characterized using in silico, in vitro and biophysical approaches. To our conclusions, it has been observed that central domains of BRCA1 are intrinsically disordered and has large hydrodynamic radius with random coil like structures.
Collapse
Affiliation(s)
- Lumbini R Yadav
- a Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer , Kharghar , Navi Mumbai , Maharashtra 410 210 , India
| | - Sharad Rai
- a Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer , Kharghar , Navi Mumbai , Maharashtra 410 210 , India
| | - M V Hosur
- a Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer , Kharghar , Navi Mumbai , Maharashtra 410 210 , India
| | - Ashok K Varma
- a Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer , Kharghar , Navi Mumbai , Maharashtra 410 210 , India
| |
Collapse
|
32
|
Ferreira de Lima Neto D, Bonafe CFS, Arns CW. Influence of high hydrostatic pressure on epitope mapping of tobacco mosaic virus coat protein. Viral Immunol 2014; 27:60-74. [PMID: 24605789 DOI: 10.1089/vim.2013.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the effect of high hydrostatic pressure (HHP) on tobacco mosaic virus (TMV), a model virus in immunology and one of the most studied viruses to date. Exposure to HHP significantly altered the recognition epitopes when compared to sera from mice immunized with native virus. These alterations were studied further by combining HHP with urea or low temperature and then inoculating the altered virions into Balb-C mice. The antibody titers and cross-reactivity of the resulting sera were determined by ELISA. The antigenicity of the viral particles was maintained, as assessed by using polyclonal antibodies against native virus. The antigenicity of canonical epitopes was maintained, although binding intensities varied among the treatments. The patterns of recognition determined by epitope mapping were cross checked with the prediction algorithms for the TMVcp amino acid sequence to infer which alterations had occurred. These findings suggest that different cleavage sites were exposed after the treatments and this was confirmed by epitope mapping using sera from mice immunized with virus previously exposed to HHP.
Collapse
Affiliation(s)
- Daniel Ferreira de Lima Neto
- 1 Laboratório de Virologia Animal, Departamentos de 1Genética, Evolução e Bioagentes, e Universidade Estadual de Campinas (UNICAMP) , Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | | | | |
Collapse
|
33
|
Kasper JR, Liu PF, Park C. Structure of a partially unfolded form of Escherichia coli dihydrofolate reductase provides insight into its folding pathway. Protein Sci 2014; 23:1728-37. [PMID: 25252157 DOI: 10.1002/pro.2555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/07/2022]
Abstract
Proteins frequently fold via folding intermediates that correspond to local minima on the conformational energy landscape. Probing the structure of the partially unfolded forms in equilibrium under native conditions can provide insight into the properties of folding intermediates. To elucidate the structures of folding intermediates of Escherichia coli dihydrofolate reductase (DHFR), we investigated transient partial unfolding of DHFR under native conditions. We probed the structure of a high-energy conformation susceptible to proteolysis (cleavable form) using native-state proteolysis. The free energy for unfolding to the cleavable form is clearly less than that for global unfolding. The dependence of the free energy on urea concentration (m-value) also confirmed that the cleavable form is a partially unfolded form. By assessing the effect of mutations on the stability of the partially unfolded form, we found that native contacts in a hydrophobic cluster formed by the F-G and Met-20 loops on one face of the central β-sheet are mostly lost in the partially unfolded form. Also, the folded region of the partially unfolded form is likely to have some degree of structural heterogeneity. The structure of the partially unfolded form is fully consistent with spectroscopic properties of the near-native kinetic intermediate observed in previous folding studies of DHFR. The findings suggest that the last step of the folding of DHFR involves organization in the structure of two large loops, the F-G and Met-20 loops, which is coupled with compaction of the rest of the protein.
Collapse
Affiliation(s)
- Joseph R Kasper
- Department of Medicinal Chemistry and Molecular Pharmacology, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907
| | | | | |
Collapse
|
34
|
Lee WK, Ahn HJ, Yu YG, Nam HW. Rhoptry protein 6 from Toxoplasma gondii is an intrinsically disordered protein. Protein Expr Purif 2014; 101:146-51. [DOI: 10.1016/j.pep.2014.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 11/15/2022]
|
35
|
Nedumpully-Govindan P, Li L, Alexov EG, Blenner MA, Ding F. Structural and energetic determinants of tyrosylprotein sulfotransferase sulfation specificity. Bioinformatics 2014; 30:2302-9. [PMID: 24794930 DOI: 10.1093/bioinformatics/btu309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Tyrosine sulfation is a type of post-translational modification (PTM) catalyzed by tyrosylprotein sulfotransferases (TPST). The modification plays a crucial role in mediating protein-protein interactions in many biologically important processes. There is no well-defined sequence motif for TPST sulfation, and the underlying determinants of TPST sulfation specificity remains elusive. Here, we perform molecular modeling to uncover the structural and energetic determinants of TPST sulfation specificity. RESULTS We estimate the binding affinities between TPST and peptides around tyrosines of both sulfated and non-sulfated proteins to differentiate them. We find that better differentiation is achieved after including energy costs associated with local unfolding of the tyrosine-containing peptide in a host protein, which depends on both the peptide's secondary structures and solvent accessibility. Local unfolding renders buried peptide-with ordered structures-thermodynamically available for TPST binding. Our results suggest that both thermodynamic availability of the peptide and its binding affinity to the enzyme are important for TPST sulfation specificity, and their interplay results into great variations in sequences and structures of sulfated peptides. We expect our method to be useful in predicting potential sulfation sites and transferable to other TPST variants. Our study may also shed light on other PTM systems without well-defined sequence and structural specificities. AVAILABILITY AND IMPLEMENTATION All the data and scripts used in the work are available at http://dlab.clemson.edu/research/Sulfation.
Collapse
Affiliation(s)
- Praveen Nedumpully-Govindan
- Department of Physics and Astronomy and Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Lin Li
- Department of Physics and Astronomy and Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Emil G Alexov
- Department of Physics and Astronomy and Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Mark A Blenner
- Department of Physics and Astronomy and Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Feng Ding
- Department of Physics and Astronomy and Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
36
|
Beveridge R, Chappuis Q, Macphee C, Barran P. Mass spectrometry methods for intrinsically disordered proteins. Analyst 2014; 138:32-42. [PMID: 23108160 DOI: 10.1039/c2an35665a] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the last ten years mass spectrometry has emerged as a powerful biophysical technique capable of providing unique insights into the structure and dynamics of proteins. Part of this explosion in use involves investigations of the most recently 'discovered' subset of proteins: the so-called 'Intrinsically Disordered' or 'Natively Unstructured' proteins. A key advantage of the use of mass spectrometry to study intrinsically disordered proteins (IDPs) is its ability to test biophysical assertions made about why they differ from structured proteins. For example, from the charge state distribution presented by a protein following nano-electrospray (n-ESI) it is possible to infer the range of conformations present in solution and hence the extent of disorder; n-ESI is highly sensitive to the degree of folding at the moment of transfer from the liquid to the gas phase. The combination of mass spectrometry with ion mobility (IM-MS) provides rotationally averaged collision cross-sections of molecular ions which can be correlated with conformation; this too can be applied to IDPs. Another feature which can be monitored by IM-MS is the tendency of disordered proteins to form amyloid fibrils, the protein aggregates involved in the onset of neurodegenerative diseases such as Parkinson's and Alzheimer's. IM-MS provides a useful insight into events that occur during the early stages of aggregation including delineating the structure of the monomer, identifying oligomer distributions, and revealing mechanistic details of the aggregation process. Here we will review the use of MS and IM-MS to study IDPs using examples from our own and other laboratories.
Collapse
Affiliation(s)
- Rebecca Beveridge
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland
| | | | | | | |
Collapse
|
37
|
Belushkin AA, Vinogradov DV, Gelfand MS, Osterman AL, Cieplak P, Kazanov MD. Sequence-derived structural features driving proteolytic processing. Proteomics 2013; 14:42-50. [PMID: 24227478 DOI: 10.1002/pmic.201300416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
Proteolytic signaling, or regulated proteolysis, is an essential part of many important pathways such as Notch, Wnt, and Hedgehog. How the structure of the cleaved substrate regions influences the efficacy of proteolytic processing remains underexplored. Here, we analyzed the relative importance in proteolysis of various structural features derived from substrate sequences using a dataset of more than 5000 experimentally verified proteolytic events captured in CutDB. Accessibility to the solvent was recognized as an essential property of a proteolytically processed polypeptide chain. Proteolytic events were found nearly uniformly distributed among three types of secondary structure, although with some enrichment in loops. Cleavages in α-helices were found to be relatively abundant in regions apparently prone to unfolding, while cleavages in β-structures tended to be located at the periphery of β-sheets. Application of the same statistical procedures to proteolytic events divided into separate sets according to the catalytic classes of proteases proved consistency of the results and confirmed that the structural mechanisms of proteolysis are universal. The estimated prediction power of sequence-derived structural features, which turned out to be sufficiently high, presents a rationale for their use in bioinformatic prediction of proteolytic events.
Collapse
Affiliation(s)
- Alexander A Belushkin
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
38
|
Digestion of Enolase and Carbonic Anhydrase as Model Proteins for Therapeutic Proteins in Blood Plasma with Immobilized Thermolysin and Quantification of Some of the Peptides by LC/LC–MS/MS. Chromatographia 2013. [DOI: 10.1007/s10337-013-2562-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Ghosh M, Solanki AK, Roy K, Dhoke RR, Ashish, Roy S. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design. Vaccine 2013; 31:4682-8. [PMID: 23928464 DOI: 10.1016/j.vaccine.2013.06.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/10/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
Abstract
We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein.
Collapse
Affiliation(s)
- Moumita Ghosh
- Division of Infectious diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | |
Collapse
|
40
|
Johnson DE, Xue B, Sickmeier MD, Meng J, Cortese MS, Oldfield CJ, Le Gall T, Dunker AK, Uversky VN. High-throughput characterization of intrinsic disorder in proteins from the Protein Structure Initiative. J Struct Biol 2012; 180:201-15. [PMID: 22651963 DOI: 10.1016/j.jsb.2012.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/11/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
The identification of intrinsically disordered proteins (IDPs) among the targets that fail to form satisfactory crystal structures in the Protein Structure Initiative represents a key to reducing the costs and time for determining three-dimensional structures of proteins. To help in this endeavor, several Protein Structure Initiative Centers were asked to send samples of both crystallizable proteins and proteins that failed to crystallize. The abundance of intrinsic disorder in these proteins was evaluated via computational analysis using predictors of natural disordered regions (PONDR®) and the potential cleavage sites and corresponding fragments were determined. Then, the target proteins were analyzed for intrinsic disorder by their resistance to limited proteolysis. The rates of tryptic digestion of sample target proteins were compared to those of lysozyme/myoglobin, apomyoglobin, and α-casein as standards of ordered, partially disordered and completely disordered proteins, respectively. At the next stage, the protein samples were subjected to both far-UV and near-UV circular dichroism (CD) analysis. For most of the samples, a good agreement between CD data, predictions of disorder and the rates of limited tryptic digestion was established. Further experimentation is being performed on a smaller subset of these samples in order to obtain more detailed information on the ordered/disordered nature of the proteins.
Collapse
Affiliation(s)
- Derrick E Johnson
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sides CR, Liyanage R, Lay JO, Philominathan STL, Matsushita O, Sakon J. Probing the 3-D structure, dynamics, and stability of bacterial collagenase collagen binding domain (apo- versus holo-) by limited proteolysis MALDI-TOF MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:505-519. [PMID: 22207568 PMCID: PMC3389352 DOI: 10.1007/s13361-011-0309-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/23/2011] [Accepted: 11/26/2011] [Indexed: 05/31/2023]
Abstract
Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound.
Collapse
Affiliation(s)
- Cynthia R. Sides
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Rohana Liyanage
- Arkansas Statewide Mass Spectrometry Facility, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jackson O. Lay
- Arkansas Statewide Mass Spectrometry Facility, University of Arkansas, Fayetteville, Arkansas, USA
| | | | - Osamu Matsushita
- Department of Microbiology, Kitasato University Medical School, Kanagawa 228-8555, Japan
| | - Joshua Sakon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
42
|
Abaturov LV, Nosova NG. Hydrogen exchange and proteolytic degradation of ribonuclease A. The local splitting of the native structure and the conformation of loop segments. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Fontana A, de Laureto PP, Spolaore B, Frare E. Identifying disordered regions in proteins by limited proteolysis. Methods Mol Biol 2012; 896:297-318. [PMID: 22821533 DOI: 10.1007/978-1-4614-3704-8_20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Limited proteolysis experiments can be successfully used to detect sites of disorder in otherwise folded globular proteins. The approach relies on the fact that the proteolysis of a polypeptide substrate requires its binding in an extended conformation at the protease's active site and thus an enhanced backbone flexibility or local unfolding of the site of proteolytic attack. A striking correlation was found between sites of limited proteolysis and sites of enhanced chain flexibility of the polypeptide chain, this last evaluated by the crystallographically determined B-factor. In numerous cases, it has been shown that limited proteolysis occurs at chain regions characterized by missing electron density and thus being disordered. Therefore, limited proteolysis is a simple and reliable experimental technique that can detect sites of disorder in proteins, thus complementing the results that can be obtained by the use of other physicochemical and computational approaches.
Collapse
Affiliation(s)
- Angelo Fontana
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy.
| | | | | | | |
Collapse
|
44
|
Shishkov A, Bogacheva E, Fedorova N, Ksenofontov A, Badun G, Radyukhin V, Lukashina E, Serebryakova M, Dolgov A, Chulichkov A, Dobrov E, Baratova L. Spatial structure peculiarities of influenza A virus matrix M1 protein in an acidic solution that simulates the internal lysosomal medium. FEBS J 2011; 278:4905-16. [PMID: 21985378 DOI: 10.1111/j.1742-4658.2011.08392.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The structure of the C-terminal domain of the influenza virus A matrix M1 protein, for which X-ray diffraction data were still missing, was studied in acidic solution. Matrix M1 protein was bombarded with thermally-activated tritium atoms, and the resulting intramolecular distribution of the tritium label was analyzed to assess the steric accessibility of the amino acid residues in this protein. This technique revealed that interdomain loops and the C-terminal domain of the protein are the most accessible to labeling with tritium atoms. A model of the spatial arrangement of the C-terminal domain of matrix M1 protein was generated using rosetta software adjusted to the data obtained by tritium planigraphy experiments. This model suggests that the C-terminal domain is an almost flat layer with a three-α-helical structure. To explain the high level of tritium label incorporation into the C-terminal domain of the M1 protein in an acidic solution, we also used independent experimental approaches (CD spectroscopy, limited proteolysis and MALDI-TOF MS analysis of the proteolysis products, dynamic light scattering and analytical ultracentrifugation), as well as multiple computational algorithms, to analyse the intrinsic protein disorder. Taken together, the results obtained in the present study indicate that the C-terminal domain is weakly structured. We hypothesize that the specific 3D structural peculiarities of the M1 protein revealed in acidic pH solution allow the protein greater structural flexibility and enable it to interact effectively with the components of the host cell.
Collapse
Affiliation(s)
- Alexander Shishkov
- N N Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jørgensen M, Stensballe A, Welinder KG. Extensive post-translational processing of potato tuber storage proteins and vacuolar targeting. FEBS J 2011; 278:4070-87. [PMID: 21851554 DOI: 10.1111/j.1742-4658.2011.08311.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potato tuber storage proteins were obtained from vacuoles isolated from field-grown starch potato tubers cv. Kuras. Vacuole sap proteins fractionated by gel filtration were studied by mass spectrometric analyses of trypsin and chymotrypsin digestions. The tuber vacuole appears to be a typical protein storage vacuole absent of proteolytic and glycolytic enzymes. The major soluble storage proteins included 28 Kunitz protease inhibitors, nine protease inhibitors 1, eight protease inhibitors 2, two carboxypeptidase inhibitors, eight patatins and five lipoxygenases (lox), which all showed cultivar-specific sequence variations. These proteins, except for lox, have typical endoplasmic reticulum (ER) signal peptides and putative vacuolar sorting determinants of either the sequence or structure specific type or the C-terminal type, or both. Unexpectedly, sap protein variants imported via the ER showed multiple molecular forms because of extensive and unspecific proteolytic cleavage of exposed N- and C-terminal propeptides and surface loops, in spite of the abundance of protease inhibitors. Some propeptides are potential novel vacuolar targeting peptides. In the insoluble vacuole fraction two variants of phytepsin (aspartate protease) were identified. These are most probably the processing enzymes of potato tuber vacuolar proteins. Database Proteome data have been submitted to the PRIDE database under accession number 17707.
Collapse
Affiliation(s)
- Malene Jørgensen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
46
|
Nudelman I, Akabayov SR, Scherf T, Anglister J. Observation of intermolecular interactions in large protein complexes by 2D-double difference nuclear Overhauser enhancement spectroscopy: application to the 44 kDa interferon-receptor complex. J Am Chem Soc 2011; 133:14755-64. [PMID: 21819146 PMCID: PMC3173517 DOI: 10.1021/ja205480v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR detection of intermolecular interactions between protons in large protein complexes is very challenging because it is difficult to distinguish between weak NOEs from intermolecular interactions and the much larger number of strong intramolecular NOEs. This challenging task is exacerbated by the decrease in signal-to-noise ratio in the often used isotope-edited and isotope-filtered experiments as a result of enhanced T(2) relaxation. Here, we calculate a double difference spectrum that shows exclusively intermolecular NOEs and manifests the good signal-to-noise ratio in 2D homonuclear NOESY spectra even for large proteins. The method is straightforward and results in a complete picture of all intermolecular interactions involving non exchangeable protons. Ninety-seven such (1)H-(1)H NOEs were assigned for the 44 KDa interferon-α2/IFNAR2 complex and used for docking these two proteins. The symmetry of the difference spectrum, its superb resolution, and unprecedented signal-to-noise ratio in this large protein/receptor complex suggest that this method is generally applicable to study large biopolymeric complexes.
Collapse
Affiliation(s)
- Ilona Nudelman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sabine R. Akabayov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tali Scherf
- Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
47
|
Adaptive changes of pancreatic protease secretion to a short-term vegan diet: influence of reduced intake and modification of protein. Br J Nutr 2011; 107:272-6. [DOI: 10.1017/s0007114511002923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In our previous study, we demonstrated that abstaining from meat, for 1 month, by healthy omnivores (lacto-ovovegetarian model) resulted in a statistical decrease in pancreatic secretion as measured by faecal elastase-1 output. However, no correlation between relative and non-relative changes of energy and nutrient consumption and pancreatic secretion was documented. Therefore, in the present study, we aimed to assess the changes of exocrine pancreatic secretion with a more restrictive dietetic modification, by applying a vegan diet. A total of twenty-one healthy omnivores (sixteen females and five males) participated in the prospective study lasting for 6 weeks. The nutrient intake and faecal output of pancreatic enzymes (elastase-1, chymotrypsin and lipase) were assessed twice during the study. Each assessment period lasted for 7 d: the first before the transition to the vegan diet (omnivore diet) and the second during the last week of the study (vegan diet). The dietary modification resulted in a significant decrease in faecal elastase-1 (P < 0·05) and chymotrypsin output (P < 0·04). The lipase excretion remained unchanged. The decrease in proteolytic enzymes was documented to be positively correlated with a decreased protein intake (P < 0·05). In addition, elastase-1 and chymotrypsin outputs were also related to the changes of protein type, plantv.animal (P < 0·04 andP < 0·03, respectively). It was concluded that significant reduction and modification of protein intake due to a short-term vegan diet resulted in an adaptation of pancreatic protease secretion in healthy volunteers.
Collapse
|
48
|
Kazanov MD, Igarashi Y, Eroshkin AM, Cieplak P, Ratnikov B, Zhang Y, Li Z, Godzik A, Osterman AL, Smith JW. Structural determinants of limited proteolysis. J Proteome Res 2011; 10:3642-51. [PMID: 21682278 DOI: 10.1021/pr200271w] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Limited or regulatory proteolysis plays a critical role in many important biological pathways like blood coagulation, cell proliferation, and apoptosis. A better understanding of mechanisms that control this process is required for discovering new proteolytic events and for developing inhibitors with potential therapeutic value. Two features that determine the susceptibility of peptide bonds to proteolysis are the sequence in the vicinity of the scissile bond and the structural context in which the bond is displayed. In this study, we assessed statistical significance and predictive power of individual structural descriptors and combination thereof for the identification of cleavage sites. The analysis was performed on a data set of >200 proteolytic events documented in CutDB for a variety of mammalian regulatory proteases and their physiological substrates with known 3D structures. The results confirmed the significance and provided a ranking within three main categories of structural features: exposure > flexibility > local interactions. Among secondary structure elements, the largest frequency of proteolytic cleavage was confirmed for loops and lower but significant frequency for helices. Limited proteolysis has lower albeit appreciable frequency of occurrence in certain types of β-strands, which is in contrast with some previous reports. Descriptors deduced directly from the amino acid sequence displayed only marginal predictive capabilities. Homology-based structural models showed a predictive performance comparable to protein substrates with experimentally established structures. Overall, this study provided a foundation for accurate automated prediction of segments of protein structure susceptible to proteolytic processing and, potentially, other post-translational modifications.
Collapse
Affiliation(s)
- Marat D Kazanov
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Suskiewicz MJ, Sussman JL, Silman I, Shaul Y. Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Sci 2011; 20:1285-97. [PMID: 21574196 DOI: 10.1002/pro.657] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/05/2011] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs), also known as intrinsically unstructured proteins (IUPs), lack a well-defined 3D structure in vitro and, in some cases, also in vivo. Here, we discuss the question of proteolytic sensitivity of IDPs, with a view to better explaining their in vivo characteristics. After an initial assessment of the status of IDPs in vivo, we briefly survey the intracellular proteolytic systems. Subsequently, we discuss the evidence for IDPs being inherently sensitive to proteolysis. Such sensitivity would not, however, result in enhanced degradation if the protease-sensitive sites were sequestered. Accordingly, IDP access to and degradation by the proteasome, the major proteolytic complex within eukaryotic cells, are discussed in detail. The emerging picture appears to be that IDPs are inherently sensitive to proteasomal degradation along the lines of the "degradation by default" model. However, available data sets of intracellular protein half-lives suggest that intrinsic disorder does not imply a significantly shorter half-life. We assess the power of available systemic half-life measurements, but also discuss possible mechanisms that could protect IDPs from intracellular degradation. Finally, we discuss the relevance of the proteolytic sensitivity of IDPs to their function and evolution.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- The Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
50
|
Uversky VN. Flexible Nets of Malleable Guardians: Intrinsically Disordered Chaperones in Neurodegenerative Diseases. Chem Rev 2010; 111:1134-66. [DOI: 10.1021/cr100186d] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States, Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, University of Indiana School of Medicine, Indianapolis, Indiana 46202, United States, and Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| |
Collapse
|