1
|
Toyoda T, Miura N, Kato S, Masuda T, Ohashi R, Matsushita A, Matsuda F, Ohtsuki S, Katakura A, Honda K. Identification of TPI1 As a potential therapeutic target in pancreatic cancer with dependency of TP53 mutation using multi-omics analysis. Cancer Sci 2024; 115:3622-3635. [PMID: 39259678 DOI: 10.1111/cas.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024] Open
Abstract
Mutations of KRAS, CDKN2A, TP53, and SMAD4 are the four major driver genes for pancreatic ductal adenocarcinoma (PDAC), of which mutations of KRAS and TP53 are the most frequently recognized. However, molecular-targeted therapies for mutations of KRAS and TP53 have not yet been developed. To identify novel molecular targets, we newly established organoids with the Kras mutation (KrasmuOR) and Trp53 loss of function using Cre transduction and CRISPR/Cas9 (Krasmu/p53muOR) from murine epithelia of the pancreatic duct in KrasLSL-G12D mice, and then analyzed the proteomic and metabolomic profiles in both organoids by mass spectrometry. Hyperfunction of the glycolysis pathway was recognized in Krasmu/p53muOR compared with KrasmuOR. Loss of function of triosephosphate isomerase (TPI1), which is involved in glycolysis, induced a reduction of cell proliferation in human PDAC cell lines with the TP53 mutation, but not in PDAC or in human fibroblasts without TP53 mutation. The TP53 mutation is clinically recognized in 70% of patients with PDAC. In the present study, protein expression of TPI1 and nuclear accumulation of p53 were recognized in the same patients with PDAC. TPI1 is a potential candidate therapeutic target for PDAC with the TP53 mutation.
Collapse
Affiliation(s)
- Tomoaki Toyoda
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan
| | - Nami Miura
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Akira Matsushita
- Department of Gastroenterological Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Pérez-Niño JA, Guerra Y, Díaz-Salazar AJ, Costas M, Rodríguez-Romero A, Fernández-Velasco DA. Stable monomers in the ancestral sequence reconstruction of the last opisthokont common ancestor of dimeric triosephosphate isomerase. Protein Sci 2024; 33:e5134. [PMID: 39145435 PMCID: PMC11325190 DOI: 10.1002/pro.5134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Function and structure are strongly coupled in obligated oligomers such as Triosephosphate isomerase (TIM). In animals and fungi, TIM monomers are inactive and unstable. Previously, we used ancestral sequence reconstruction to study TIM evolution and found that before these lineages diverged, the last opisthokonta common ancestor of TIM (LOCATIM) was an obligated oligomer that resembles those of extant TIMs. Notably, calorimetric evidence indicated that ancestral TIM monomers are more structured than extant ones. To further increase confidence about the function, structure, and stability of the LOCATIM, in this work, we applied two different inference methodologies and the worst plausible case scenario for both of them, to infer four sequences of this ancestor and test the robustness of their physicochemical properties. The extensive biophysical characterization of the four reconstructed sequences of LOCATIM showed very similar hydrodynamic and spectroscopic properties, as well as ligand-binding energetics and catalytic parameters. Their 3D structures were also conserved. Although differences were observed in melting temperature, all LOCATIMs showed reversible urea-induced unfolding transitions, and for those that reached equilibrium, high conformational stability was estimated (ΔGTot = 40.6-46.2 kcal/mol). The stability of the inactive monomeric intermediates was also high (ΔGunf = 12.6-18.4 kcal/mol), resembling some protozoan TIMs rather than the unstable monomer observed in extant opisthokonts. A comparative analysis of the 3D structure of ancestral and extant TIMs shows a correlation between the higher stability of the ancestral monomers with the presence of several hydrogen bonds located in the "bottom" part of the barrel.
Collapse
Affiliation(s)
- Jorge Alejandro Pérez-Niño
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yasel Guerra
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - A Jessica Díaz-Salazar
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Alramadhani D, Aljahdali AS, Abdulmalik O, Pierce BD, Safo MK. Metabolic Reprogramming in Sickle Cell Diseases: Pathophysiology and Drug Discovery Opportunities. Int J Mol Sci 2022; 23:7448. [PMID: 35806451 PMCID: PMC9266828 DOI: 10.3390/ijms23137448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) is a genetic disorder that affects millions of individuals worldwide. Chronic anemia, hemolysis, and vasculopathy are associated with SCD, and their role has been well characterized. These symptoms stem from hemoglobin (Hb) polymerization, which is the primary event in the molecular pathogenesis of SCD and contributes to erythrocyte or red blood cell (RBC) sickling, stiffness, and vaso-occlusion. The disease is caused by a mutation at the sixth position of the β-globin gene, coding for sickle Hb (HbS) instead of normal adult Hb (HbA), which under hypoxic conditions polymerizes into rigid fibers to distort the shapes of the RBCs. Only a few therapies are available, with the universal effectiveness of recently approved therapies still being monitored. In this review, we first focus on how sickle RBCs have altered metabolism and then highlight how this understanding reveals potential targets involved in the pathogenesis of the disease, which can be leveraged to create novel therapeutics for SCD.
Collapse
Affiliation(s)
- Dina Alramadhani
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Anfal S. Aljahdali
- Department of Pharmaceutical Chemistry, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia;
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - B. Daniel Pierce
- Department of Biology, University of Richmond, Richmond, VA 23173, USA;
| | - Martin K. Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
4
|
Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorg Med Chem 2022; 58:116577. [DOI: 10.1016/j.bmc.2021.116577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
5
|
Romero JM. Triosephosphate isomerase deficiency: Effect of F240L mutation on enzyme structure. Arch Biochem Biophys 2020; 689:108473. [PMID: 32585311 DOI: 10.1016/j.abb.2020.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Eleven missense mutations have been describe in human triosephosphate isomerase (TPI), affecting its catalytic function. Several of these mutations generate triosephosphate isomerase deficiency, the consequences of which can in some cases be lethal. The missense F240L mutation was found in a Hungarian patient showing symptoms of chronic hemolytic anemia and neuromuscular dysfunction. In vitro studies using a recombinant version of this mutant showed that it affects kinetic parameters, thermal stability and dimeric stability. Using X-ray crystal structures, the present paper describes how this mutation affected the flexibility of catalytic residues K13 and part of the (β/α) 8-barrel fold facing the dimeric interface in the TPI.
Collapse
Affiliation(s)
- Jorge Miguel Romero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, X5000HUA, Córdoba, Pabellón Argentina Ala Oeste, Argentina.
| |
Collapse
|
6
|
Pekel G, Ari F. Therapeutic Targeting of Cancer Metabolism with Triosephosphate Isomerase. Chem Biodivers 2020; 17:e2000012. [PMID: 32180338 DOI: 10.1002/cbdv.202000012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/16/2020] [Indexed: 01/25/2023]
Abstract
The increase in glycolytic flux in cancer, known as aerobic glycolysis, is one of the most important hallmarks of cancer. Therefore, glycolytic enzymes have importance in understanding the molecular mechanism of cancer progression. Triosephosphate isomerase (TPI) is one of the key glycolytic enzymes. Furthermore, it takes a part in gluconeogenesis, pentose phosphate pathway and fatty acid biosynthesis. To date, it has been shown altered levels of TPI in various cancer types, especially in metastatic phenotype. According to other studies, TPI might be considered as a potential therapeutic target and a cancer-related biomarker in different types of cancer. However, its function in tumor formation and development has not been fully understood. Here, we reviewed the relationship between TPI and cancer for the first time.
Collapse
Affiliation(s)
- Gonca Pekel
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| | - Ferda Ari
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| |
Collapse
|
7
|
Novel and selective inactivators of Triosephosphate isomerase with anti-trematode activity. Sci Rep 2020; 10:2587. [PMID: 32054976 PMCID: PMC7018972 DOI: 10.1038/s41598-020-59460-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Trematode infections such as schistosomiasis and fascioliasis cause significant morbidity in an estimated 250 million people worldwide and the associated agricultural losses are estimated at more than US$ 6 billion per year. Current chemotherapy is limited. Triosephosphate isomerase (TIM), an enzyme of the glycolytic pathway, has emerged as a useful drug target in many parasites, including Fasciola hepatica TIM (FhTIM). We identified 21 novel compounds that selectively inhibit this enzyme. Using microscale thermophoresis we explored the interaction between target and compounds and identified a potent interaction between the sulfonyl-1,2,4-thiadiazole (compound 187) and FhTIM, which showed an IC50 of 5 µM and a Kd of 66 nM. In only 4 hours, this compound killed the juvenile form of F. hepatica with an IC50 of 3 µM, better than the reference drug triclabendazole (TCZ). Interestingly, we discovered in vitro inhibition of FhTIM by TCZ, with an IC50 of 7 µM suggesting a previously uncharacterized role of FhTIM in the mechanism of action of this drug. Compound 187 was also active against various developmental stages of Schistosoma mansoni. The low toxicity in vitro in different cell types and lack of acute toxicity in mice was demonstrated for this compound, as was demonstrated the efficacy of 187in vivo in F. hepatica infected mice. Finally, we obtained the first crystal structure of FhTIM at 1.9 Å resolution which allows us using docking to suggest a mechanism of interaction between compound 187 and TIM. In conclusion, we describe a promising drug candidate to control neglected trematode infections in human and animal health.
Collapse
|
8
|
Jimenez-Sandoval P, Castro-Torres E, González-González R, Díaz-Quezada C, Gurrola M, Camacho-Manriquez LD, Leyva-Navarro L, Brieba LG. Crystal structures of Triosephosphate Isomerases from Taenia solium and Schistosoma mansoni provide insights for vaccine rationale and drug design against helminth parasites. PLoS Negl Trop Dis 2020; 14:e0007815. [PMID: 31923219 PMCID: PMC6980832 DOI: 10.1371/journal.pntd.0007815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/23/2020] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Triosephosphate isomerases (TPIs) from Taenia solium (TsTPI) and
Schistosoma mansoni (SmTPI) are potential vaccine and drug
targets against cysticercosis and schistosomiasis, respectively. This is due to
the dependence of parasitic helminths on glycolysis and because those proteins
elicit an immune response, presumably due to their surface localization. Here we
report the crystal structures of TsTPI and SmTPI in complex with
2-phosphoglyceric acid (2-PGA). Both TPIs fold into a dimeric (β-α)8
barrel in which the dimer interface consists of α-helices 2, 3, and 4, and
swapping of loop 3. TPIs from parasitic helminths harbor a region of three amino
acids knows as the SXD/E insert (S155 to E157 and S157 to D159 in TsTPI and
SmTPI, respectively). This insert is located between α5 and β6 and is proposed
to be the main TPI epitope. This region is part of a solvent-exposed
310–helix that folds into a hook-like structure. The crystal
structures of TsTPI and SmTPI predicted conformational epitopes that could be
used for vaccine design. Surprisingly, the epitopes corresponding to the SXD/E
inserts are not the ones with the greatest immunological potential. SmTPI, but
not TsTPI, habors a sole solvent exposed cysteine (SmTPI-S230) and alterations
in this residue decrease catalysis. The latter suggests that thiol-conjugating
agents could be used to target SmTPI. In sum, the crystal structures of SmTPI
and TsTPI are a blueprint for targeted schistosomiasis and cysticercosis drug
and vaccine development. Because of the worldwide prevalence of schistosomiasis and cysticercosis, it is
critical to develop drugs and vaccines against their causative agents. The
glycolytic enzyme triosephosphate isomerase (TPI) is a dual-edged sword against
diseases caused by parasitic helminths. This is because helminths heavily depend
on glycolysis for energy and because the surface localization exhibited by TPIs
that elicits an immune response against those organisms. Here we provide the
crystal structures TPIs from Taenia solium and
Schistosoma mansoni as a first step for vaccine and drug
design. As a proof of concept we found that modifications in the single solvent
exposed cysteine of TPI from S. mansoni
decreases catalysis, making this enzyme a novel target against
schistosomiasis.
Collapse
Affiliation(s)
- Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Eduardo Castro-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Rogelio González-González
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Corina Díaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Misraim Gurrola
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Laura D. Camacho-Manriquez
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Lucia Leyva-Navarro
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
- * E-mail:
| |
Collapse
|
9
|
Castro-Torres E, Jiménez-Sandoval P, Romero-Romero S, Fuentes-Pascacio A, López-Castillo LM, Díaz-Quezada C, Fernández-Velasco DA, Torres-Larios A, Brieba LG. Structural basis for the modulation of plant cytosolic triosephosphate isomerase activity by mimicry of redox-based modifications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:950-964. [PMID: 31034710 DOI: 10.1111/tpj.14375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Reactive oxidative species (ROS) and S-glutathionylation modulate the activity of plant cytosolic triosephosphate isomerases (cTPI). Arabidopsis thaliana cTPI (AtcTPI) is subject of redox regulation at two reactive cysteines that function as thiol switches. Here we investigate the role of these residues, AtcTPI-Cys13 and At-Cys218, by substituting them with aspartic acid that mimics the irreversible oxidation of cysteine to sulfinic acid and with amino acids that mimic thiol conjugation. Crystallographic studies show that mimicking AtcTPI-Cys13 oxidation promotes the formation of inactive monomers by reposition residue Phe75 of the neighboring subunit, into a conformation that destabilizes the dimer interface. Mutations in residue AtcTPI-Cys218 to Asp, Lys, or Tyr generate TPI variants with a decreased enzymatic activity by creating structural modifications in two loops (loop 7 and loop 6) whose integrity is necessary to assemble the active site. In contrast with mutations in residue AtcTPI-Cys13, mutations in AtcTPI-Cys218 do not alter the dimeric nature of AtcTPI. Therefore, modifications of residues AtcTPI-Cys13 and AtcTPI-Cys218 modulate AtcTPI activity by inducing the formation of inactive monomers and by altering the active site of the dimeric enzyme, respectively. The identity of residue AtcTPI-Cys218 is conserved in the majority of plant cytosolic TPIs, this conservation and its solvent-exposed localization make it the most probable target for TPI regulation upon oxidative damage by reactive oxygen species. Our data reveal the structural mechanisms by which S-glutathionylation protects AtcTPI from irreversible chemical modifications and re-routes carbon metabolism to the pentose phosphate pathway to decrease oxidative stress.
Collapse
Affiliation(s)
- Eduardo Castro-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, México, CP 36821, México
| | - Pedro Jiménez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, México, CP 36821, México
| | - Sergio Romero-Romero
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Mexico City, 04510, México
| | - Alma Fuentes-Pascacio
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, México, CP 36821, México
| | - Laura M López-Castillo
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, México, CP 36821, México
| | - Corina Díaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, México, CP 36821, México
| | - D Alejandro Fernández-Velasco
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Mexico City, 04510, México
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, México City, 04510, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, México, CP 36821, México
| |
Collapse
|
10
|
Castro-Torres E, Jimenez-Sandoval P, Fernández-de Gortari E, López-Castillo M, Baruch-Torres N, López-Hidalgo M, Peralta-Castro A, Díaz-Quezada C, Sotelo-Mundo RR, Benitez-Cardoza CG, Espinoza-Fonseca LM, Ochoa-Leyva A, Brieba LG. Structural Basis for the Limited Response to Oxidative and Thiol-Conjugating Agents by Triosephosphate Isomerase From the Photosynthetic Bacteria Synechocystis. Front Mol Biosci 2018; 5:103. [PMID: 30538993 PMCID: PMC6277545 DOI: 10.3389/fmolb.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022] Open
Abstract
In plants, the ancestral cyanobacterial triosephosphate isomerase (TPI) was replaced by a duplicated version of the cytosolic TPI. This isoform acquired a transit peptide for chloroplast localization and functions in the Calvin-Benson cycle. To gain insight into the reasons for this gene replacement in plants, we characterized the TPI from the photosynthetic bacteria Synechocystis (SyTPI). SyTPI presents typical TPI enzyme kinetics profiles and assembles as a homodimer composed of two subunits that arrange in a (β-α)8 fold. We found that oxidizing agents diamide (DA) and H2O2, as well as thiol-conjugating agents such as oxidized glutathione (GSSG) and methyl methanethiosulfonate (MMTS), do not inhibit the catalytic activity of SyTPI at concentrations required to inactivate plastidic and cytosolic TPIs from the plant model Arabidopsis thaliana (AtpdTPI and AtcTPI, respectively). The crystal structure of SyTPI revealed that each monomer contains three cysteines, C47, C127, and C176; however only the thiol group of C176 is solvent exposed. While AtcTPI and AtpdTPI are redox-regulated by chemical modifications of their accessible and reactive cysteines, we found that C176 of SyTPI is not sensitive to redox modification in vitro. Our data let us postulate that SyTPI was replaced by a eukaryotic TPI, because the latter contains redox-sensitive cysteines that may be subject to post-translational modifications required for modulating TPI's enzymatic activity.
Collapse
Affiliation(s)
- Eduardo Castro-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Eli Fernández-de Gortari
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Margarita López-Castillo
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Marisol López-Hidalgo
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Ciudad de México, Mexico
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Mexico
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Ciudad de México, Mexico
| | - L Michel Espinoza-Fonseca
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| |
Collapse
|
11
|
Romero JM, Carrizo ME, Curtino JA. Characterization of human triosephosphate isomerase S-nitrosylation. Nitric Oxide 2018; 77:26-34. [PMID: 29678765 DOI: 10.1016/j.niox.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022]
Abstract
Triosephosphate isomerase (TPI), the glycolytic enzyme that catalyzes the isomerization of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P), has been frequently identified as a target of S-nitrosylation by proteomic studies. However, the effect of S-nitrosylation on its activity has only been explored in plants and algae. Here, we describe the in vitro S-nitrosylation of human TPI (hTPI), and the effect of the modification on its enzymatic parameters. NO-incorporation into the enzyme cysteine residues occurred by a time-dependent S-transnitrosylation from both, S-nitrosocysteine (CySNO) and S-nitrosoglutathione (GSNO), with CySNO being the more efficient NO-donor. Both X-ray crystal structure and mass spectrometry analyses showed that only Cys217 was S-nitrosylated. hTPI S-nitrosylation produced a 30% inhibition of the Vmax of the DHAP conversion to G3P, without affecting the Km for DHAP. This is the first study describing features of human TPI S-nitrosylation.
Collapse
Affiliation(s)
- Jorge Miguel Romero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET)), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
| | - María Elena Carrizo
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET)), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Juan Agustín Curtino
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET)), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| |
Collapse
|
12
|
Cabrera N, Torres-Larios A, García-Torres I, Enríquez-Flores S, Perez-Montfort R. Differential effects on enzyme stability and kinetic parameters of mutants related to human triosephosphate isomerase deficiency. Biochim Biophys Acta Gen Subj 2018; 1862:1401-1409. [PMID: 29571745 DOI: 10.1016/j.bbagen.2018.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023]
Abstract
Human triosephosphate isomerase (TIM) deficiency is a very rare disease, but there are several mutations reported to be causing the illness. In this work, we produced nine recombinant human triosephosphate isomerases which have the mutations reported to produce TIM deficiency. These enzymes were characterized biophysically and biochemically to determine their kinetic and stability parameters, and also to substitute TIM activity in supporting the growth of an Escherichia coli strain lacking the tim gene. Our results allowed us to rate the deleteriousness of the human TIM mutants based on the type and severity of the alterations observed, to classify four "unknown severity mutants" with altered residues in positions 62, 72, 122 and 154 and to explain in structural terms the mutation V231M, the most affected mutant from the kinetic point of view and the only homozygous mutation reported besides E104D.
Collapse
Affiliation(s)
- Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, 04510, Ciudad de México, Mexico
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, 04510, Ciudad de México, Mexico
| | - Itzhel García-Torres
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán, 04530, Ciudad de México, Mexico
| | - Sergio Enríquez-Flores
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán, 04530, Ciudad de México, Mexico
| | - Ruy Perez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Jimenez-Sandoval P, Vique-Sanchez JL, Hidalgo ML, Velazquez-Juarez G, Diaz-Quezada C, Arroyo-Navarro LF, Moran GM, Fattori J, Jessica Diaz-Salazar A, Rudiño-Pinera E, Sotelo-Mundo R, Figueira ACM, Lara-Gonzalez S, Benítez-Cardoza CG, Brieba LG. A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1423-1432. [DOI: 10.1016/j.bbapap.2017.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
|
14
|
Spider's venom phospholipases D: A structural review. Int J Biol Macromol 2017; 107:1054-1065. [PMID: 28951301 DOI: 10.1016/j.ijbiomac.2017.09.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/25/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022]
Abstract
Spider venoms are complex mixtures of proteins, peptides and small organic and inorganic molecules. Among the proteins, phospholipases D (PLDs) present the major portion, and till now they are the most studied enzymes in spider venom. These PLDs have been divided into two classes, I and II, based on their primary and tertiary structure. Currently, crystal structures of both classes of these enzymes are available in the Protein Data Bank (PDB). Their three-dimensional structure is composed of eight α-helices and eight β-strands forming the ubiquitous fold called triosephosphate isomerase (TIM) barrel. These enzymes use general acid-base catalysis to hydrolyzes their substrate. In this review, we have described the structural features, structure-based mechanisms of catalysis, maturation, and inhibition of these enzymes using the synthetic inhibitor.
Collapse
|
15
|
Olivares-Illana V, Riveros-Rosas H, Cabrera N, Tuena de Gómez-Puyou M, Pérez-Montfort R, Costas M, Gómez-Puyou A. A guide to the effects of a large portion of the residues of triosephosphate isomerase on catalysis, stability, druggability, and human disease. Proteins 2017; 85:1190-1211. [PMID: 28378917 DOI: 10.1002/prot.25299] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Triosephosphate isomerase (TIM) is a ubiquitous enzyme, which appeared early in evolution. TIM is responsible for obtaining net ATP from glycolysis and producing an extra pyruvate molecule for each glucose molecule, under aerobic and anaerobic conditions. It is placed in a metabolic crossroad that allows a quick balance of the triose phosphate aldolase produced by glycolysis, and is also linked to lipid metabolism through the alternation of glycerol-3-phosphate and the pentose cycle. TIM is one of the most studied enzymes with more than 199 structures deposited in the PDB. The interest for this enzyme stems from the fact that it is involved in glycolysis, but also in aging, human diseases and metabolism. TIM has been a target in the search for chemical compounds against infectious diseases and is a model to study catalytic features. Until February 2017, 62% of all residues of the protein have been studied by mutagenesis and/or using other approaches. Here, we present a detailed and comprehensive recompilation of the reported effects on TIM catalysis, stability, druggability and human disease produced by each of the amino acids studied, contributing to a better understanding of the properties of this fundamental protein. The information reviewed here shows that the role of the noncatalytic residues depend on their molecular context, the delicate balance between the short and long-range interactions in concerted action determining the properties of the protein. Each protein should be regarded as a unique entity that has evolved to be functional in the organism to which it belongs. Proteins 2017; 85:1190-1211. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer. Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, 78290, México
| | - Hector Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Marietta Tuena de Gómez-Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Armando Gómez-Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| |
Collapse
|
16
|
Setzer MS, Byler KG, Ogungbe IV, Setzer WN. Natural Products as New Treatment Options for Trichomoniasis: A Molecular Docking Investigation. Sci Pharm 2017; 85:scipharm85010005. [PMID: 28134827 PMCID: PMC5388143 DOI: 10.3390/scipharm85010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Trichomoniasis, caused by the parasitic protozoan Trichomonas vaginalis, is the most common non-viral sexually-transmitted disease, and there can be severe complications from trichomoniasis. Antibiotic resistance in T. vaginalis is increasing, but there are currently no alternatives treatment options. There is a need to discover and develop new chemotherapeutic alternatives. Plant-derived natural products have long served as sources for new medicinal agents, as well as new leads for drug discovery and development. In this work, we have carried out an in silico screening of 952 antiprotozoal phytochemicals with specific protein drug targets of T. vaginalis. A total of 42 compounds showed remarkable docking properties to T. vaginalis methionine gamma-lyase (TvMGL) and to T. vaginalis purine nucleoside phosphorylase (TvPNP). The most promising ligands were polyphenolic compounds, and several of these showed docking properties superior to either co-crystallized ligands or synthetic enzyme inhibitors.
Collapse
Affiliation(s)
- Mary Snow Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Kendall G Byler
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Ifedayo Victor Ogungbe
- Department of Chemistry & Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
17
|
Lopez-Zavala AA, Carrasco-Miranda JS, Ramirez-Aguirre CD, López-Hidalgo M, Benitez-Cardoza CG, Ochoa-Leyva A, Cardona-Felix CS, Diaz-Quezada C, Rudiño-Piñera E, Sotelo-Mundo RR, Brieba LG. Structural insights from a novel invertebrate triosephosphate isomerase from Litopenaeus vannamei. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1696-1706. [PMID: 27614148 DOI: 10.1016/j.bbapap.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/17/2016] [Accepted: 09/03/2016] [Indexed: 01/12/2023]
Abstract
Triosephosphate isomerase (TIM; EC 5.3.1.1) is a key enzyme involved in glycolysis and gluconeogenesis. Glycolysis is one of the most regulated metabolic pathways, however little is known about the structural mechanisms for its regulation in non-model organisms, like crustaceans. To understand the structure and function of this enzyme in invertebrates, we obtained the crystal structure of triosephosphate isomerase from the marine Pacific whiteleg shrimp (Litopenaeus vannamei, LvTIM) in complex with its inhibitor 2-phosphogyceric acid (2-PG) at 1.7Å resolution. LvTIM assembles as a homodimer with residues 166-176 covering the active site and residue Glu166 interacting with the inhibitor. We found that LvTIM is the least stable TIM characterized to date, with the lowest range of melting temperatures, and with the lowest activation enthalpy associated with the thermal unfolding process reported. In TIMs dimer stabilization is maintained by an interaction of loop 3 by a set of hydrophobic contacts between subunits. Within these contacts, the side chain of a hydrophobic residue of one subunit fits into a cavity created by a set of hydrophobic residues in the neighboring subunit, via a "ball and socket" interaction. LvTIM presents a Cys47 at the "ball" inter-subunit contact indicating that the character of this residue is responsible for the decrease in dimer stability. Mutational studies show that this residue plays a role in dimer stability but is not a solely determinant for dimer formation.
Collapse
Affiliation(s)
- Alonso A Lopez-Zavala
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora 83304, Mexico; Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo, Sonora 83000, Mexico
| | - Jesus S Carrasco-Miranda
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora 83304, Mexico
| | - Claudia D Ramirez-Aguirre
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados (CINVESTAV Unidad Irapuato), Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, Irapuato, Guanajuato 36500, Mexico
| | - Marisol López-Hidalgo
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-Instituto Politecnico Nacional, Ave. Guillermo Massieu Helguera, No. 239, Fracc. "La Escalera", Ticoman, Ciudad de México, 07320, Mexico
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-Instituto Politecnico Nacional, Ave. Guillermo Massieu Helguera, No. 239, Fracc. "La Escalera", Ticoman, Ciudad de México, 07320, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Cesar S Cardona-Felix
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados (CINVESTAV Unidad Irapuato), Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, Irapuato, Guanajuato 36500, Mexico; Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. Instituto Politécnico Nacional. s/n., 23096, La Paz, Baja California Sur 23096, Mexico; Cátedras CONACyT, Dirección Adjunta de Desarrollo Científico, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Ciudad de Mexico, 03940, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados (CINVESTAV Unidad Irapuato), Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, Irapuato, Guanajuato 36500, Mexico
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora 83304, Mexico.
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados (CINVESTAV Unidad Irapuato), Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, Irapuato, Guanajuato 36500, Mexico.
| |
Collapse
|
18
|
Roland BP, Zeccola AM, Larsen SB, Amrich CG, Talsma AD, Stuchul KA, Heroux A, Levitan ES, VanDemark AP, Palladino MJ. Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics. PLoS Genet 2016; 12:e1005941. [PMID: 27031109 PMCID: PMC4816394 DOI: 10.1371/journal.pgen.1005941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/24/2016] [Indexed: 01/05/2023] Open
Abstract
Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches to demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.
Collapse
Affiliation(s)
- Bartholomew P. Roland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- The Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alison M. Zeccola
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- The Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Samantha B. Larsen
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- The Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Christopher G. Amrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron D. Talsma
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- The Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kimberly A. Stuchul
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- The Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Annie Heroux
- Energy Sciences Directorate/Photon Science Division, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Edwin S. Levitan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Andrew P. VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- The Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
López-Castillo LM, Jiménez-Sandoval P, Baruch-Torres N, Trasviña-Arenas CH, Díaz-Quezada C, Lara-González S, Winkler R, Brieba LG. Structural Basis for Redox Regulation of Cytoplasmic and Chloroplastic Triosephosphate Isomerases from Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1817. [PMID: 27999583 PMCID: PMC5138414 DOI: 10.3389/fpls.2016.01817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/18/2016] [Indexed: 05/04/2023]
Abstract
In plants triosephosphate isomerase (TPI) interconverts glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP) during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs) and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI) and chloroplast TPI (pdTPI) share more than 60% amino acid identity and assemble as (β-α)8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively) and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218). Site directed mutagenesis of residues pdTPI-C15, cTPI-C13, and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS) and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218). Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to the redox environment in the chloroplast.
Collapse
Affiliation(s)
- Laura M. López-Castillo
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato Guanajuato, Mexico
- Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad IrapuatoIrapuato Guanajuato, Mexico
| | - Pedro Jiménez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato Guanajuato, Mexico
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato Guanajuato, Mexico
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato Guanajuato, Mexico
| | - Samuel Lara-González
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Robert Winkler
- Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad IrapuatoIrapuato Guanajuato, Mexico
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato Guanajuato, Mexico
- *Correspondence: Luis G. Brieba
| |
Collapse
|
20
|
Konieczna A, Szczepańska A, Sawiuk K, Łyżeń R, Węgrzyn G. Enzymes of the central carbon metabolism: Are they linkers between transcription, DNA replication, and carcinogenesis? Med Hypotheses 2015; 84:58-67. [DOI: 10.1016/j.mehy.2014.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/05/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022]
|
21
|
Triosephosphate isomerase I170V alters catalytic site, enhances stability and induces pathology in a Drosophila model of TPI deficiency. Biochim Biophys Acta Mol Basis Dis 2014; 1852:61-9. [PMID: 25463631 DOI: 10.1016/j.bbadis.2014.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/01/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022]
Abstract
Triosephosphate isomerase (TPI) is a glycolytic enzyme which homodimerizes for full catalytic activity. Mutations of the TPI gene elicit a disease known as TPI Deficiency, a glycolytic enzymopathy noted for its unique severity of neurological symptoms. Evidence suggests that TPI Deficiency pathogenesis may be due to conformational changes of the protein, likely affecting dimerization and protein stability. In this report, we genetically and physically characterize a human disease-associated TPI mutation caused by an I170V substitution. Human TPI(I170V) elicits behavioral abnormalities in Drosophila. An examination of hTPI(I170V) enzyme kinetics revealed this substitution reduced catalytic turnover, while assessments of thermal stability demonstrated an increase in enzyme stability. The crystal structure of the homodimeric I170V mutant reveals changes in the geometry of critical residues within the catalytic pocket. Collectively these data reveal new observations of the structural and kinetic determinants of TPI Deficiency pathology, providing new insights into disease pathogenesis.
Collapse
|
22
|
Zaffagnini M, Michelet L, Sciabolini C, Di Giacinto N, Morisse S, Marchand CH, Trost P, Fermani S, Lemaire SD. High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii. MOLECULAR PLANT 2014; 7:101-20. [PMID: 24157611 DOI: 10.1093/mp/sst139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Triosephosphate isomerase (TPI) catalyzes the interconversion of glyceraldehyde-3-phosphate to dihydroxyacetone phosphate. Photosynthetic organisms generally contain two isoforms of TPI located in both cytoplasm and chloroplasts. While the cytoplasmic TPI is involved in the glycolysis, the chloroplastic isoform participates in the Calvin-Benson cycle, a key photosynthetic process responsible for carbon fixation. Compared with its cytoplasmic counterpart, the functional features of chloroplastic TPI have been poorly investigated and its three-dimensional structure has not been solved. Recently, several studies proposed TPI as a potential target of different redox modifications including dithiol/disulfide interchanges, glutathionylation, and nitrosylation. However, neither the effects on protein activity nor the molecular mechanisms underlying these redox modifications have been investigated. Here, we have produced recombinantly and purified TPI from the unicellular green alga Chlamydomonas reinhardtii (Cr). The biochemical properties of the enzyme were delineated and its crystallographic structure was determined at a resolution of 1.1 Å. CrTPI is a homodimer with subunits containing the typical (β/α)8-barrel fold. Although no evidence for TRX regulation was obtained, CrTPI was found to undergo glutathionylation by oxidized glutathione and trans-nitrosylation by nitrosoglutathione, confirming its sensitivity to multiple redox modifications.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zinsser VL, Hoey EM, Trudgett A, Timson DJ. Biochemical characterisation of triose phosphate isomerase from the liver fluke Fasciola hepatica. Biochimie 2013; 95:2182-9. [DOI: 10.1016/j.biochi.2013.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022]
|
24
|
Li Z, He Y, Liu Q, Zhao L, Wong L, Kwoh CK, Nguyen H, Li J. Structural analysis on mutation residues and interfacial water molecules for human TIM disease understanding. BMC Bioinformatics 2013; 14 Suppl 16:S11. [PMID: 24564410 PMCID: PMC3853089 DOI: 10.1186/1471-2105-14-s16-s11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Human triosephosphate isomerase (HsTIM) deficiency is a genetic disease caused often by the pathogenic mutation E104D. This mutation, located at the side of an abnormally large cluster of water in the inter-subunit interface, reduces the thermostability of the enzyme. Why and how these water molecules are directly related to the excessive thermolability of the mutant have not been investigated in structural biology. Results This work compares the structure of the E104D mutant with its wild type counterparts. It is found that the water topology in the dimer interface of HsTIM is atypical, having a "wet-core-dry-rim" distribution with 16 water molecules tightly packed in a small deep region surrounded by 22 residues including GLU104. These water molecules are co-conserved with their surrounding residues in non-archaeal TIMs (dimers) but not conserved across archaeal TIMs (tetramers), indicating their importance in preserving the overall quaternary structure. As the structural permutation induced by the mutation is not significant, we hypothesize that the excessive thermolability of the E104D mutant is attributed to the easy propagation of atoms' flexibility from the surface into the core via the large cluster of water. It is indeed found that the B factor increment in the wet region is higher than other regions, and, more importantly, the B factor increment in the wet region is maintained in the deeply buried core. Molecular dynamics simulations revealed that for the mutant structure at normal temperature, a clear increase of the root-mean-square deviation is observed for the wet region contacting with the large cluster of interfacial water. Such increase is not observed for other interfacial regions or the whole protein. This clearly suggests that, in the E104D mutant, the large water cluster is responsible for the subunit interface flexibility and overall thermolability, and it ultimately leads to the deficiency of this enzyme. Conclusions Our study reveals that a large cluster of water buried in protein interfaces is fragile and high-maintenance, closely related to the structure, function and evolution of the whole protein.
Collapse
|
25
|
De La Mora-De La Mora I, Torres-Larios A, Mendoza-Hernández G, Enriquez-Flores S, Castillo-Villanueva A, Mendez ST, Garcia-Torres I, Torres-Arroyo A, Gómez-Manzo S, Marcial-Quino J, Oria-Hernández J, López-Velázquez G, Reyes-Vivas H. The E104D mutation increases the susceptibility of human triosephosphate isomerase to proteolysis. Asymmetric cleavage of the two monomers of the homodimeric enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2702-11. [PMID: 24056040 DOI: 10.1016/j.bbapap.2013.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 11/27/2022]
Abstract
The deficiency of human triosephosphate isomerase (HsTIM) generates neurological alterations, cardiomyopathy and premature death. The mutation E104D is the most frequent cause of the disease. Although the wild type and mutant exhibit similar kinetic parameters, it has been shown that the E104D substitution induces perturbation of an interfacial water network that, in turn, reduces the association constant between subunits promoting enzyme inactivation. To gain further insight into the effects of the mutation on the structure, stability and function of the enzyme, we measured the sensitivity of recombinant E104D mutant and wild type HsTIM to limited proteolysis. The mutation increases the susceptibility to proteolysis as consequence of the loss of rigidity of its overall 3-D structure. Unexpectedly, it was observed that proteolysis of wild type HsTIM generated two different stable nicked dimers. One was formed in relatively short times of incubation with proteinase K; as shown by spectrometric and crystallographic data, it corresponded to a dimer containing a nicked monomer and an intact monomer. The formation of the other nicked species requires relatively long incubation times with proteinase K and corresponds to a dimer with two clipped subunits. The first species retains 50% of the original activity, whereas the second species is inactive. Collectively, we found that the E104D mutant is highly susceptible to proteolysis, which in all likelihood contributes to the pathogenesis of enzymopathy. In addition, the proteolysis data on wild type HsTIM illustrate an asymmetric conduct of the two monomers.
Collapse
|
26
|
Sullivan BJ, Nguyen T, Durani V, Mathur D, Rojas S, Thomas M, Syu T, Magliery TJ. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. J Mol Biol 2012; 420:384-99. [PMID: 22555051 DOI: 10.1016/j.jmb.2012.04.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/16/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
Understanding the determinants of protein stability remains one of protein science's greatest challenges. There are still no computational solutions that calculate the stability effects of even point mutations with sufficient reliability for practical use. Amino acid substitutions rarely increase the stability of native proteins; hence, large libraries and high-throughput screens or selections are needed to stabilize proteins using directed evolution. Consensus mutations have proven effective for increasing stability, but these mutations are successful only about half the time. We set out to understand why some consensus mutations fail to stabilize, and what criteria might be useful to predict stabilization more accurately. Overall, consensus mutations at more conserved positions were more likely to be stabilizing in our model, triosephosphate isomerase (TIM) from Saccharomyces cerevisiae. However, positions coupled to other sites were more likely not to stabilize upon mutation. Destabilizing mutations could be removed both by removing sites with high statistical correlations to other positions and by removing nearly invariant positions at which "hidden correlations" can occur. Application of these rules resulted in identification of stabilizing mutations in 9 out of 10 positions, and amalgamation of all predicted stabilizing positions resulted in the most stable yeast TIM variant we produced (+8 °C). In contrast, a multimutant with 14 mutations each found to stabilize TIM independently was destabilized by 2 °C. Our results are a practical extension to the consensus concept of protein stabilization, and they further suggest the importance of positional independence in the mechanism of consensus stabilization.
Collapse
Affiliation(s)
- Brandon J Sullivan
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kumar K, Bhargava P, Roy U. Cloning, overexpression and characterization of Leishmania donovani triosephosphate isomerase. Exp Parasitol 2012; 130:430-6. [PMID: 22342510 DOI: 10.1016/j.exppara.2012.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/19/2022]
Abstract
Triosephosphate isomerase (TIM) is a major enzyme in the glycolytic pathway, which catalyzes the interconversion of glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. Here, we report cloning, expression and purification of a catalytically active recombinant TIM of Leishmania donovani (LdTIM). The recombinant LdTIM had a pH optimum in the range of 7.2-9.0, found stable at 25°C for 30 min and K(m) and V(max) for the substrate glyceraldehyde 3-phosphate was 0.328±0.02mM and 10.05mM/min/mg, respectively. The cysteine-reactive agent methylmethane thiosulphonate (MMTS) was used as probe, in order to test its effect on enzyme activity. The MMTS induced 75% enzyme inactivation within 15 min at 250 μM concentration. The biochemical characterization of LdTIM described in this work is the essential step towards deeper understanding of its role in parasite survival. The purification of LdTIM in bioactive form provides important tools for further functional and structural studies.
Collapse
Affiliation(s)
- Kishore Kumar
- Division of Biochemistry, CSIR - Central Drug Research Institute, Lucknow 226001, UP, India
| | | | | |
Collapse
|
28
|
Kurkcuoglu Z, Ural G, Demet Akten E, Doruker P. Blind Dockings of Benzothiazoles to Multiple Receptor Conformations of Triosephosphate Isomerase from Trypanosoma cruzi and Human. Mol Inform 2011; 30:986-95. [PMID: 27468153 DOI: 10.1002/minf.201100109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/12/2011] [Indexed: 11/06/2022]
Abstract
We aim to uncover the binding modes of benzothiazoles, which have been reported as specific inhibitors of triosephosphate isomerase from the parasite Trypanosoma cruzi (TcTIM), by performing blind dockings on both TcTIM and human TIM (hTIM). Detailed analysis of binding sites and specific interactions are carried out based on ensemble dockings to multiple receptor conformers obtained from molecular dynamics simulations. In TcTIM dimer dockings, the inhibitors preferentially bind to the tunnel-shaped cavity formed at the interface of the subunits, whereas non-inhibitors mostly choose other sites. In contrast, TcTIM monomer binding interface and hTIM dimer interface do not present a specific binding site for the inhibitors. These findings point to the importance of the tunnel and of the dimeric form for inhibition of TcTIM. Specific interactions of the inhibitors and their sulfonate-free derivatives with the receptor residues indicate the significance of sulfonate group for binding affinity and positioning on the TcTIM dimer interface. One of the inhibitors also binds to the active site, which may explain its relatively higher inhibition effect on hTIM.
Collapse
Affiliation(s)
- Zeynep Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Gulgun Ural
- Program of Computational Science and Engineering and Polymer Research Center, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - E Demet Akten
- Department of Information Technologies, Kadir Has University, Cibali, 34083, Istanbul, Turkey.
| | - Pemra Doruker
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, 34342, Istanbul, Turkey. .,Program of Computational Science and Engineering and Polymer Research Center, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| |
Collapse
|
29
|
Hall JR, Clow KA, Rise ML, Driedzic WR. Identification and validation of differentially expressed transcripts in a hepatocyte model of cold-induced glycerol production in rainbow smelt (Osmerus mordax). Am J Physiol Regul Integr Comp Physiol 2011; 301:R995-R1010. [DOI: 10.1152/ajpregu.00210.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rainbow smelt ( Osmerus mordax ) avoid freezing by producing antifreeze protein (AFP) and accumulating glycerol. Glyceroneogenesis occurs in liver via a branch in glycolysis and gluconeogenesis and is activated by low temperature. Hepatocytes were isolated from the livers of fish acclimated to 8°C. Cells were incubated at warm (8°C; nonglycerol accumulating) or cold (0.4°C; glycerol accumulating) temperature over a 72-h time course. Reciprocal suppression subtractive hybridization libraries enriched for cold-responsive transcripts were constructed at 72 h. Microarray analyses using a 16K salmonid cDNA array were performed at 24, 48, and 72 h. Expression of type II AFP and 21 carbohydrate, amino acid, or lipid metabolism-related transcripts were validated using quantitative RT-PCR. Type II AFP transcript levels were not directly temperature related. In cold cells, levels of the glucose synthesis transcript were transiently higher. Increased glycerol production was not associated with increased phosphofructokinase or cytosolic glycerol-3-phosphate dehydrogenase transcript levels. Levels of transcripts (phosphoenolpyruvate carboxykinase, mitochondrial malate dehydrogenase, alanine aminotransferase, glutamate dehydrogenase, and aquaglyceroporin 9) associated with mobilization of amino acids to fuel glycerol accumulation were all transiently higher, suggesting a common regulatory mechanism. In cold compared with warm cells, pyruvate dehydrogenase kinase [an inhibitor of pyruvate dehydrogenase (PDH)] transcript levels were 20-fold higher. Potent inhibition of PDH would direct pyruvate and oxaloacetate derived from amino acids to glycerol, as opposed to oxidation via the citric acid cycle. Levels of a transcript potentially encoding glycerol-3-phosphatase, an enzyme not yet characterized in any vertebrate species, were higher following cold incubation. Finally, this study also presents the novel finding of increased glutamine synthetase transcript levels in response to low temperature.
Collapse
Affiliation(s)
- Jennifer R. Hall
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Kathy A. Clow
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Matthew L. Rise
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - William R. Driedzic
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
30
|
Crystal structure of sulfotransferase STF9 from Mycobacterium avium. Mol Cell Biochem 2011; 361:97-104. [PMID: 21959978 DOI: 10.1007/s11010-011-1093-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Sulfotransferases catalyze the sulfate conjugation of a wide variety of endogenous and exogenous molecules. Human pathogenic mycobacteria produce numerous sulfated molecules including sulfolipids which are well related to the virulence of several strains. The genome of Mycobacterium avium encodes eight putative sulfotransferases (stf1, stf4-stf10). Among them, STF9 shows higher similarity to human heparan sulfate 3-O-sulfotransferase isoforms than to the bacterial STs. Here, we determined the crystal structure of sulfotransferase STF9 in complex with a sulfate ion and palmitic acid at a resolution of 2.6 Å. STF9 has a spherical structure utilizing the classical sulfotransferase fold. STF9 exclusively possesses three N-terminal α-helices (α1, α2, α3) parallel to the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) binding motif. The sulfate ion binds to the PAPS binding structural motif and the palmitic acid molecule binds in the deep cleft of the predicted substrate binding site suggesting the nature of endogenous acceptor substrate of STF9 resembles palmitic acid. The substrate binding site is covered by a flexible loop which may have involvement in endogenous substrate recognition. Based on the mutational study (Hossain et al., Mol Cell Biochem 350:155-162; 2011) and structural resemblance of STF9-sulfate ion-palmitic acid complex to the hHS3OST3 complex with PAP (3'-phosphoadenosine-5'-phosphate) and an acceptor sugar chain, Glu170 and Arg96 are appeared to be catalytic residues in STF9 sulfuryl transfer mechanism.
Collapse
|
31
|
Nguyen TN, Abendroth J, Leibly DJ, Le KP, Guo W, Kelley A, Stewart L, Myler PJ, Van Voorhis WC. Structure of triosephosphate isomerase from Cryptosporidium parvum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1095-9. [PMID: 21904056 PMCID: PMC3169408 DOI: 10.1107/s1744309111019178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022]
Abstract
Cryptosporidium parvum is one of several Cryptosporidium spp. that cause the parasitic infection cryptosporidiosis. Cryptosporidiosis is a diarrheal infection that is spread via the fecal-oral route and is commonly caused by contaminated drinking water. Triosephosphate isomerase is an enzyme that is ubiquitous to all organisms that perform glycolysis. Triosephosphate isomerase catalyzes the formation of glyceraldehyde 3-phosphate from dihydroxyacetone phosphate, which is a critical step to ensure the maximum ATP production per glucose molecule. In this paper, the 1.55 Å resolution crystal structure of the open-loop form of triosephosphate isomerase from C. parvum Iowa II is presented. An unidentified electron density was found in the active site.
Collapse
Affiliation(s)
- Trang N. Nguyen
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Box 356423, Seattle, WA 98195-6423, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald BioStructures Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - David J. Leibly
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Box 356423, Seattle, WA 98195-6423, USA
| | - Kristen P. Le
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Box 356423, Seattle, WA 98195-6423, USA
| | - Wenjin Guo
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Seattle Biomed, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Angela Kelley
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Box 356423, Seattle, WA 98195-6423, USA
| | - Lance Stewart
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald BioStructures Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Seattle Biomed, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Box 356423, Seattle, WA 98195-6423, USA
| |
Collapse
|
32
|
Forlemu NY, Njabon EN, Carlson KL, Schmidt ES, Waingeh VF, Thomasson KA. Ionic strength dependence of F-actin and glycolytic enzyme associations: a Brownian dynamics simulations approach. Proteins 2011; 79:2813-27. [PMID: 21905108 DOI: 10.1002/prot.23107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/20/2011] [Accepted: 05/27/2011] [Indexed: 11/09/2022]
Abstract
The association of glycolytic enzymes with F-actin is proposed to be one mechanism by which these enzymes are compartmentalized, and, as a result, may possibly play important roles for: regulation of the glycolytic pathway, potential substrate channeling, and increasing glycolytic flux. Historically, in vitro experiments have shown that many enzyme/actin interactions are dependent on ionic strength. Herein, Brownian dynamics (BD) examines how ionic strength impacts the energetics of the association of F-actin with the glycolytic enzymes: lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase (aldolase), and triose phosphate isomerase (TPI). The BD simulations are steered by electrostatics calculated by Poisson-Boltzmann theory. The BD results confirm experimental observations that the degree of association diminishes as ionic strength increases but also suggest that these interactions are significant, at physiological ionic strengths. Furthermore, BD agrees with experiments that muscle LDH, aldolase, and GAPDH interact significantly with F-actin whereas TPI does not. BD indicates similarities in binding regions for aldolase and LDH among the different species investigated. Furthermore, the residues responsible for salt bridge formation in stable complexes persist as ionic strength increases. This suggests the importance of the residues determined for these binary complexes and specificity of the interactions. That these interactions are conserved across species, and there appears to be a general trend among the enzymes, support the importance of these enzyme-F-actin interactions in creating initial complexes critical for compartmentation.
Collapse
Affiliation(s)
- Neville Y Forlemu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202-9024, USA
| | | | | | | | | | | |
Collapse
|
33
|
Enríquez-Flores S, Rodríguez-Romero A, Hernández-Alcántara G, Oria-Hernández J, Gutiérrez-Castrellón P, Pérez-Hernández G, de la Mora-de la Mora I, Castillo-Villanueva A, García-Torres I, Méndez ST, Gómez-Manzo S, Torres-Arroyo A, López-Velázquez G, Reyes-Vivas H. Determining the molecular mechanism of inactivation by chemical modification of triosephosphate isomerase from the human parasite Giardia lamblia: a study for antiparasitic drug design. Proteins 2011; 79:2711-24. [PMID: 21786322 DOI: 10.1002/prot.23100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/17/2011] [Accepted: 05/27/2011] [Indexed: 11/06/2022]
Abstract
Giardiasis, the most prevalent intestinal parasitosis in humans, is caused by Giardia lamblia. Current drug therapies have adverse effects on the host, and resistant strains against these drugs have been reported, demonstrating an urgent need to design more specific antigiardiasic drugs. ATP production in G. lamblia depends mainly on glycolysis; therefore, all enzymes of this pathway have been proposed as potential drug targets. We previously demonstrated that the glycolytic enzyme triosephosphate isomerase from G. lamblia (GlTIM), could be completely inactivated by low micromolar concentrations of thiol-reactive compounds, whereas, in the same conditions, the activity of human TIM (HuTIM) was almost unaltered. We found that the chemical modification (derivatization) of at least one Cys, of the five Cys residues per monomer in GlTIM, causes this inactivation. In this study, structural and functional studies were performed to describe the molecular mechanism of GlTIM inactivation by thiol-reactive compounds. We found that the Cys222 derivatization is responsible for GlTIM inactivation; this information is relevant because HuTIM has a Cys residue in an equivalent position (Cys217). GlTIM inactivation is associated with a decrease in ligand affinity, which affects the entropic component of ligand binding. In summary, this work describes a mechanism of inactivation that has not been previously reported for TIMs from other parasites and furthermore, we show that the difference in reactivity between the Cys222 in GlTIM and the Cys217 in HuTIM, indicates that the surrounding environment of each Cys residue has unique structural differences that can be exploited to design specific antigiardiasic drugs.
Collapse
Affiliation(s)
- Sergio Enríquez-Flores
- Laboratorio de Bioquímica-Genética, Torre de Investigación, Instituto Nacional de Pediatría, Secretaría de Salud, 04530, México, D.F
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Massive screening yields novel and selective Trypanosoma cruzi triosephosphate isomerase dimer-interface-irreversible inhibitors with anti-trypanosomal activity. Eur J Med Chem 2010; 45:5767-72. [PMID: 20889239 DOI: 10.1016/j.ejmech.2010.09.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/22/2022]
Abstract
Triosephosphate isomerase from Trypanosoma cruzi (TcTIM), an enzyme in the glycolytic pathway that exhibits high catalytic rates of glyceraldehyde-3-phosphate- and dihydroxyacetone-phosphate-isomerization only in its dimeric form, was screened against an in-house chemical library containing nearly 230 compounds belonging to different chemotypes. After secondary screening, twenty-six compounds from eight different chemotypes were identified as screening positives. Four compounds displayed selectivity for TcTIM over TIM from Homo sapiens and, concomitantly, in vitro activity against T. cruzi.
Collapse
|
35
|
Lasserre JP, Sylvius L, Joubert-Caron R, Caron M, Hardouin J. Organellar Protein Complexes of Caco-2 Human Cells Analyzed by Two-Dimensional Blue Native/SDS-PAGE and Mass Spectrometry. J Proteome Res 2010; 9:5093-107. [DOI: 10.1021/pr100381m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean-Paul Lasserre
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Loïk Sylvius
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Raymonde Joubert-Caron
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Michel Caron
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Julie Hardouin
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| |
Collapse
|
36
|
Schmidt ES, Forlemu NY, Njabon EN, Thomasson KA. BD SIMULATIONS OF THE IONIC STRENGTH DEPENDENCE OF THE INTERACTIONS BETWEEN TRIOSE PHOSPHATE ISOMERASE AND F-ACTIN. JOURNAL OF UNDERGRADUATE CHEMISTRY RESEARCH 2010; 9:87-96. [PMID: 24639622 PMCID: PMC3955172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Functional protein-protein interactions are essential for many physiological processes. For example, the association of glycolytic enzymes to F-actin is proposed to be one mechanism through which glycolytic enzymes are compartmentalized, and as a result, play essential roles such as regulation of the glycolytic pathway and increasing glycolytic flux. Many glycolytic enzymes including fructose-1,6-bisphophate aldolase, glyceraldedhye-3-phosphate dehydrogenase, and lactate dehydrogenase bind F-actin strongly. Other glycolytic enzymes including triose phosphate isomerase (TPI) do not interact with F-actin significantly. Herein, Brownian dynamics (BD) simulations determine the energetics of the association of F-actin with the glycolytic enzyme triose phosphate isomerase as a function of ionic strength. This is the first thorough control study examining how well BD reproduces the experimental observations that the binding of TPI to F-actin is very weak and falls off rapidly as ionic strength increases. The BD results confirm experimental observations that the degree of association diminishes as ionic strength increases and that the interaction of TPI with F-actin is weakly nonspecific to nonexistent.
Collapse
|
37
|
Orosz F, Oláh J, Ovádi J. Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1168-74. [PMID: 19786097 DOI: 10.1016/j.bbadis.2009.09.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/16/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
The triosephosphate isomerase (TPI) functions at a metabolic cross-road ensuring the rapid equilibration of the triosephosphates produced by aldolase in glycolysis, which is interconnected to lipid metabolism, to glycerol-3-phosphate shuttle and to the pentose phosphate pathway. The enzyme is a stable homodimer, which is catalytically active only in its dimeric form. TPI deficiency is an autosomal recessive multisystem genetic disease coupled with hemolytic anemia and neurological disorder frequently leading to death in early childhood. Various genetic mutations of this enzyme have been identified; the mutations result in decrease in the catalytic activity and/or the dissociation of the dimers into inactive monomers. The impairment of TPI activity apparently does not affect the energy metabolism at system level; however, it results in accumulation of dihydroxyacetone phosphate followed by its chemical conversion into the toxic methylglyoxal, leading to the formation of advanced glycation end products. By now, the research on this disease seems to enter a progressive stage by adapting new model systems such as Drosophila, yeast strains and TPI-deficient mouse, which have complemented the results obtained by prediction and experiments with recombinant proteins or erythrocytes, and added novel data concerning the complexity of the intracellular behavior of mutant TPIs. This paper reviews the recent studies on the structural and catalytic changes caused by mutation and/or nitrotyrosination of the isomerase leading to the formation of an aggregation-prone protein, a characteristic of conformational disorders.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, Karolina u 29, Hungary.
| | | | | |
Collapse
|
38
|
Swamy M, Molnar E, Bock T, Bausch-Fluck D, Wollscheid B, Schamel WW. Detection of protein complex interactions via a Blue Native-PAGE retardation assay. Anal Biochem 2009; 392:177-9. [DOI: 10.1016/j.ab.2009.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/30/2022]
|
39
|
Gayosso-De-Lucio J, Torres-Valencia M, Rojo-Domínguez A, Nájera-Peña H, Aguirre-López B, Salas-Pacheco J, Avitia-Domínguez C, Téllez-Valencia A. Selective inactivation of triosephosphate isomerase from Trypanosoma cruzi by brevifolin carboxylate derivatives isolated from Geranium bellum Rose. Bioorg Med Chem Lett 2009; 19:5936-9. [PMID: 19733070 DOI: 10.1016/j.bmcl.2009.08.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 02/06/2023]
Abstract
In the search of molecules that can serve as leads in the design of a new drug for the treatment of Chagas' disease, we found that some brevifolin carboxylate derivatives isolated from Geranium bellum Rose, inactivate triosephosphate isomerase from Trypanosoma cruzi (TcTIM) in a species-specific manner. After spectroscopic characterization, these compounds were identified as methylbrevifolin carboxylate (1), ethylbrevifolin carboxylate (2), butylbrevifolin carboxylate (3) and the methylated derivate methyl tri-O-methylbrevifolin carboxylate (4). The concentrations required to inactivate fifty percent the activity of TcTIM were 6.5, 8 and 14 microM of 1, 2 and 3, respectively, while compound 4 had no inhibitory effect. Molecular docking simulations of 1 on the structure of TcTIM showed that residues of both monomers interact with the compound. These compounds are very selective with respect to the parasite enzyme, since they showed no effect on the activity of human TIM at concentrations as high as 1mM. In conclusion, the brevifolin carboxylate derivatives described here are excellent leads in the search of a new chemotherapy for the treatment of this disease.
Collapse
Affiliation(s)
- Juan Gayosso-De-Lucio
- Area Académica de Farmacia, Universidad Autónoma del Estado de Hidalgo, Exhacienda La Concepción, Tilcuautla, Hidalgo 42160, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rodríguez-Almazán C, Arreola R, Rodríguez-Larrea D, Aguirre-López B, de Gómez-Puyou MT, Pérez-Montfort R, Costas M, Gómez-Puyou A, Torres-Larios A. Structural basis of human triosephosphate isomerase deficiency: mutation E104D is related to alterations of a conserved water network at the dimer interface. J Biol Chem 2008; 283:23254-63. [PMID: 18562316 DOI: 10.1074/jbc.m802145200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human triosephosphate isomerase deficiency is a rare autosomal disease that causes premature death of homozygous individuals. The most frequent mutation that leads to this illness is in position 104, which involves a conservative change of a Glu for Asp. Despite the extensive work that has been carried out on the E104D mutant enzyme in hemolysates and whole cells, the molecular basis of this disease is poorly understood. Here, we show that the purified, recombinant mutant enzyme E104D, while exhibiting normal catalytic activity, shows impairments in the formation of active dimers and low thermostability and monomerizes under conditions in which the wild type retains its dimeric form. The crystal structure of the E104D mutant at 1.85 A resolution showed that its global structure was similar to that of the wild type; however, residue 104 is part of a conserved cluster of 10 residues, five from each subunit. An analysis of the available high resolution structures of TIM dimers revealed that this cluster forms a cavity that possesses an elaborate conserved network of buried water molecules that bridge the two subunits. In the E104D mutant, a disruption of contacts of the amino acid side chains in the conserved cluster leads to a perturbation of the water network in which the water-protein and water-water interactions that join the two monomers are significantly weakened and diminished. Thus, the disruption of this solvent system would stand as the underlying cause of the deficiency.
Collapse
Affiliation(s)
- Claudia Rodríguez-Almazán
- Departamento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-243, Mexico City 04510, México
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Degradation of functional triose phosphate isomerase protein underlies sugarkill pathology. Genetics 2008; 179:855-62. [PMID: 18458110 DOI: 10.1534/genetics.108.087551] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Triose phosphate isomerase (TPI) deficiency glycolytic enzymopathy is a progressive neurodegenerative condition that remains poorly understood. The disease is caused exclusively by specific missense mutations affecting the TPI protein and clinically features hemolytic anemia, adult-onset neurological impairment, degeneration, and reduced longevity. TPI has a well-characterized role in glycolysis, catalyzing the isomerization of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P); however, little is known mechanistically about the pathogenesis associated with specific recessive mutations that cause progressive neurodegeneration. Here, we describe key aspects of TPI pathogenesis identified using the TPI(sugarkill) mutation, a Drosophila model of human TPI deficiency. Specifically, we demonstrate that the mutant protein is expressed, capable of forming a homodimer, and is functional. However, the mutant protein is degraded by the 20S proteasome core leading to loss-of-function pathogenesis.
Collapse
|
42
|
Hajduch M, Skalnikova H, Halada P, Vydra D, Dzubak P, Dziechciarkova M, Strnad M, Radioch D, Gadher SJ, Kovarova H. Cyclin-Dependent Kinase Inhibitors and Cancer: Usefulness of Proteomic Approaches in Assessment of the Molecular Mechanisms and Efficacy of Novel Therapeutics. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
43
|
Wong S, Jacobson MP. Conformational selection in silico: loop latching motions and ligand binding in enzymes. Proteins 2008; 71:153-64. [PMID: 17932934 DOI: 10.1002/prot.21666] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ligand binding frequently induces significant conformational changes in a protein receptor. Understanding and predicting such conformational changes represent an important challenge for computational biology, including applications to structure-based drug design. We describe an approach to this problem based on the assumption that the holo state is at least transiently populated in the absence of a ligand; this hypothesis has been referred to as "conformational selection." Here, we apply a method that tests this hypothesis on a challenging class of ligand-induced conformational changes, which we refer to as loop latching: the closing of a loop around an active site that sequesters the ligand from solvent. The method uses a combination of replica exchange molecular dynamics and a loop prediction algorithm to generate low-energy loop structures, and docking to select the conformation appropriate for binding a particular ligand. On a test set of six proteins, it yields loop structures including hololike conformations, generally below 2 A RMSD from the liganded structure, for loops that span up to 15 residues. Docking serves as a stringent test of the predictions. In five of the six cases, the predicted loop conformations improve the ranks of cognate ligands relative to using the apo structure, although the results remain, in most cases, significantly worse than using a holo structure. The poses of the cognate ligands are correct in four of the six test cases, while they are correct for five of the six using a holo structure.
Collapse
Affiliation(s)
- Sergio Wong
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158-2517, USA
| | | |
Collapse
|
44
|
|
45
|
Enriquez-Flores S, Rodriguez-Romero A, Hernandez-Alcantara G, De la Mora-De la Mora I, Gutierrez-Castrellon P, Carvajal K, Lopez-Velazquez G, Reyes-Vivas H. Species-specific inhibition of Giardia lamblia triosephosphate isomerase by localized perturbation of the homodimer. Mol Biochem Parasitol 2007; 157:179-86. [PMID: 18077010 DOI: 10.1016/j.molbiopara.2007.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 10/05/2007] [Accepted: 10/30/2007] [Indexed: 11/18/2022]
Abstract
Giardia lamblia depends on glycolysis to obtain ATP, highlighting the suitability of glycolytic enzymes as targets for drug design. We studied triosephosphate isomerase from G. lamblia (GlTIM) as a potential species-specific drug target. Cysteine-reactive agents were used as probes, in order to test those regions near to cysteine residues as targets to perturb enzyme structure and activity. Methyl methanethiosulfonate (MMTS) derivatized three of the five Cys per subunit of dimeric GlTIM and induced 50% of inactivation. The 2-carboxyethyl methanethiosulfonate (MTSCE) modified four Cys and induced 97% of inactivation. Inactivation by MMTS or MTSCE did not affect secondary structure, nor induce dimer dissociation; however, Cys modification decreased thermal stability of enzyme. Inactivation and dissociation of the dimer to stable monomers were reached when four Cys were derivatized by 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB). The effects of DTNB were completely abolished when GlTIM was first treated with MMTS. The effect of thiol reagents on human TIM was also assayed; it is 180-fold less sensitive than GlTIM. Collectively, the data illustrate GlTIM as a good target for drug design.
Collapse
Affiliation(s)
- Sergio Enriquez-Flores
- Laboratorio de Bioquímica-Genética y Dirección de Investigación, Instituto Nacional de Pediatría, 04530 México, DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pedreschi R, Vanstreels E, Carpentier S, Hertog M, Lammertyn J, Robben J, Noben JP, Swennen R, Vanderleyden J, Nicolaï BM. Proteomic analysis of core breakdown disorder in Conference pears (Pyrus communis L.). Proteomics 2007; 7:2083-99. [PMID: 17566975 DOI: 10.1002/pmic.200600723] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
2-DE was applied to study core breakdown disorder in controlled atmosphere stored 'Conference' pears. This physiological disorder is characterized by internal browning of the fruit tissue and the development of cavities. Suitable protein phenol extraction/ammonium acetate-methanol precipitation and 2-DE protocols for a wide pH range were established for pear tissue. The protein expression profiles of healthy, sound (intact tissue of pears with core breakdown) and brown tissue were analyzed with the univariate non-parametric Kolmogorov-Smirnov test and multivariate statistical techniques such as principal component analysis and partial least square discriminant analysis. Both statistical approaches revealed interesting differentially expressed proteins between healthy and disordered pears. LC-ESI-MS/MS identification of differentially expressed proteins between healthy and sound tissue revealed their participation in the energy metabolism, the antioxidant system and ethylene biosynthesis. Up-regulated characteristic proteins in brown tissue were mainly involved in energy metabolism and defense mechanisms. Proteomics coupled to univariate and multivariate statistical techniques seems to be an efficient approach to get a better insight into the different mechanisms and pathways leading to the core breakdown disorder.
Collapse
Affiliation(s)
- Romina Pedreschi
- BIOSYST-MeBioS Division, Katholieke Universiteit Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rhimi M, Juy M, Aghajari N, Haser R, Bejar S. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis. J Bacteriol 2007; 189:3556-63. [PMID: 17337581 PMCID: PMC1855884 DOI: 10.1128/jb.01826-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The L-arabinose isomerase (L-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 L-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 L-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the L-fucose isomerase and the L-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 L-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 L-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzyme's affinity for L-fucose and decreased the affinity for L-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition.
Collapse
Affiliation(s)
- Moez Rhimi
- Laboratoire d'Enzymes et de Métabolites des Procaryotes, Centre de Biotechnologie de Sfax BP K, 3038 Sfax, Tunisie
| | | | | | | | | |
Collapse
|
48
|
Reyes-Vivas H, Diaz A, Peon J, Mendoza-Hernandez G, Hernandez-Alcantara G, De la Mora-De la Mora I, Enriquez-Flores S, Dominguez-Ramirez L, Lopez-Velazquez G. Disulfide bridges in the mesophilic triosephosphate isomerase from Giardia lamblia are related to oligomerization and activity. J Mol Biol 2006; 365:752-63. [PMID: 17095008 DOI: 10.1016/j.jmb.2006.10.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/12/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022]
Abstract
Triosephosphate isomerase from the mesophile Giardia lamblia (GlTIM) is the only known TIM with natural disulfide bridges. We previously found that oxidized and reduced thiol states of GlTIM are involved in the interconversion between native dimers and higher oligomeric species, and in the regulation of enzymatic activity. Here, we found that trophozoites and cysts have different oligomeric species of GlTIM and complexes of GlTIM with other proteins. Our data indicate that the internal milieu of G. lamblia is favorable for the formation of disulfide bonds. Enzyme mutants of the three most solvent exposed Cys of GlTIM (C202A, C222A, and C228A) were prepared to ascertain their contribution to oligomerization and activity. The data show that the establishment of a disulfide bridge between two C202 of two dimeric GlTIMs accounts for multimerization. In addition, we found that the establishment of an intramonomeric disulfide bond between C222 and C228 abolishes catalysis. Multimerization and inactivation are both reversed by reducing conditions. The 3D structure of the C202A GlTIM was solved at 2.1 A resolution, showing that the environment of the C202 is prone to hydrophobic interactions. Molecular dynamics of an in silico model of GlTIM when the intramonomeric disulfide bond is formed, showed that S216 is displaced 4.6 A from its original position, causing loss of hydrogen bonds with residues of the active-site loop. This suggests that this change perturb the conformational state that aligns the catalytic center with the substrate, inducing enzyme inactivation.
Collapse
Affiliation(s)
- Horacio Reyes-Vivas
- Laboratorio de Bioquimica Genetica, Instituto Nacional de Pediatria, 04530 Mexico, D.F
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Celotto AM, Frank AC, Seigle JL, Palladino MJ. Drosophila model of human inherited triosephosphate isomerase deficiency glycolytic enzymopathy. Genetics 2006; 174:1237-46. [PMID: 16980388 PMCID: PMC1667072 DOI: 10.1534/genetics.106.063206] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Heritable mutations, known as inborn errors of metabolism, cause numerous devastating human diseases, typically as a result of a deficiency in essential metabolic products or the accumulation of toxic intermediates. We have isolated a missense mutation in the Drosophila sugarkill (sgk) gene that causes phenotypes analogous to symptoms of triosephosphate isomerase (TPI) deficiency, a human familial disease, characterized by anaerobic metabolic dysfunction resulting from pathological missense mutations affecting the encoded TPI protein. In Drosophila, the sgk gene encodes the glycolytic enzyme TPI. Our analysis of sgk mutants revealed TPI impairment associated with reduced longevity, progressive locomotor deficiency, and neural degeneration. Biochemical studies demonstrate that mutation of this glycolytic enzyme gene does not result in a bioenergetic deficit, suggesting an alternate cause of enzymopathy associated with TPI impairment.
Collapse
Affiliation(s)
- Alicia M Celotto
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
50
|
Manjasetty BA, Chance MR. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production. J Mol Biol 2006; 360:297-309. [PMID: 16756997 DOI: 10.1016/j.jmb.2006.04.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/12/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 A resolution. The subunit structure of ECAI is organised into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.
Collapse
Affiliation(s)
- Babu A Manjasetty
- New York Structural Genomix Research Consortium, Center for Synchrotron Biosciences, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | |
Collapse
|