1
|
Saotome T, Mezaki T, Brindha S, Unzai S, Martinez JC, Kidokoro SI, Kuroda Y. Thermodynamic Analysis of Point Mutations Inhibiting High-Temperature Reversible Oligomerization of PDZ3. Biophys J 2020; 119:1391-1401. [PMID: 32961107 DOI: 10.1016/j.bpj.2020.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
Abstract
Differential scanning calorimetry (DSC) indicated that PDZ3 undergoes a peculiar thermal denaturation, exhibiting two endothermic peaks because of the formation of reversible oligomers at high temperature (N↔I6↔D). This contrasts sharply with the standard two-state denaturation model observed for small, globular proteins. We performed an alanine scanning analysis by individually mutating three hydrophobic residues at the crystallographic oligomeric interface (Phe340, Leu342, and Ile389) and one away from the interface (Leu349, as a control). DSC analysis indicated that PDZ3-F340A and PDZ3-L342A exhibited a single endothermic peak. Furthermore, PDZ3-L342A underwent a perfect two-state denaturation, as evidenced by the single endothermic peak and confirmed by detailed DSC analysis, including global fitting of data measured at different protein concentrations. Reversible oligomerization (RO) at high temperatures by small globular proteins is a rare event. Furthermore, our present study showing that a point mutation, L342A, designed based on the crystal structure inhibited RO is surprising because RO occurs at a high-temperature. Future studies will determine how and why mutations designed using crystal structures determined at ambient temperatures influence the formation of RO at high temperatures, and whether high-temperature ROs are related to the propensity of proteins to aggregate or precipitate at lower temperatures, which would provide a novel and unique way of controlling protein solubility and aggregation.
Collapse
Affiliation(s)
- Tomonori Saotome
- Department of Biotechnology and Life Science; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Taichi Mezaki
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Jose C Martinez
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Shun-Ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | |
Collapse
|
2
|
Nakamura S, Saotome T, Nakazawa A, Fukuda M, Kuroda Y, Kidokoro SI. Thermodynamics of the Thermal Denaturation of Acid Molten Globule State of Cytochrome c Indicate a Reversible High-Temperature Oligomerization Process. Biochemistry 2017; 56:2372-2378. [DOI: 10.1021/acs.biochem.6b01225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shigeyoshi Nakamura
- Department
of General Education, National Institute of Technology, Ube College, 2-14-1 Tokiwadai, Ube 755-8555, Japan
- Department
of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| | - Tomonori Saotome
- Department
of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-15 Nakamachi, Koganei 184-8588, Japan
| | - Akiko Nakazawa
- Department
of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| | - Masao Fukuda
- Department
of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| | - Yutaka Kuroda
- Department
of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-15 Nakamachi, Koganei 184-8588, Japan
| | - Shun-ichi Kidokoro
- Department
of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| |
Collapse
|
3
|
Saotome T, Nakamura S, Islam MM, Nakazawa A, Dellarole M, Arisaka F, Kidokoro SI, Kuroda Y. Unusual Reversible Oligomerization of Unfolded Dengue Envelope Protein Domain 3 at High Temperatures and Its Abolition by a Point Mutation. Biochemistry 2016; 55:4469-75. [PMID: 27433922 DOI: 10.1021/acs.biochem.6b00431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report differential scanning calorimetry (DSC) experiments between 10 and 120 °C of Dengue 4 envelope protein domain 3 (DEN4 ED3), a small 107-residue monomeric globular protein domain. The thermal unfolding of DEN4 ED3 was fully reversible and exhibited two peculiar endothermic peaks. AUC (analytical ultracentrifugation) experiments at 25 °C indicated that DEN4 ED3 was monomeric. Detailed thermodynamic analysis indicated that the two endothermic peaks separated with an increasing protein concentration, and global fitting of the DSC curves strongly suggested the presence of unfolded tetramers at temperatures around 80-90 °C, which dissociated to unfolded monomers at even higher temperatures. To further characterize this rare thermal unfolding process, we designed and constructed a DEN4 ED3 variant that would unfold according to a two-state model, typical of globular proteins. We thus substituted Val 380, the most buried residue at the dimeric interface in the protein crystal, with less hydrophobic amino acids (Ala, Ser, Thr, Asn, and Lys). All variants showed a single heat absorption peak, typical of small globular proteins. In particular, the DSC thermogram of DEN4 V380K indicated a two-state reversible thermal unfolding independent of protein concentration, indicating that the high-temperature oligomeric state was successfully abolished by a single mutation. These observations confirmed the standard view that small monomeric globular proteins undergo a two-state unfolding. However, the reversible formation of unfolded oligomers at high temperatures is a truly new phenomenon, which was fully inhibited by an accurately designed single mutation.
Collapse
Affiliation(s)
- Tomonori Saotome
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , Tokyo 184-8588, Japan
| | - Shigeyoshi Nakamura
- Department of Bioengineering, Nagaoka University of Technology , Niigata 940-2188, Japan.,Department of Creative Engineering, National Institute of Technology, Kitakyushu College , Kitakyushu 802-0985, Japan
| | - Mohammad M Islam
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , Tokyo 184-8588, Japan
| | - Akiko Nakazawa
- Department of Bioengineering, Nagaoka University of Technology , Niigata 940-2188, Japan
| | - Mariano Dellarole
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université de Montpellier , 34090 Montpellier, France
| | - Fumio Arisaka
- College of Bioresource Science, Nihon University , Fujisawa, Kanagawa 252-0880, Japan
| | - Shun-Ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology , Niigata 940-2188, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , Tokyo 184-8588, Japan
| |
Collapse
|
4
|
Sapienza PJ, Li L, Williams T, Lee AL, Carter CW. An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement without Ordered Ground-State Tertiary Structures. ACS Chem Biol 2016; 11:1661-8. [PMID: 27008438 PMCID: PMC5461432 DOI: 10.1021/acschembio.5b01011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urzymes-short, active core modules derived from enzyme superfamilies-prepared from the two aminoacyl-tRNA synthetase (aaRS) classes contain only the modules shared by all related family members. They have been described as models for ancestral forms. Understanding them currently depends on inferences drawn from the crystal structures of the full-length enzymes. As aaRS Urzymes lack much of the mass of modern aaRS's, retaining only a small portion of the hydrophobic cores of the full-length enzymes, it is desirable to characterize their structures. We report preliminary characterization of (15)N tryptophanyl-tRNA synthetase Urzyme by heteronuclear single quantum coherence (HSQC) NMR spectroscopy supplemented by circular dichroism, thermal melting, and induced fluorescence of bound dye. The limited dispersion of (1)H chemical shifts (0.5 ppm) is inconsistent with a narrow ensemble of well-packed structures in either free or substrate-bound forms, although the number of resonances from the bound state increases, indicating a modest, ligand-dependent gain in structure. Circular dichroism spectroscopy shows the presence of helices and evidence of cold denaturation, and all ligation states induce Sypro Orange fluorescence at ambient temperatures. Although the term "molten globule" is difficult to define precisely, these characteristics are consistent with most such definitions. Active-site titration shows that a majority of molecules retain ∼60% of the transition state stabilization free energy observed in modern synthetases. In contrast to the conventional view that enzymes require stable tertiary structures, we conclude that a highly flexible ground-state ensemble can nevertheless bind tightly to the transition state for amino acid activation.
Collapse
Affiliation(s)
- Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
| | - Li Li
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| | - Tishan Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
| | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| |
Collapse
|
5
|
Expanded monomeric intermediate upon cold and heat unfolding of phosphofructokinase-2 from Escherichia coli. Biophys J 2012. [PMID: 23200052 DOI: 10.1016/j.bpj.2012.09.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Folding studies have been focused mainly on small, single-domain proteins or isolated single domains of larger proteins. However, most of the proteins present in biological systems are composed of multiple domains, and to date, the principles that underlie its folding remain elusive. The unfolding of Pfk-2 induced by GdnHCl has been described by highly cooperative three-state equilibrium (N(2)↔2I↔2U). This is characterized by a strong coupling between the subunits' tertiary structure and the integrity of the dimer interface because "I" represents an unstructured and expanded monomeric intermediate. Here we report that cold and heat unfolding of Pfk-2 resembles the N(2)↔2I step of chemically induced unfolding. Moreover, cold unfolding appears to be as cooperative as that induced chemically and even more so than its heat-unfolding counterpart. Because Pfk-2 is a large homodimer of 66 kDa with a complex topology consisting of well-defined domains, these results are somewhat unexpected considering that cold unfolding has been described as a special kind of perturbation that decouples the cooperative unfolding of several proteins.
Collapse
|
6
|
Abstract
The polyproline type II (PPII) helix is a prevalent conformation in both folded and unfolded proteins, and is known to play important roles in a wide variety of biological processes. Polyproline itself can also form a type I (PPI) helix, which has a disparate conformation. Here, we use derivatives of polyproline, (Pro)10, (Hyp)10, (Flp)10, and (flp)10, where Hyp is (2S,4R)-4-hydroxyproline, Flp is (2S,4R)-4-fluoroproline, and flp is (2S,4S)-4-fluoroproline, to probe for a stereoelectronic effect on the conformation of polyproline. Circular dichroism spectral analyses show that 4R electron-with-drawing substituents stabilize a PPII helix relative to a PPI helix, even in a solvent that favors the PPI conformation, such as n-propanol. The stereochemistry at C4 ordains the relative stability of PPI and PPII helices, as (flp)10 forms a mixture of PPI and PPII helices in water and a PPI helix in n-propanol. The conformational preferences of (Pro)10 are intermediate between those of (Hyp)10/(Flp)10 and (flp)10. Interestingly, PPI helices of (flp)10 exhibit cold denaturation in n-propanol with a value of T(s) near 70 degrees C. Together, these data show that stereoelectronic effects can have a substantial impact on polyproline conformation and provide a rational means to stabilize a PPI or PPII helix.
Collapse
Affiliation(s)
- Jia-Cherng Horng
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | | |
Collapse
|
7
|
Khan JS, Imamoto Y, Kataoka M, Tokunaga F, Terazima M. Time-Resolved Thermodynamics: Heat Capacity Change of Transient Species during Photoreaction of PYP. J Am Chem Soc 2005; 128:1002-8. [PMID: 16417392 DOI: 10.1021/ja055584p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heat capacity changes of short-lived transient species in different time ranges were measured for the first time by using the thermal component of the transient grating and transient lens signals at various temperatures. This method was applied to the transient intermediates of Photoactive Yellow Protein (PYP). The temperature dependence of the enthalpy change shows that the heat capacity of the short-lived intermediate pR2 (also called I1 or PYP(L)) species is the same as that of the ground state (pG) species within our experimental accuracy, whereas that of the long-lived intermediate pB (I2 or PYP(M)) is much larger (2.7 +/- 0.4 kJ/mol K) than that of pG. The larger heat capacity is interpreted in terms of the conformational change of the pB species such as melted conformation and/or exposure of the nonpolar residues to the aqueous phase. This technique can be used for photochemical reactions in general to investigate the conformational change and the hydrophobic interaction in a time domain.
Collapse
Affiliation(s)
- Javaid Shahbaz Khan
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
8
|
Katou H, Hoshino M, Kamikubo H, Batt CA, Goto Y. Native-like beta-hairpin retained in the cold-denatured state of bovine beta-lactoglobulin. J Mol Biol 2001; 310:471-84. [PMID: 11428901 DOI: 10.1006/jmbi.2001.4777] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine beta-lactoglobulin is denatured by increased temperature (heat denaturation) and by decreased temperature (cold-denaturation) in the presence of 4 M urea at pH 2.5. We characterized the structure of the cold-denatured state of beta-lactoglobulin using circular dichroism (CD), small-angle X-ray scattering (SAXS) and heteronuclear nuclear magnetic resonance (NMR). CD and SAXS indicated that the cold-denatured state, in comparison with the highly denatured state induced by urea, is rather compact, retaining some secondary structure, but no tertiary structure. The location of the residual structures in the cold-denatured state and their stability were characterized by 1H/2H exchange combined with heteronuclear NMR. The results indicated that the residues adjacent to the disulfide bond (C106-C119) connecting beta-strands G and H had markedly high protection factors, suggesting the presence of a native-like beta-hairpin stabilized by the disulfide bond. Since this beta-hairpin is conserved between different conformational states, including the kinetic refolding intermediate, it should be of paramount importance for the folding and stability of beta-lactoglobulin. On the other hand, the non-native alpha-helix suggested for the folding intermediate was not detected in the cold-denatured state. The 1H/2H exchange experiments showed that the protection factors of a mixture of the native and cold-denatured states is strongly biased by that of the labile cold-denatured state, consistent with a two-process model of the exchange.
Collapse
Affiliation(s)
- H Katou
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
9
|
Guo Y, Kammerer RA, Engel J. The unusually stable coiled-coil domain of COMP exhibits cold and heat denaturation in 4-6 M guanidinium chloride. Biophys Chem 2000; 85:179-86. [PMID: 10961505 DOI: 10.1016/s0301-4622(00)00119-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A high thermal stability is observed for the five-stranded alpha-helical coiled-coil domain of cartilage oligomeric matrix protein COMP. It does not unfold in non-denaturing buffer between 0 and 100 degrees C and thermal denaturation is only achieved at high concentrations of guanidinium chloride (4-6 M). In these solutions the protein structure is lost at decreasing (cold denaturation) and increasing temperatures (heat denaturation). In the cold denaturation region, the melting profile showed deviations from the theory of Privalov et al. [P.L. Privalov, V. Griko Yu, S. Venyaminov, V.P. Kutyshenko, Cold denaturation of myoglobin, J. Mol. Biol. 190 (1986) 487-498] probably due to deviations from a two-state mechanism. High thermal stability as well as cold and heat denaturation was also observed for a mutant of the coiled-coil domain of COMP in which glutamine 54 was replaced by isoleucine but it still forms pentamer. The melting temperatures in plain buffer for the heat denaturation of COMP coiled-coil domain and its mutant obtained by extrapolation to zero molar guanidinium chloride concentration are approximately 160 and 220 degrees C, respectively, which groups them among the most stable proteins.
Collapse
Affiliation(s)
- Y Guo
- Abteilung fur Biophysikalische Chemie, Biozentrum, Universitat Basel, Switzerland
| | | | | |
Collapse
|
10
|
Boon CL, Chakrabartty A. Nonpolar contributions to conformational specificity in assemblies of designed short helical peptides. Protein Sci 2000; 9:1011-23. [PMID: 10850811 PMCID: PMC2144635 DOI: 10.1110/ps.9.5.1011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A series of designed short helical peptides was used to study the effect of nonpolar interactions on conformational specificity. The consensus sequence was designed to obtain short helices (17 residues) and to minimize the presence of interhelical polar interactions. Furthermore, the sequence contained a heptad repeat (abcdefg), where positions a and d were occupied by hydrophobic residues Leu, Ile, or Val, and positions e and g were occupied by Ala. The peptides were named according to the identities of the residues in the adeg positions, respectively. The peptides llaa, liaa, ilaa, iiaa, ivaa, viaa, lvaa, vlaa, and vvaa were synthesized, and their characterization revealed marked differences in specificity. An experimental methodology was developed to study the nine peptides and their pairwise mixtures. These peptides and their mixtures formed a vast array of structural states, which may be classified as follows: helical tetramers and pentamers, soluble and insoluble helical aggregates, insoluble unstructured aggregates, and soluble unstructured monomers. The peptide liaa formed stable helical pentamers, and iiaa and vlaa formed stable helical tetramers. Disulfide cross-linking experiments indicated the presence of an antiparallel helix alignment in the helical pentamers and tetramers. Rates of amide proton exchange of the tetrameric form of vlaa were 10-fold slower than the calculated exchange rate for unfolded vlaa. In other work, the control of specificity has been attributed to polar interactions, especially buried polar interactions; this work demonstrated that subtle changes in the configuration of nonpolar interactions resulted in a large variation in the extent of conformational specificity of assemblies of designed short helical peptides. Thus, nonpolar interactions can have a significant effect on the conformational specificity of oligomeric short helices.
Collapse
Affiliation(s)
- C L Boon
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Canada
| | | |
Collapse
|
11
|
Kanaya E, Nakajima N, Morikawa K, Okada K, Shimura Y. Characterization of the transcriptional activator CBF1 from Arabidopsis thaliana. Evidence for cold denaturation in regions outside of the DNA binding domain. J Biol Chem 1999; 274:16068-76. [PMID: 10347158 DOI: 10.1074/jbc.274.23.16068] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A transcriptional activator, CBF1, from Arabidopsis thaliana, which has the AP2 domain for DNA binding and regulates the cold acclimation response, was overexpressed in Escherichia coli, purified, and characterized. Analyses of the interaction between CBF1 and the C-repeat/dehydration-responsive element by fluorescence measurement showed that CBF1 binds to C-repeat/dehydration-responsive element as a monomer irrespective of the temperature. CD spectra of the intact and truncated CBF1 proteins (1-213, 41-213, 41-157, and 41-146) were measured to examine the temperature-dependent changes of the secondary structure of CBF1. The results suggested that the CBF1 protein has regions exhibiting reversible cold denaturation in the range between 30 and -5 degrees C and also has a region exhibiting thermal denaturation between 40 and 60 degrees C. This cold denaturation occurred in both the N-terminal and acidic regions. The thermal denaturation occurred in the region encompassing the AP2 domain. The difference between the retention time of CBF1 at 4 degrees C and that at 25 degrees C in gel filtration, and the decrease of the sedimentation coefficient, s20,w, caused by the temperature change from 25 to 3 degrees C, strongly suggested that the cold denaturation was accompanied by the extension of the molecule. The possible cold denaturation observed here might be a physiologically important structural response of CBF1 to cold stress.
Collapse
Affiliation(s)
- E Kanaya
- Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Y Feng
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0343, USA
| | | | | |
Collapse
|
13
|
Abstract
Recently, methods for the analysis and design of water-soluble, oligomeric bundles of alpha helices, including coiled coils, have reached a high level of sophistication. These same methods may now be applied to transmembrane helical bundles. Studies of the transmembrane domains of glycophorin, phospholamban, and the M2 protein from influenza A virus exemplify this general approach.
Collapse
Affiliation(s)
- G R Dieckmann
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania School of Medicine, Philadelphia 19104-6059, USA.
| | | |
Collapse
|
14
|
Andersen NH, Cort JR, Liu Z, Sjoberg SJ, Tong H. Cold Denaturation of Monomeric Peptide Helices. J Am Chem Soc 1996. [DOI: 10.1021/ja961143h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Niels H. Andersen
- Chemistry Department University of Washington Seattle, Washington 98195
| | - John R. Cort
- Chemistry Department University of Washington Seattle, Washington 98195
| | - Zhinhong Liu
- Chemistry Department University of Washington Seattle, Washington 98195
| | - Sandra J. Sjoberg
- Chemistry Department University of Washington Seattle, Washington 98195
| | - Hui Tong
- Chemistry Department University of Washington Seattle, Washington 98195
| |
Collapse
|
15
|
Lacassie E, Delmas A, Meunier C, Sy D, Trudelle Y. High thermal stability and cold-denaturation of an artificial polypeptide. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1996; 48:249-58. [PMID: 8897092 DOI: 10.1111/j.1399-3011.1996.tb00838.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An amphipathic polypeptide, Pn, with a tandemly repeated LKELPEKL sequence including a proline every eight residues, as well as a series of shorter peptides having the same sequence, P2, P3, P4, P5 and P6, were synthesized. Their conformation in aqueous solution was mainly studied by CD. At low temperature, these peptides and polypeptides are completely unordered and undergo a reversible transition leading to a partly alpha-helical structure upon heating. Such behavior has been demonstrated for a few proteins by other authors and has been called cold-denaturation. The transition temperature of the polypeptide is close to 20 degrees C. The conformational change does not depend on concentration, indicating a monomolecular process. The high-temperature structure seems to be compact as for globular proteins. A model of folded structure is proposed from experimental data and from molecular modelling studies.
Collapse
Affiliation(s)
- E Lacassie
- Centre for Molecular Biophysics, Orléans, France
| | | | | | | | | |
Collapse
|
16
|
Abstract
Human plasma apolipoprotein A-2 (apoA-2) is the second major protein of the high-density lipoproteins that mediate the transport and metabolism of cholesterol. Using CD spectroscopy and differential scanning calorimetry, we demonstrate that the structure of lipid-free apoA-2 in neutral low-salt solutions is most stable at approximately 25 degrees C and unfolds reversibly both upon heating and cooling from 25 degrees C. High-temperature unfolding of apoA-2, monitored by far-UV CD, extends from 25-85 degrees C with midpoint Th = 56 +/- 2 degrees C and vant Hoff's enthalpy delta H(Th) = 17 +/- 2 kcal/mol that is substantially lower than the expected enthalpy of melting of the alpha-helical structure. This suggests low-cooperativity apoA-2 unfolding. The apparent free energy of apoA-2 stabilization inferred from the CD analysis of the thermal unfolding, delta G(app)(25 degrees) = 0.82 +/- 0.15 kcal/mol, agrees with the value determined from chemical denaturation. Enhanced low-temperature stability of apoA-2 observed upon increase in Na2HPO4 concentration from 0.3 mM to 50 mM or addition of 10% glycerol may be linked to reduced water activity. The close proximity of the heat and cold unfolding transitions, that is consistent with low delta G(app)(25 degrees), indicates that lipid-free apoA-2 has a substantial hydrophobic core but is only marginally stable under near-physiological solvent conditions. This suggests that in vivo apoA-2 transfer is unlikely to proceed via the lipid-free state. Low delta H(Th) and low apparent delta Cp approximately 0.52 kcal/mol.K inferred from the far-UV CD analysis of apoA-2 unfolding, and absence of tertiary packing interactions involving Tyr groups suggested by near-UV CD, are consistent with a molten globular-like state of lipid-free apoA-2.
Collapse
Affiliation(s)
- O Gursky
- Department of Biophysics, Boston University School of Medicine, Massachusetts 02118, USA.
| | | |
Collapse
|
17
|
Bryson JW, Betz SF, Lu HS, Suich DJ, Zhou HX, O'Neil KT, DeGrado WF. Protein design: a hierarchic approach. Science 1995; 270:935-41. [PMID: 7481798 DOI: 10.1126/science.270.5238.935] [Citation(s) in RCA: 458] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The de novo design of peptides and proteins has recently emerged as an approach for investigating protein structure and function. Designed, helical peptides provide model systems for dissecting and quantifying the multiple interactions that stabilize secondary structure formation. De novo design is also useful for exploring the features that specify the stoichiometry and stability of alpha-helical coiled coils and for defining the requirements for folding into structures that resemble native, functional proteins. The design process often occurs in a series of discrete steps. Such steps reflect the hierarchy of forces required for stabilizing tertiary structures, beginning with hydrophobic forces and adding more specific interactions as required to achieve a unique, functional protein.
Collapse
Affiliation(s)
- J W Bryson
- DuPont Merck Pharmaceutical Company, Wilmington, DE 19880, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Hagihara Y, Oobatake M, Goto Y. Thermal unfolding of tetrameric melittin: comparison with the molten globule state of cytochrome c. Protein Sci 1994; 3:1418-29. [PMID: 7833804 PMCID: PMC2142957 DOI: 10.1002/pro.5560030908] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Whereas melittin at micromolar concentrations is unfolded under conditions of low salt at neutral pH, it transforms to a tetrameric alpha-helical structure under several conditions, such as high peptide concentration, high anion concentration, or alkaline pH. The anion- and pH-dependent stabilization of the tetrameric structure is similar to that of the molten globule state of several acid-denatured proteins, suggesting that tetrameric melittin might be a state similar to the molten globule state. To test this possibility, we studied the thermal unfolding of tetrameric melittin using far-UV CD and differential scanning calorimetry. The latter technique revealed a broad but distinct heat absorption peak. The heat absorption curves were consistent with the unfolding transition observed by CD and were explainable by a 2-state transition mechanism between the tetrameric alpha-helical state and the monomeric unfolded state. From the peptide or salt-concentration dependence of unfolding, the heat capacity change upon unfolding was estimated to be 5 kJ (mol of tetramer)-1 K-1 at 30 degrees C and decreased with increasing temperature. The observed change in heat capacity was much smaller than that predicted from the crystallographic structure (9.2 kJ (mol of tetramer)-1 K-1), suggesting that the hydrophobic residues of tetrameric melittin in solution are exposed in comparison with the crystallographic structure. However, the results also indicate that the structure is more ordered than that of a typical molten globule state. We consider that the conformation is intermediate between the molten globule state and the native state of globular proteins.
Collapse
Affiliation(s)
- Y Hagihara
- Department of Biology, Faculty of Science, Osaka University, Japan
| | | | | |
Collapse
|