1
|
Rejnowicz E, Batchelor M, Leen E, Ahangar MS, Burgess SG, Richards MW, Kalverda AP, Bayliss R. Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. Biochem J 2024; 481:1535-1556. [PMID: 39370942 DOI: 10.1042/bcj20240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.
Collapse
Affiliation(s)
- Ewa Rejnowicz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mohd Syed Ahangar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
2
|
Oktawiec J, Ebrahim OM, Chen Y, Su K, Sharpe C, Rosenmann ND, Barbut C, Weigand SJ, Thompson MP, Byrnes J, Qiao B, Gianneschi NC. Conformational modulation and polymerization-induced folding of proteomimetic peptide brush polymers. Chem Sci 2024:d4sc03420a. [PMID: 39129772 PMCID: PMC11308386 DOI: 10.1039/d4sc03420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Peptide-brush polymers generated by graft-through living polymerization of peptide-modified monomers exhibit high proteolytic stability, therapeutic efficacy, and potential as functional tandem repeat protein mimetics. Prior work has focused on polymers generated from structurally disordered peptides that lack defined conformations. To obtain insight into how the structure of these polymers is influenced by the folding of their peptide sidechains, a set of polymers with varying degrees of polymerization was prepared from peptide monomers that adopt α-helical secondary structure for comparison to those having random coil structures. Circular dichroism and nuclear magnetic resonance spectroscopy confirm the maintenance of the secondary structure of the constituent peptide when polymerized. Small-angle X-ray scattering (SAXS) studies reveal the solution-phase conformation of PLPs in different solvent environments. In particular, X-ray scattering shows that modulation of solvent hydrophobicity, as well as hydrogen bonding patterns of the peptide sidechain, plays an important role in the degree of globularity and conformation of the overall polymer, with polymers of helical peptide brushes showing less spherical compaction in conditions where greater helicity is observed. These structural insights into peptide brush folding and polymer conformation inform the design of these proteomimetic materials with promise for controlling and predicting their artificial fold and morphology.
Collapse
Affiliation(s)
- Julia Oktawiec
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Omar M Ebrahim
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Yu Chen
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Kaylen Su
- Department of Natural Sciences, Baruch College, City University of New York New York NY 10010 USA
| | - Christopher Sharpe
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Nathan D Rosenmann
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Clara Barbut
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Steven J Weigand
- DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center, Northwestern University Argonne IL 60208 USA
| | | | - James Byrnes
- Beamline 16ID, NSLS-II, Brookhaven National Laboratory Upton NY 11973 USA
| | - Baofu Qiao
- Department of Natural Sciences, Baruch College, City University of New York New York NY 10010 USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
- International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Department of Biomedical Engineering, and Department of Pharmacology, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
3
|
Bhatt MR, Ganguly HK, Zondlo NJ. Acyl Capping Group Identity Effects on α-Helicity: On the Importance of Amide·Water Hydrogen Bonds to α-Helix Stability. Biochemistry 2024; 63:1118-1130. [PMID: 38623827 DOI: 10.1021/acs.biochem.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Acyl capping groups stabilize α-helices relative to free N-termini by providing one additional C═Oi···Hi+4-N hydrogen bond. The electronic properties of acyl capping groups might also directly modulate α-helix stability: electron-rich N-terminal acyl groups could stabilize the α-helix by strengthening both i/i + 4 hydrogen bonds and i/i + 1 n → π* interactions. This hypothesis was tested in peptides X-AKAAAAKAAAAKAAGY-NH2, where X = different acyl groups. Surprisingly, the most electron-rich acyl groups (pivaloyl and iso-butyryl) strongly destabilized the α-helix. Moreover, the formyl group induced nearly identical α-helicity to that of the acetyl group, despite being a weaker electron donor for hydrogen bonds and for n → π* interactions. Other acyl groups exhibited intermediate α-helicity. These results indicate that the electronic properties of the acyl carbonyl do not directly determine the α-helicity in peptides in water. In order to understand these effects, DFT calculations were conducted on α-helical peptides. Using implicit solvation, α-helix stability correlated with acyl group electronics, with the pivaloyl group exhibiting closer hydrogen bonds and n → π* interactions, in contrast to the experimental results. However, DFT and MD calculations with explicit water solvation revealed that hydrogen bonding to water was impacted by the sterics of the acyl capping group. Formyl capping groups exhibited the closest water-amide hydrogen bonds, while pivaloyl groups exhibited the longest. In α-helices in the PDB, the highest frequency of close amide-water hydrogen bonds is observed when the N-cap residue is Gly. The combination of experimental and computational results indicates that solvation (hydrogen bonding of water) to the N-terminal amide groups is a central determinant of α-helix stability.
Collapse
Affiliation(s)
- Megh R Bhatt
- Department of Chemistry and Biochemistry, University of Delaware Newark, Delaware 19716, United States
| | - Himal K Ganguly
- Department of Chemistry and Biochemistry, University of Delaware Newark, Delaware 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Zavrtanik U, Medved T, Purič S, Vranken W, Lah J, Hadži S. Leucine Motifs Stabilize Residual Helical Structure in Disordered Proteins. J Mol Biol 2024; 436:168444. [PMID: 38218366 DOI: 10.1016/j.jmb.2024.168444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Many examples are known of regions of intrinsically disordered proteins that fold into α-helices upon binding to their targets. These helical binding motifs (HBMs) can be partially helical also in the unbound state, and this so-called residual structure can affect binding affinity and kinetics. To investigate the underlying mechanisms governing the formation of residual helical structure, we assembled a dataset of experimental helix contents of 65 peptides containing HBM that fold-upon-binding. The average residual helicity is 17% and increases to 60% upon target binding. The helix contents of residual and target-bound structures do not correlate, however the relative location of helix elements in both states shows a strong overlap. Compared to the general disordered regions, HBMs are enriched in amino acids with high helix preference and these residues are typically involved in target binding, explaining the overlap in helix positions. In particular, we find that leucine residues and leucine motifs in HBMs are the major contributors to helix stabilization and target-binding. For the two model peptides, we show that substitution of leucine motifs to other hydrophobic residues (valine or isoleucine) leads to reduction of residual helicity, supporting the role of leucine as helix stabilizer. From the three hydrophobic residues only leucine can efficiently stabilize residual helical structure. We suggest that the high occurrence of leucine motifs and a general preference for leucine at binding interfaces in HBMs can be explained by its unique ability to stabilize helical elements.
Collapse
Affiliation(s)
- Uroš Zavrtanik
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadej Medved
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Samo Purič
- Graduate Study Program, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Wim Vranken
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium; VIB Structural Biology Research Centre, Brussels 1050, Belgium
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Baumann C, Zerbe O. The role of leucine and isoleucine in tuning the hydropathy of class A GPCRs. Proteins 2024; 92:15-23. [PMID: 37497770 DOI: 10.1002/prot.26559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Leucine and Isoleucine are two amino acids that differ only by the positioning of one methyl group. This small difference can have important consequences in α-helices, as the β-branching of Ile results in helix destabilization. We set out to investigate whether there are general trends for the occurrences of Leu and Ile residues in the structures and sequences of class A GPCRs (G protein-coupled receptors). GPCRs are integral membrane proteins in which α-helices span the plasma membrane seven times and which play a crucial role in signal transmission. We found that Leu side chains are generally more exposed at the protein surface than Ile side chains. We explored whether this difference might be attributed to different functions of the two amino acids and tested if Leu tunes the hydrophobicity of the transmembrane domain based on the Wimley-White whole-residue hydrophobicity scales. Leu content decreases the variation in hydropathy between receptors and correlates with the non-Leu receptor hydropathy. Both measures indicate that hydropathy is tuned by Leu. To test this idea further, we generated protein sequences with random amino acid compositions using a simple numerical model, in which hydropathy was tuned by adjusting the number of Leu residues. The model was able to replicate the observations made with class A GPCR sequences. We speculate that the hydropathy of transmembrane domains of class A GPCRs is tuned by Leu (and to some lesser degree by Lys and Val) to facilitate correct insertion into membranes and/or to stably anchor the receptors within membranes.
Collapse
Affiliation(s)
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Hasan MM, Polino AJ, Mukherjee S, Vaupel B, Goldberg DE. The mature N-termini of Plasmodium effector proteins confer specificity of export. mBio 2023; 14:e0121523. [PMID: 37646514 PMCID: PMC10653839 DOI: 10.1128/mbio.01215-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Malaria parasites export hundreds of proteins to the cytoplasm of the host red blood cells for their survival. A five amino acid sequence, called the PEXEL motif, is conserved among many exported proteins and is thought to be a signal for export. However, the motif is cleaved inside the endoplasmic reticulum of the parasite, and mature proteins starting from the fourth PEXEL residue travel to the parasite periphery for export. We showed that the PEXEL motif is dispensable for export as long as identical mature proteins can be efficiently produced via alternative means in the ER. We also showed that the exported and non-exported proteins are differentiated at the parasite periphery based on their mature N-termini; however, any discernible export signal within that region remained cryptic. Our study resolves a longstanding paradox in PEXEL protein trafficking.
Collapse
Affiliation(s)
- Muhammad M. Hasan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander J. Polino
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumit Mukherjee
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Barbara Vaupel
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Rothfuss MT, Becht DC, Zeng B, McClelland LJ, Yates-Hansen C, Bowler BE. High-Accuracy Prediction of Stabilizing Surface Mutations to the Three-Helix Bundle, UBA(1), with EmCAST. J Am Chem Soc 2023; 145:22979-22992. [PMID: 37815921 PMCID: PMC10626973 DOI: 10.1021/jacs.3c04966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The accurate modeling of energetic contributions to protein structure is a fundamental challenge in computational approaches to protein analysis and design. We describe a general computational method, EmCAST (empirical Cα stabilization), to score and optimize the sequence to the structure in proteins. The method relies on an empirical potential derived from the database of the Cα dihedral angle preferences for all possible four-residue sequences, using the data available in the Protein Data Bank. Our method produces stability predictions that naturally correlate one-to-one with the experimental results for solvent-exposed mutation sites. EmCAST predicted four mutations that increased the stability of a three-helix bundle, UBA(1), from 2.4 to 4.8 kcal/mol by optimizing residues in both helices and turns. For a set of eight variants, the predicted and experimental stabilizations correlate very well (R2 = 0.97) with a slope near 1 and with a 0.16 kcal/mol standard error for EmCAST predictions. Tests against literature data for the stability effects of surface-exposed mutations show that EmCAST outperforms the existing stability prediction methods. UBA(1) variants were crystallized to verify and analyze their structures at an atomic resolution. Thermodynamic and kinetic folding experiments were performed to determine the magnitude and mechanism of stabilization. Our method has the potential to enable the rapid, rational optimization of natural proteins, expand the analysis of the sequence/structure relationship, and supplement the existing protein design strategies.
Collapse
Affiliation(s)
- Michael T. Rothfuss
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Dustin C. Becht
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Baisen Zeng
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Levi J. McClelland
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States
| | - Cindee Yates-Hansen
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
8
|
Schweitzer-Stenner R. The relevance of short peptides for an understanding of unfolded and intrinsically disordered proteins. Phys Chem Chem Phys 2023; 25:11908-11933. [PMID: 37096579 DOI: 10.1039/d3cp00483j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Over the last thirty years the unfolded state of proteins has attracted considerable interest owing to the discovery of intrinsically disordered proteins which perform a plethora of functions despite resembling unfolded proteins to a significant extent. Research on both, unfolded and disordered proteins has revealed that their conformational properties can deviate locally from random coil behavior. In this context results from work on short oligopeptides suggest that individual amino acid residues sample the sterically allowed fraction of the Ramachandran plot to a different extent. Alanine has been found to exhibit a peculiarity in that it has a very high propensity for adopting polyproline II like conformations. This Perspectives article reviews work on short peptides aimed at exploring the Ramachandran distributions of amino acid residues in different contexts with experimental and computational means. Based on the thus provided overview the article discussed to what extent short peptides can serve as tools for exploring unfolded and disordered proteins and as benchmarks for the development of a molecular dynamics force field.
Collapse
|
9
|
Sun W, Gregory DA, Zhao X. Designed peptide amphiphiles as scaffolds for tissue engineering. Adv Colloid Interface Sci 2023; 314:102866. [PMID: 36898186 DOI: 10.1016/j.cis.2023.102866] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Peptide amphiphiles (PAs) are peptide-based molecules that contain a peptide sequence as a head group covalently conjugated to a hydrophobic segment, such as lipid tails. They can self-assemble into well-ordered supramolecular nanostructures such as micelles, vesicles, twisted ribbons and nanofibers. In addition, the diversity of natural amino acids gives the possibility to produce PAs with different sequences. These properties along with their biocompatibility, biodegradability and a high resemblance to native extracellular matrix (ECM) have resulted in PAs being considered as ideal scaffold materials for tissue engineering (TE) applications. This review introduces the 20 natural canonical amino acids as building blocks followed by highlighting the three categories of PAs: amphiphilic peptides, lipidated peptide amphiphiles and supramolecular peptide amphiphile conjugates, as well as their design rules that dictate the peptide self-assembly process. Furthermore, 3D bio-fabrication strategies of PAs hydrogels are discussed and the recent advances of PA-based scaffolds in TE with the emphasis on bone, cartilage and neural tissue regeneration both in vitro and in vivo are considered. Finally, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Weizhen Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; Department of Material Science and Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
10
|
Qiu C, Whittaker GR, Gellman SH, Daniel S, Abbott NL. Interactions of SARS-CoV-2 and MERS-CoV fusion peptides measured using single-molecule force methods. Biophys J 2023; 122:646-660. [PMID: 36650897 PMCID: PMC9841730 DOI: 10.1016/j.bpj.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/07/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
We address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide (FP) sequences within coronavirus (CoV) spike proteins. Within the FPs of severe acute respiratory syndrome CoV 2 and Middle East respiratory syndrome CoV (MERS-CoV), a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key role in encoding hydrophobic interactions that drive viral-host cell membrane fusion. Although a non-polar triad (Leu-Leu-Phe (LLF)) is common to both FP1 sequences, and thought to dominate the encoding of hydrophobic interactions, FP1 from SARS-2 and MERS differ in two residues (Phe 2 versus Ala 2 and Asn 9 versus Asp 9, respectively). Here we explore whether single-molecule force measurements can quantify hydrophobic interactions encoded by FP1 sequences, and then ask whether sequence variations between FP1 from SARS-2 and MERS lead to significant differences in hydrophobic interactions. We find that both SARS-2 and MERS wild-type FP1 generate measurable hydrophobic interactions at the single-molecule level, but that SARS-2 FP1 encodes a substantially stronger hydrophobic interaction than its MERS counterpart (1.91 ± 0.03 nN versus 0.68 ± 0.03 nN, respectively). By performing force measurements with FP1 sequences with single amino acid substitutions, we determine that a single-residue mutation (Phe 2 versus Ala 2) causes the almost threefold difference in the hydrophobic interaction strength generated by the FP1 of SARS-2 versus MERS, despite the presence of LLF in both sequences. Infrared spectroscopy and circular dichroism measurements support the proposal that the outsized influence of Phe 2 versus Ala 2 on the hydrophobic interaction arises from variation in the secondary structure adopted by FP1. Overall, these insights reveal how single-residue diversity in viral FPs, including FP1 of SARS-CoV-2 and MERS-CoV, can lead to substantial changes in intermolecular interactions proposed to play a key role in viral fusion, and hint at strategies for regulating hydrophobic interactions of peptides in a range of contexts.
Collapse
Affiliation(s)
- Cindy Qiu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nicholas L Abbott
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
11
|
Broz M, Furlan V, Lešnik S, Jukič M, Bren U. The Effect of the Ala16Val Mutation on the Secondary Structure of the Manganese Superoxide Dismutase Mitochondrial Targeting Sequence. Antioxidants (Basel) 2022; 11:antiox11122348. [PMID: 36552556 PMCID: PMC9774195 DOI: 10.3390/antiox11122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Manganese Superoxide Dismutase (MnSOD) represents a mitochondrial protein that scavenges reactive oxygen species (ROS) responsible for oxidative stress. A known single nucleotide polymorphism (SNP) rs4880 on the SOD2 gene, causing a mutation from alanine to valine (Ala16Val) in the primary structure of immature MnSOD, has been associated with several types of cancer and other autoimmune diseases. However, no conclusive correlation has been established yet. This study aims to determine the effect of the alanine to valine mutation on the secondary structure of the MnSOD mitochondrial targeting sequence (MTS). A model for each variant of the MTS was prepared and extensively simulated with molecular dynamics simulations using the CHARMM36m force field. The results indicate that the alanine variant of the MTS preserves a uniform α-helical secondary structure favorable for the protein transport into mitochondria, whereas the valine variant quickly breaks down its α-helix. Thus, the alanine MTS represents the more active MnSOD variant, the benefits of which have yet to be determined experimentally.
Collapse
Affiliation(s)
- Matic Broz
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Samo Lešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Correspondence:
| |
Collapse
|
12
|
Nacar C. Propensities of Some Amino Acid Pairings in α-Helices Vary with Length. Protein J 2022; 41:551-562. [PMID: 36169766 DOI: 10.1007/s10930-022-10076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
The results of secondary structure prediction methods are widely used in applications in biotechnology and bioinformatics. However, the accuracy limit of these methods could be improved up to 92%. One approach to achieve this goal is to harvest information from the primary structure of the peptide. This study aims to contribute to this goal by investigating the variations in propensity of amino acid pairings to α-helices in globular proteins depending on helix length. (n):(n + 4) residue pairings were determined using a comprehensive peptide data set according to backbone hydrogen bond criterion which states that backbone hydrogen bond is the dominant driving force of protein folding. Helix length is limited to 13 to 26 residues. Findings of this study show that propensities of ALA:GLY and GLY:GLU pairings to α-helix in globular protein increase with increasing helix length but of ALA:ALA and ALA:VAL decrease. While the frequencies of ILE:ALA, LEU:ALA, LEU:GLN, LEU:GLU, LEU:LEU, MET:ILE and VAL:LEU pairings remain roughly constant with length, the 25 residue pairings have varying propensities in narrow helix lengths. The remaining pairings have no prominent propensity to α-helices.
Collapse
Affiliation(s)
- Cevdet Nacar
- Department of Biophysics, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
13
|
Whisenant J, Burgess K. Synthetic helical peptide capping strategies. Chem Soc Rev 2022; 51:5795-5804. [PMID: 35786712 DOI: 10.1039/d1cs01175h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relatively small mimics of interface secondary structures can be used to disrupt protein-protein interactions (PPIs). This strategy is valuable because many PPIs are pivotal in cell biology and contemporary medicinal chemistry. Small peptides tend to have random coil conformations in solution, so the entropy costs are high for them to order into states binding protein receptors. Consequently, peptides constrained in conformations resembling interface secondary structures are favored for enhanced affinities to PPI components. Helices are commonly found at PPI interfaces. The two general strategies that have emerged for imposing helical constraints in probes, capping and stapling, are often confused because both involve formation of macrocyclic rings. This review considers parameters that distinguish capping from stapling. Capping motifs terminate helices and project the adjacent peptide units in non-helical orientations, but stapling enforces helical motifs in ways that enable adjacent peptide fragments to extend helices. There is no evidence that stapling is more effective than capping for helix mimicry, but stapling is used more frequently. This imbalance may be because no strategies have emerged for synthetic C-capping with compact unit; if convenient and effective C-capping strategies were available then capping strategies should be more widely used.
Collapse
Affiliation(s)
- Jonathan Whisenant
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, USA.
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, USA.
| |
Collapse
|
14
|
Hadži S, Lah J. The free energy folding penalty accompanying binding of intrinsically disordered α-helical motifs. Protein Sci 2022; 31:e4370. [PMID: 35762718 PMCID: PMC9202546 DOI: 10.1002/pro.4370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes and preform critical roles in many cellular processes, most often through the association with globular proteins. Despite lacking a stable three-dimensional structure by themselves, they may acquire a defined conformation upon binding globular targets. The most common type of secondary structure acquired by these binding motifs entails formation of an α-helix. It has been hypothesized that such disorder-to-order transitions are associated with a significant free energy penalty due to IDP folding, which reduces the overall IDP-target affinity. However, the exact magnitude of IDP folding penalty in α-helical binding motifs has not been systematically estimated. Here, we report the folding penalty contributions for 30 IDPs undergoing folding-upon-binding and find that the average IDP folding penalty is +2.0 kcal/mol and ranges from 0.7 to 3.5 kcal/mol. We observe that the folding penalty scales approximately linearly with the change in IDP helicity upon binding, which provides a simple empirical way to estimate folding penalty. We analyze to what extent do pre-structuring and target-bound IDP dynamics (fuzziness) reduce the folding penalty and find that these effects combined, on average, reduce the folding cost by around half. Taken together, the presented analysis provides a quantitative basis for understanding the role of folding penalty in IDP-target interactions and introduces a method estimate this quantity. Estimation and reduction of IDP folding penalty may prove useful in the rational design of helix-stabilized inhibitors of IDP-target interactions. STATEMENT: The α-helical binding motifs are ubiquitous among the intrinsically disordered proteins (IDPs). Upon binding their targets, they undergo a disorder-to-order transition, which is accompanied by a significant folding penalty whose magnitude is generally not known. Here, we use recently developed statistical-thermodynamic model to estimate the folding penalties for 30 IDPs and clarify the roles of IDP pre-folding and bound-state dynamics in reducing the folding penalty.
Collapse
Affiliation(s)
- San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljana
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljana
| |
Collapse
|
15
|
Ramírez de Mingo D, Pantoja-Uceda D, Hervás R, Carrión-Vázquez M, Laurents DV. Conformational dynamics in the disordered region of human CPEB3 linked to memory consolidation. BMC Biol 2022; 20:129. [PMID: 35658951 PMCID: PMC9166367 DOI: 10.1186/s12915-022-01310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Current understanding of the molecular basis of memory consolidation points to an important function of amyloid formation by neuronal-specific isoforms of the cytoplasmic polyadenylation element binding (CPEB) protein family. In particular, CPEB is thought to promote memory persistence through formation of self-sustaining prion-like amyloid assemblies at synapses, mediated by its intrinsically disordered region (IDR) and leading to permanent physical alterations at the basis of memory persistence. Although the molecular mechanisms by which amyloid formation takes place in CPEB have been described in invertebrates, the way amyloid formation occurs in the human homolog CPEB3 (hCPEB3) remains unclear. Here, we characterize by NMR spectroscopy the atomic level conformation and ps-ms dynamics of the 426-residue IDR of hCPEB3, which has been associated with episodic memory in humans. Results We show that the 426-residue N-terminal region of hCPEB3 is a dynamic, intrinsically disordered region (IDR) which lacks stable folded structures. The first 29 residues, M1QDDLLMDKSKTQPQPQQQQRQQQQPQP29, adopt a helical + disordered motif, and residues 86–93: P83QQPPPP93, and 166–175: P166PPPAPAPQP175 form polyproline II (PPII) helices. The (VG)5 repeat motif is completely disordered, and residues 200–250 adopt three partially populated α-helices. Residues 345–355, which comprise the nuclear localization signal (NLS), form a modestly populated α-helix which may mediate STAT5B binding. These findings allow us to suggest a model for nascent hCPEB3 structural transitions at single residue resolution, advancing that amyloid breaker residues, like proline, are a key difference between functional versus pathological amyloids. Conclusion Our NMR spectroscopic analysis of hCPEB3 provides insights into the first structural transitions involved in protein–protein and protein-mRNA interactions. The atomic level understanding of these structural transitions involved in hCPEB3 aggregation is a key first step toward understanding memory persistence in humans, as well as sequence features that differentiate beneficial amyloids from pathological ones. Areas Biophysics, Structural Biology, Biochemistry & Neurosciences. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01310-6.
Collapse
|
16
|
Wang H, Wang X, Li J, Li Q, Feng S, Lu L, Wang C, Jiang S. Design of artificial α-helical peptides targeting both gp41 deep pocket and subpocket as potent HIV-1 fusion inhibitors. Eur J Med Chem 2022; 236:114336. [PMID: 35395438 DOI: 10.1016/j.ejmech.2022.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
Abstract
Both the deep pocket region and its neighboring subpocket site on the N-trimer of HIV-1 gp41 protein can serve as targets for the development of HIV-1 entry inhibitors. Pocket-binding domain (PBD)-containing peptides with the potential to inhibit HIV-1 fusion through targeting the deep pocket have been extensively exploited. However, using an artificial peptide strategy, we herein report the design of α-helical lipopeptides with non-native protein sequences as HIV-1 fusion inhibitors that can occupy both gp41 deep cavity and subpocket sites. The most active compound, PP24C, inhibited HIV-1 replication, including T20-resistant HIV-1 mutants, at low nanomolar level. Biophysical approaches revealed that both the artificial α-helical peptide P35A4 and its cholesterol-tagged peptide PP24C could bind to T21 peptide used as a target surrogate comprising both pockets. Our study offers a new template for the design of artificial anti-HIV-1 therapeutics and highlights the novel concept of peptide secondary structure-based virus fusion inhibitors.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China
| | - Jiahui Li
- Key Laboratory of Structure-based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
17
|
Dhayalan B, Glidden MD, Zaykov AN, Chen YS, Yang Y, Phillips NB, Ismail-Beigi F, Jarosinski MA, DiMarchi RD, Weiss MA. Peptide Model of the Mutant Proinsulin Syndrome. I. Design and Clinical Correlation. Front Endocrinol (Lausanne) 2022; 13:821069. [PMID: 35299972 PMCID: PMC8922534 DOI: 10.3389/fendo.2022.821069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
The mutant proinsulin syndrome is a monogenic cause of diabetes mellitus due to toxic misfolding of insulin's biosynthetic precursor. Also designated mutant INS-gene induced diabetes of the young (MIDY), this syndrome defines molecular determinants of foldability in the endoplasmic reticulum (ER) of β-cells. Here, we describe a peptide model of a key proinsulin folding intermediate and variants containing representative clinical mutations; the latter perturb invariant core sites in native proinsulin (LeuB15→Pro, LeuA16→Pro, and PheB24→Ser). The studies exploited a 49-residue single-chain synthetic precursor (designated DesDi), previously shown to optimize in vitro efficiency of disulfide pairing. Parent and variant peptides contain a single disulfide bridge (cystine B19-A20) to provide a model of proinsulin's first oxidative folding intermediate. The peptides were characterized by circular dichroism and redox stability in relation to effects of the mutations on (a) in vitro foldability of the corresponding insulin analogs and (b) ER stress induced in cell culture on expression of the corresponding variant proinsulins. Striking correlations were observed between peptide biophysical properties, degree of ER stress and age of diabetes onset (neonatal or adolescent). Our findings suggest that age of onset reflects the extent to which nascent structure is destabilized in proinsulin's putative folding nucleus. We envisage that such peptide models will enable high-resolution structural studies of key folding determinants and in turn permit molecular dissection of phenotype-genotype relationships in this monogenic diabetes syndrome. Our companion study (next article in this issue) employs two-dimensional heteronuclear NMR spectroscopy to define site-specific perturbations in the variant peptides.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael D. Glidden
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nelson B. Phillips
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Mark A. Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Bellavita R, Maione A, Merlino F, Siciliano A, Dardano P, De Stefano L, Galdiero S, Galdiero E, Grieco P, Falanga A. Antifungal and Antibiofilm Activity of Cyclic Temporin L Peptide Analogues against Albicans and Non-Albicans Candida Species. Pharmaceutics 2022; 14:pharmaceutics14020454. [PMID: 35214187 PMCID: PMC8877061 DOI: 10.3390/pharmaceutics14020454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
Temporins are one of the largest families of antimicrobial peptides with both anti-inflammatory and antimicrobial activity. Herein, for a panel of cyclic temporin L isoform analogues, the antifungal and antibiofilm activities were determined against representative Candida strains, including C. albicans, C. glabrata, C. auris, C. parapsilosis and C. tropicalis. The outcomes indicated a significant anti-candida activity against planktonic and biofilm growth for four peptides (3, 7, 15 and 16). The absence of toxicity up to high concentrations and survival after infection were assessed in vivo by using Galleria mellonella larvae, and the correlation between conformation and cytotoxicity was investigated by fluorescence assays and circular dichroism (CD). By combining fluorescence spectroscopy, CD, dynamic light scattering, confocal and atomic force microscopy, the mode of action of four analogues was hypothesized. The results pinpointed that peptide 3 emerged as a non-toxic compound showing a potent antibiofilm activity and represents a promising compound for biomedical applications.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy; (R.B.); (F.M.); (S.G.)
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.S.)
| | - Francesco Merlino
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy; (R.B.); (F.M.); (S.G.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.S.)
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy; (P.D.); (L.D.S.)
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy; (P.D.); (L.D.S.)
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy; (R.B.); (F.M.); (S.G.)
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.S.)
- Correspondence: (E.G.); (P.G.); (A.F.); Tel.: +39-081-679182 (E.G.); +39-081-678620 (P.G.); +39-081-2534503 (A.F.)
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy; (R.B.); (F.M.); (S.G.)
- Correspondence: (E.G.); (P.G.); (A.F.); Tel.: +39-081-679182 (E.G.); +39-081-678620 (P.G.); +39-081-2534503 (A.F.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples ‘Federico II’, Via Università 100, 80055 Portici, Italy
- Correspondence: (E.G.); (P.G.); (A.F.); Tel.: +39-081-679182 (E.G.); +39-081-678620 (P.G.); +39-081-2534503 (A.F.)
| |
Collapse
|
19
|
Rani L, Mallajosyula SS. Site-Specific Stabilization and Destabilization of α Helical Peptides upon Phosphorylation and O-GlcNAcylation. J Phys Chem B 2021; 125:13444-13459. [PMID: 34870441 DOI: 10.1021/acs.jpcb.1c09419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Helices (α-helix) are the most common type of secondary structure motif present in proteins. In this study, we have investigated the structural influence of phosphorylation and O-GlcNAcylation, common intracellular post-translational modifications (PTMs), on the α-helical conformation. The simulation studies were performed on the Baldwin model α-helical peptide sequence (Ac-AKAAAAKAAAAKAA-NH2). The Baldwin sequences were chosen due to the availability of site-specific experimental post-translational data for cross-validation with the simulations. The influence of PTMs was examined across the span of the α-helix, namely, at the N-terminus, position 10 (interior region), and the C-terminus for both serine and threonine residues placed at these positions. Molecular dynamics (MD) simulations revealed that phosphorylation and O-GlcNAcylation at the N-terminus lead to the stabilization of the helical conformation. PTMs in the interior or the C-terminus were found to disrupt helicity, with the disruption being more pronounced for PTMs in the interior region, in accordance with experimental studies. It was found that phosphorylation-derived destabilization was mainly due to the formation of an intraresidue HN-PO32- electrostatic interaction and interactions between the phosphate group and the side chain of adjacent lysine residues (NH3···PO32-). Hydrophobic and steric clashes were the main causes of destabilization in the case of O-GlcNAcylation. The structural disruptions were found to be more pronounced for PTM at the threonine site when compared to the serine site. The salt-bridge-dependent stability of the α-helix was found to be highly position specific, an i → i + 4 interaction stabilizing the helix, with other placements leading to the destabilization of the helix.
Collapse
Affiliation(s)
- Lata Rani
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sairam S Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
20
|
Residual Helicity at the Active Site of the Histidine Phosphocarrier, HPr, Modulates Binding Affinity to Its Natural Partners. Int J Mol Sci 2021; 22:ijms221910805. [PMID: 34639146 PMCID: PMC8509676 DOI: 10.3390/ijms221910805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. The first proteins in the cascade are common to all organisms (EI and HPr). The active site of HPr involves a histidine (His15) located immediately before the beginning of the first α-helix. The regulator of sigma D (Rsd) protein also binds to HPr. The region of HPr comprising residues Gly9-Ala30 (HPr9–30), involving the first α-helix (Ala16-Thr27) and the preceding active site loop, binds to both the N-terminal region of EI and intact Rsd. HPr9–30 is mainly disordered. We attempted to improve the affinity of HPr9–30 to both proteins by mutating its sequence to increase its helicity. We designed peptides that led to a marginally larger population in solution of the helical structure of HPr9–30. Molecular simulations also suggested a modest increment in the helical population of mutants, when compared to the wild-type. The mutants, however, were bound with a less favorable affinity than the wild-type to both the N-terminal of EI (EIN) or Rsd, as tested by isothermal titration calorimetry and fluorescence. Furthermore, mutants showed lower antibacterial properties against Staphylococcus aureus than the wild-type peptide. Therefore, we concluded that in HPr, a compromise between binding to its partners and residual structure at the active site must exist to carry out its function.
Collapse
|
21
|
Dhayalan B, Chatterjee D, Chen YS, Weiss MA. Structural Lessons From the Mutant Proinsulin Syndrome. Front Endocrinol (Lausanne) 2021; 12:754693. [PMID: 34659132 PMCID: PMC8514764 DOI: 10.3389/fendo.2021.754693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Insight into folding mechanisms of proinsulin has been provided by analysis of dominant diabetes-associated mutations in the human insulin gene (INS). Such mutations cause pancreatic β-cell dysfunction due to toxic misfolding of a mutant proinsulin and impairment in trans of wild-type insulin secretion. Anticipated by the "Akita" mouse (a classical model of monogenic diabetes mellitus; DM), this syndrome illustrates the paradigm endoreticulum (ER) stress leading to intracellular proteotoxicity. Diverse clinical mutations directly or indirectly perturb native disulfide pairing leading to protein misfolding and aberrant aggregation. Although most introduce or remove a cysteine (Cys; leading in either case to an unpaired thiol group), non-Cys-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the hormone's evolution has been constrained not only by structure-function relationships, but also by the susceptibility of its single-chain precursor to impaired foldability. An intriguing hypothesis posits that INS overexpression in response to peripheral insulin resistance likewise leads to chronic ER stress and β-cell dysfunction in the natural history of non-syndromic Type 2 DM. Cryptic contributions of conserved residues to folding efficiency, as uncovered by rare genetic variants, define molecular links between biophysical principles and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge of non-foldability provides a key determinant of "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
| | | | | | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Aguilar-Pineda GE, Olivares-Quiroz L. Catalytic and binding sites prediction in globular proteins through discrete Markov chains and network centrality measures. Phys Biol 2021; 18. [PMID: 34433159 DOI: 10.1088/1478-3975/ac211b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022]
Abstract
In this work we use a discrete Markov chain approach combined with network centrality measures to identify and predict the location of active sites in globular proteins. To accomplish this, we use a three-dimensional network of proteinCαatoms as nodes connected through weighted edges which represent the varying interaction degree between protein's atoms. We compute the mean first passage time matrixH= {Hji} for this Markov chain and evaluate the averaged number of steps ⟨Hj⟩ to reach single nodenjin order to identify such residues that, on the average, are at the least distant from every other node. We also carry out a graph theory analysis to evaluate closeness centralityCc, betweenness centralityCband eigenvector centralityCemeasures which provide relevant information about the connectivity structure and topology of theCαprotein networks. Finally we also performed an analysis of equivalent random and regular networks of the same sizeNin terms of the average path lengthLand the average clustering coefficient⟨C⟩comparing these with the corresponding values forCαprotein networks. Our results show that the mean-first passage time matrixHand its related quantity ⟨Hj⟩ together withCc,CbandCecan not only predict with relative high accuracy the location of active sites in globular proteins but also exhibit a high feasibility to use them to predict the existence of new regions in protein's structure to identify new potential binding or catalytic activity or, in some cases, the presence of new allosteric pathways.
Collapse
Affiliation(s)
- Gabriel E Aguilar-Pineda
- Departamento de Fisica, Universidad Autónoma de la Ciudad de México (UACM), Campus Centro Histórico, CP 06080, Mexico City, Mexico
| | - L Olivares-Quiroz
- Departamento de Física and Posgrado en Ciencias de la Complejidad, Universidad Autónoma de la Ciudad de México (UACM), CP 09760, Mexico City, Mexico.,Centro de Ciencias de la Complejidad C3 (UNAM), Circuito Centro Cultural S/N Cd. Universitaria, CP 04510, Mexico City, Mexico
| |
Collapse
|
23
|
Banerjee R, Sheet T, Banerjee S, Biondi B, Formaggio F, Toniolo C, Peggion C. C α-Methyl-l-valine: A Preferential Choice over α-Aminoisobutyric Acid for Designing Right-Handed α-Helical Scaffolds. Biochemistry 2021; 60:2704-2714. [PMID: 34463474 DOI: 10.1021/acs.biochem.1c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In synthetic peptides containing Gly and coded α-amino acids, one of the most common practices to enhance their helical extent is to incorporate a large number of l-Ala residues along with noncoded, strongly foldameric α-aminoisobutyric acid (Aib) units. Earlier studies have established that Aib-based peptides, with propensity for both the 310- and α-helices, have a tendency to form ordered three-dimensional structure that is much stronger than that exhibited by their l-Ala rich counterparts. However, the achiral nature of Aib induces an inherent, equal preference for the right- and left-handed helical conformations as found in Aib homopeptide stretches. This property poses challenges in the analysis of a model peptide helical conformation based on chirospectroscopic techniques like electronic circular dichroism (ECD), a very important tool for assigning secondary structures. To overcome such ambiguity, we have synthesized and investigated a thermally stable 14-mer peptide in which each of the Aib residues of our previously designed and reported analogue ABGY (where B stands for Aib) is replaced by Cα-methyl-l-valine (L-AMV). Analysis of the results described here from complementary ECD and 1H nuclear magnetic resonance spectroscopic techniques in a variety of environments firmly establishes that the L-AMV-containing peptide exhibits a significantly stronger preference compared to that of its Aib parent in terms of conferring α-helical character. Furthermore, being a chiral α-amino acid, L-AMV shows an intrinsic, extremely strong bias for a quite specific (right-handed) screw sense. These findings emphasize the relevance of L-AMV as a more appropriate unit for the design of right-handed α-helical peptide models that may be utilized as conformationally constrained scaffolds.
Collapse
Affiliation(s)
| | | | | | - Barbara Biondi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.,Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.,Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Claudio Toniolo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.,Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.,Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| |
Collapse
|
24
|
The sequence-ensemble relationship in fuzzy protein complexes. Proc Natl Acad Sci U S A 2021; 118:2020562118. [PMID: 34504009 DOI: 10.1073/pnas.2020562118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) interact with globular proteins through a variety of mechanisms, resulting in the structurally heterogeneous ensembles known as fuzzy complexes. While there exists a reasonable comprehension on how IDP sequence determines the unbound IDP ensemble, little is known about what shapes the structural characteristics of IDPs bound to their targets. Using a statistical thermodynamic model, we show that the target-bound ensembles are determined by a simple code that combines the IDP sequence and the distribution of IDP-target interaction hotspots. These two parameters define the conformational space of target-bound IDPs and rationalize the observed structural heterogeneity of fuzzy complexes. The presented model successfully reproduces the dynamical signatures of target-bound IDPs from the NMR relaxation experiments as well as the changes of interaction affinity and the IDP helicity induced by mutations. The model explains how the target-bound IDP ensemble adapts to mutations in order to achieve an optimal balance between conformational freedom and interaction energy. Taken together, the presented sequence-ensemble relationship of fuzzy complexes explains the different manifestations of IDP disorder in folding-upon-binding processes.
Collapse
|
25
|
Roesner S, Beadle JD, Tam LKB, Wilkening I, Clarkson GJ, Raubo P, Shipman M. Development of oxetane modified building blocks for peptide synthesis. Org Biomol Chem 2021; 18:5400-5405. [PMID: 32618315 DOI: 10.1039/d0ob01208d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and use of oxetane modified dipeptide building blocks in solution and solid-phase peptide synthesis (SPPS) is reported. The preparation of building blocks containing non-glycine residues at the N-terminus in a stereochemically controlled manner is challenging. Here, a practical 4-step route to such building blocks is demonstrated, through the synthesis of dipeptides containing contiguous alanine residues. The incorporation of these new derivatives at specific sites along the backbone of an alanine-rich peptide sequence containing eighteen amino acids is demonstrated via solid-phase peptide synthesis. Additionally, new methods to enable the incorporation of all 20 of the proteinogenic amino acids into such dipeptide building blocks are reported through modifications of the synthetic route (for Cys and Met) and by changes to the protecting group strategy (for His, Ser and Thr).
Collapse
Affiliation(s)
- Stefan Roesner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Jonathan D Beadle
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Leo K B Tam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Ina Wilkening
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Piotr Raubo
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Michael Shipman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
26
|
Dawson WM, Martin FJO, Rhys GG, Shelley KL, Brady RL, Woolfson DN. Coiled coils 9-to-5: rational de novo design of α-helical barrels with tunable oligomeric states. Chem Sci 2021; 12:6923-6928. [PMID: 34745518 PMCID: PMC8503928 DOI: 10.1039/d1sc00460c] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
The rational design of linear peptides that assemble controllably and predictably in water is challenging. Short sequences must encode unique target structures and avoid alternative states. However, the non-covalent forces that stabilize and discriminate between states are weak. Nonetheless, for α-helical coiled-coil assemblies considerable progress has been made in rational de novo design. In these, sequence repeats of nominally hydrophobic (h) and polar (p) residues, hpphppp, direct the assembly of amphipathic helices into dimeric to tetrameric bundles. Expanding this pattern to hpphhph can produce larger α-helical barrels. Here, we show that pentameric to nonameric barrels are accessed by varying the residue at one of the h sites. In peptides with four L/I-K-E-I-A-x-Z repeats, decreasing the size of Z from threonine to serine to alanine to glycine gives progressively larger oligomers. X-ray crystal structures of the resulting α-helical barrels rationalize this: side chains at Z point directly into the helical interfaces, and smaller residues allow closer helix contacts and larger assemblies.
Collapse
Affiliation(s)
- William M Dawson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Freddie J O Martin
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Guto G Rhys
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Kathryn L Shelley
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - R Leo Brady
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
- Bristol BioDesign Institute, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| |
Collapse
|
27
|
Length Dependent Folding Kinetics of Alanine-Based Helical Peptides from Optimal Dimensionality Reduction. Life (Basel) 2021; 11:life11050385. [PMID: 33923197 PMCID: PMC8170890 DOI: 10.3390/life11050385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/23/2023] Open
Abstract
We present a computer simulation study of helix folding in alanine homopeptides (ALA)n of length n = 5, 8, 15, and 21 residues. Based on multi-microsecond molecular dynamics simulations at room temperature, we found helix populations and relaxation times increasing from about 6% and ~2 ns for ALA5 to about 60% and ~500 ns for ALA21, and folding free energies decreasing linearly with the increasing number of residues. The helix folding was analyzed with the Optimal Dimensionality Reduction method, yielding coarse-grained kinetic models that provided a detailed representation of the folding process. The shorter peptides, ALA5 and ALA8, tended to convert directly from coil to helix, while ALA15 and ALA21 traveled through several intermediates. Coarse-grained aggregate states representing the helix, coil, and intermediates were heterogeneous, encompassing multiple peptide conformations. The folding involved multiple pathways and interesting intermediate states were present on the folding paths, with partially formed helices, turns, and compact coils. Statistically, helix initiation was favored at both termini, and the helix was most stable in the central region. Importantly, we found the presence of underlying universal local dynamics in helical peptides with correlated transitions for neighboring hydrogen bonds. Overall, the structural and dynamical parameters extracted from the trajectories are in good agreement with experimental observables, providing microscopic insights into the complex helix folding kinetics.
Collapse
|
28
|
Dhayalan B, Chatterjee D, Chen YS, Weiss MA. Diabetes mellitus due to toxic misfolding of proinsulin variants. Mol Metab 2021:101229. [PMID: 33823319 DOI: 10.1016/j.molmet.2021.101229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dominant mutations in the human insulin gene (INS) lead to pancreatic β-cell dysfunction and diabetes mellitus (DM) due to toxic misfolding of a mutant proinsulin. Analogous to a classical mouse model of monogenic DM ("Akita"), this syndrome highlights the susceptibility of β-cells to endoreticulum (ER) stress due to protein misfolding and aberrant aggregation. SCOPE OF REVIEW Diverse clinical mutations directly or indirectly perturb native disulfide pairing. Whereas most introduce or remove a cysteine (Cys; leading in either case to an unpaired thiol group), non-Cys-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the hormone's evolution has been constrained not only by structure-function relationships but also by the susceptibility of its single-chain precursor to impaired foldability. An intriguing hypothesis posits that INS overexpression in response to peripheral insulin resistance likewise leads to chronic ER stress and β-cell dysfunction in the natural history of nonsyndromic Type 2 DM. MAJOR CONCLUSIONS Cryptic contributions of conserved residues to folding efficiency, as uncovered by rare genetic variants, define molecular links between biophysical principles and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge of nonfoldability provides a key determinant of "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Pazo M, Salluce G, Lostalé-Seijo I, Juanes M, Gonzalez F, Garcia-Fandiño R, Montenegro J. Short oligoalanine helical peptides for supramolecular nanopore assembly and protein cytosolic delivery. RSC Chem Biol 2021; 2:503-512. [PMID: 34458796 PMCID: PMC8341679 DOI: 10.1039/d0cb00103a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/07/2020] [Indexed: 01/09/2023] Open
Abstract
In this work we report a rational design strategy for the identification of new peptide prototypes for the non-disruptive supramolecular permeation of membranes and the transport of different macromolecular giant cargos. The approach targets a maximal enhancement of helicity in the presence of membranes with sequences bearing the minimal number of cationic and hydrophobic moieties. The here reported folding enhancement in membranes allowed the selective non-lytic translocation of different macromolecular cargos including giant proteins. The transport of different high molecular weight polymers and functional proteins was demonstrated in vesicles and in cells with excellent efficiency and optimal viability. As a proof of concept, functional monoclonal antibodies were transported for the first time into different cell lines and cornea tissues by exploiting the helical control of a short peptide sequence. This work introduces a rational design strategy that can be employed to minimize the number of charges and hydrophobic residues of short peptide carriers to achieve non-destructive transient membrane permeation and transport of different macromolecules. The helical enhancement of a short oligoalanine peptide scaffold in anionic membranes triggered the supramolecular assembly of a nanopore, which allowed the transport and release of proteins in the cytosol of cells and tissues.![]()
Collapse
Affiliation(s)
- Marta Pazo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Giulia Salluce
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Francisco Gonzalez
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) and Service of Ophthalmology, Complejo Hospitalario Universitario de Santiago 15706 Santiago de Compostela Spain
| | - Rebeca Garcia-Fandiño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
30
|
Glycine rich segments adopt polyproline II helices: Implications for biomolecular condensate formation. Arch Biochem Biophys 2021; 704:108867. [PMID: 33794191 DOI: 10.1016/j.abb.2021.108867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022]
Abstract
Many intrinsically disordered proteins contain Gly-rich regions which are generally assumed to be disordered. Such regions often form biomolecular condensates which play essential roles in organizing cellular processes. However, the bases of their formation and stability are still not completely understood. Based on NMR studies of the Gly-rich H. harveyi "snow flea" antifreeze protein, we recently proposed that Gly-rich sequences, such as the third "RGG" region of Fused in Sarcoma (FUS) protein, may adopt polyproline II helices whose association might stabilize condensates. Here, this hypothesis is tested with a polypeptide corresponding to the third RGG region of FUS. NMR spectroscopy and molecular dynamics simulations suggest that significant populations of polyproline II helix are present. These findings are corroborated in a model peptide Ac-RGGYGGRGGWGGRGGY-NH2, where a peak characteristic of polyproline II helix is observed using CD spectroscopy. Its intensity suggests a polyproline II population of 40%. This result is supported by data from FTIR and NMR spectroscopies. In the latter, NOE correlations are observed between the Tyr and Arg, and Arg and Trp side chain hydrogens, confirming that side chains spaced three residues apart are close in space. Taken together, the data are consistent with a polyproline II helix, which is bent to optimize interactions between guanidinium and aromatic moieties, in equilibrium with a statistical coil ensemble. These results lend credence to the hypothesis that Gly-rich segments of disordered proteins may form polyproline II helices which help stabilize biomolecular condensates.
Collapse
|
31
|
Besenius P, Zengerling L, Kemper B, Hellmich UA. Synthesis and Structural Stability of α-Helical Gold(I)-Metallopeptidesy. Synlett 2021. [DOI: 10.1055/a-1290-8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe synthesis of hexa- and dodecapeptides functionalized with two Au(I)–phosphine complexes is reported. The high stability of the Au(I)–phosphine bond allowed orthogonal peptide-protecting-group chemistry, even when using hard Lewis acids like boron tribromide. This enabled the preparation of an Fmoc-protected lysine derivative carrying the Au(I) complex in a side chain, which was used in standard Fmoc-based solid-phase peptide synthesis protocols. Alanine and leucine repeats in the metallododecapeptide formed α-helical secondary structures in 2,2,2-trifluoroethanol–H2O and 1,1,1,3,3,3-hexafluoroisopropanol–H2O mixtures with high thermal stability, as shown by temperature-dependent CD spectroscopy studies.
Collapse
Affiliation(s)
- Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz
| | | | - Benedict Kemper
- Department of Chemistry, Johannes Gutenberg-University Mainz
| | - Ute A. Hellmich
- Department of Chemistry, Johannes Gutenberg-University Mainz
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt
| |
Collapse
|
32
|
Ferguson JA, Sun X, Dyson HJ, Wright PE. Thermodynamic Stability and Aggregation Kinetics of EF Helix and EF Loop Variants of Transthyretin. Biochemistry 2021; 60:756-764. [PMID: 33645214 DOI: 10.1021/acs.biochem.1c00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Misfolding and aggregation of transthyretin (TTR) are linked to amyloid disease. Amyloidosis occurs when the TTR homotetramer dissociates into aggregation-prone monomers that self-assemble into amyloid. In familial transthyretin amyloidosis, hereditary amino acid substitutions destabilize TTR and promote aggregation. In this work, we used 19F nuclear magnetic resonance (NMR) to determine the effect of mutations in the EF helix (Y78F, K80D, K80E, and A81T) and EF loop (G83R and I84S) on the aggregation kinetics and stability of the TTR tetramer and monomer. The EF region acts as a scaffold that stabilizes interactions in both the strong and weak dimer interfaces of the tetramer and is the site of a cluster of pathogenic mutations. K80D and K80E are non-natural mutants that destabilize the EF helix and yield an equilibrium mixture of tetramer and monomer at neutral pH, providing a unique opportunity to determine the thermodynamic parameters for tetramer assembly under nondenaturing conditions. Of the pathogenic mutants studied, only A81T formed appreciable monomer at neutral pH. Real-time 19F NMR measurements showed that the pathogenic Y78F mutation accelerates aggregation by destabilizing both the tetrameric and monomeric species. The pathogenic mutations A81T, G83R, and I84S destabilize the monomer and increase its aggregation rate by disrupting a Schellman helix C-capping motif. These studies provide new insights into the mechanism by which relatively subtle mutations that affect tetramer or monomer stability promote entry of TTR into the dissociation-aggregation pathway.
Collapse
|
33
|
Jaiswal G, Yaduvanshi S, Kumar V. A potential peptide inhibitor of SARS-CoV-2 S and human ACE2 complex. J Biomol Struct Dyn 2021; 40:6671-6681. [PMID: 33645443 PMCID: PMC7938657 DOI: 10.1080/07391102.2021.1889665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The disease COVID-19 has caused heavy socio-economic burden and there is immediate need to control it. The disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The viral entry into human cell depends on the attachment of spike (S) protein via its receptor binding domain (RBD) to human cell receptor angiotensin-converting enzyme 2 (hACE2). Thus, blocking the virus attachment to hACE2 could serve as potential therapeutics for viral infection. We have designed a peptide inhibitor (ΔABP-α2) targeting the RBD of S protein using in-silico approach. Docking studies and computed affinities suggested that peptide inhibitor binds at the RBD with ∼95-fold higher affinity than hACE2. Molecular dynamics (MD) simulation confirms the stable binding of inhibitor to hACE2. Immunoinformatics studies suggest non-immunogenic and non-toxic nature of peptide. Thus, the proposed peptide could serve as potential blocker for viral attachment. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Grijesh Jaiswal
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Shivani Yaduvanshi
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Veerendra Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, India
| |
Collapse
|
34
|
Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Commun Biol 2021; 4:197. [PMID: 33580154 PMCID: PMC7881012 DOI: 10.1038/s42003-021-01736-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
In light of the recent accumulated knowledge on SARS-CoV-2 and its mode of human cells invasion, the binding of viral spike glycoprotein to human Angiotensin Converting Enzyme 2 (hACE2) receptor plays a central role in cell entry. We designed a series of peptides mimicking the N-terminal helix of hACE2 protein which contains most of the contacting residues at the binding site, exhibiting a high helical folding propensity in aqueous solution. Our best peptide-mimics are able to block SARS-CoV-2 human pulmonary cell infection with an inhibitory concentration (IC50) in the nanomolar range upon binding to the virus spike protein with high affinity. These first-in-class blocking peptide mimics represent powerful tools that might be used in prophylactic and therapeutic approaches to fight the coronavirus disease 2019 (COVID-19). Karoyan et al. present a method to inhibit SARS-CoV-2 by means of a peptide-mimic approach. They design a series of peptides mimicking the N-terminal helix of hACE2 protein and their best peptide-mimic blocks SARS-CoV-2 human pulmonary cell infection with an IC50 in nanomolar range.
Collapse
|
35
|
Structural and Energetic Characterization of the Denatured State from the Perspectives of Peptides, the Coil Library, and Intrinsically Disordered Proteins. Molecules 2021; 26:molecules26030634. [PMID: 33530506 PMCID: PMC7865441 DOI: 10.3390/molecules26030634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 01/10/2023] Open
Abstract
The α and polyproline II (PPII) basins are the two most populated regions of the Ramachandran map when constructed from the protein coil library, a widely used denatured state model built from the segments of irregular structure found in the Protein Data Bank. This indicates the α and PPII conformations are dominant components of the ensembles of denatured structures that exist in solution for biological proteins, an observation supported in part by structural studies of short, and thus unfolded, peptides. Although intrinsic conformational propensities have been determined experimentally for the common amino acids in short peptides, and estimated from surveys of the protein coil library, the ability of these intrinsic conformational propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs), an increasingly important class of proteins in cell function, has thus far proven elusive to establish. Recently, we demonstrated that the sequence dependence of the mean hydrodynamic size of IDPs in water and the impact of heat on the coil dimensions, provide access to both the sequence dependence and thermodynamic energies that are associated with biases for the α and PPII backbone conformations. Here, we compare results from peptide-based studies of intrinsic conformational propensities and surveys of the protein coil library to those of the sequence-based analysis of heat effects on IDP hydrodynamic size, showing that a common structural and thermodynamic description of the protein denatured state is obtained.
Collapse
|
36
|
Jiang Y, Zhang W, Yang F, Wan C, Cai X, Liu J, Zhang Q, Li Z, Han W. Molecular design of stapled pentapeptides as building blocks of self-assembled coiled coil-like fibers. SCIENCE ADVANCES 2021; 7:eabd0492. [PMID: 33523941 PMCID: PMC10662664 DOI: 10.1126/sciadv.abd0492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Peptide self-assembly inspired by natural superhelical coiled coils has been actively pursued but remains challenging due to limited helicity of short peptides. Side chain stapling can strengthen short helices but is unexplored in design of self-assembled helical nanofibers as it is unknown how staples could be adapted to coiled coil architecture. Here, we demonstrate the feasibility of this design for pentapeptides using a computational method capable of predicting helicity and fiber-forming tendency of stapled peptides containing noncoded amino acids. Experiments showed that the best candidates, which carried an aromatically substituted staple and phenylalanine analogs, displayed exceptional helicity and assembled into nanofibers via specific head-to-tail hydrogen bonding and packing between staple and noncoded side chains. The fibers exhibited sheet-of-helix structures resembling the recently found collapsed coiled coils whose formation was sensitive to side chain flexibility. This study expands the chemical space of coiled coil assemblies and provides guidance for their design.
Collapse
Affiliation(s)
- Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen Key Laboratory of Functional Polymer, Shenzhen 518055, China
| | - Wan Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang Cai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jianbo Liu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen Key Laboratory of Functional Polymer, Shenzhen 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| |
Collapse
|
37
|
Araujo NA, Bruix M, Laurents DV. Disorder and partial folding in the regulatory subunit hinge region of Trypanosoma brucei protein kinase A: The C-linker portion inhibits the parasite's protein kinase A. Arch Biochem Biophys 2020; 698:108731. [PMID: 33359563 DOI: 10.1016/j.abb.2020.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022]
Abstract
Microbial pathogens, such as Trypanosoma brucei, have an enormous impact on global health and economic systems. Protein kinase A of T. brucei is an attractive drug target as it is an essential enzyme which differs significantly from its human homolog. The hinge region of this protein's regulatory domain is vital for enzymatic function, but its conformation is unknown. Here, the secondary structure of this region has been characterized using NMR and CD spectroscopies. More specifically, three overlapping peptides corresponding to residues T187-I211, G198-Y223 and V220-S245 called peptide 1, peptide 2 and peptide 3, respectively, were studied. The peptide 1 and peptide 2 are chiefly unfolded; only low populations (<10%) of α-helix were detected under the conditions studied. In contrast, the peptide 3 contains a long α-helix whose population is significantly higher; namely, 36% under the conditions studied. Utilizing the dihedral φ and ψ angles calculated on the basis of the NMR data, the conformation of the peptide 3 was calculated and revealed an α-helix spanning residues E230-N241. This α-helix showed amphiphilicity and reversible unfolding and refolding upon heating and cooling. Most fascinating, however, is its capacity to inhibit the activity of the catalytic domain of Trypanosoma equiperdum protein kinase A even though it is quite distinct from the canonical inhibitor motif. Based on this property, we advance that peptoids based on the peptide 3 α-helix could be novel leads for developing anti-trypanosomal therapeutics.
Collapse
Affiliation(s)
- Nelson A Araujo
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Valle de Sartenejas, Baruta, Caracas, 1081-A, Venezuela.
| | - Marta Bruix
- Departamento de Química Física Biológica, Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Douglas V Laurents
- Departamento de Química Física Biológica, Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
38
|
Tombling BJ, Lammi C, Lawrence N, Gilding EK, Grazioso G, Craik DJ, Wang CK. Bioactive Cyclization Optimizes the Affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Peptide Inhibitor. J Med Chem 2020; 64:2523-2533. [PMID: 33356222 DOI: 10.1021/acs.jmedchem.0c01766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptides are regarded as promising next-generation therapeutics. However, an analysis of over 1000 bioactive peptide candidates suggests that many have underdeveloped affinities and could benefit from cyclization using a bridging linker sequence. Until now, the primary focus has been on the use of inert peptide linkers. Here, we show that affinity can be significantly improved by enriching the linker with functional amino acids. We engineered a peptide inhibitor of PCSK9, a target for clinical management of hypercholesterolemia, to demonstrate this concept. Cyclization linker optimization from library screening produced a cyclic peptide with ∼100-fold improved activity over the parent peptide and efficiently restored low-density lipoprotein (LDL) receptor levels and cleared extracellular LDL. The linker forms favorable interactions with PCSK9 as evidenced by thermodynamics, structure-activity relationship (SAR), NMR, and molecular dynamics (MD) studies. This PCSK9 inhibitor is one of many peptides that could benefit from bioactive cyclization, a strategy that is amenable to broad application in pharmaceutical design.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
39
|
Ripstein ZA, Vahidi S, Rubinstein JL, Kay LE. A pH-Dependent Conformational Switch Controls N. meningitidis ClpP Protease Function. J Am Chem Soc 2020; 142:20519-20523. [PMID: 33232135 DOI: 10.1021/jacs.0c09474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
ClpPs are a conserved family of serine proteases that collaborate with ATP-dependent translocases to degrade protein substrates. Drugs targeting these enzymes have attracted interest for the treatment of cancer and bacterial infections due to their critical role in mitochondrial and bacterial proteostasis, respectively. As such, there is significant interest in understanding structure-function relationships in this protein family. ClpPs are known to crystallize in extended, compact, and compressed forms; however, it is unclear what conditions favor the formation of each form and whether they are populated by wild-type enzymes in solution. Here, we use cryo-EM and solution NMR spectroscopy to demonstrate that a pH-dependent conformational switch controls an equilibrium between the active extended and inactive compressed forms of ClpP from the Gram-negative pathogen Neisseria meningitidis. Our findings provide insight into how ClpPs exploit their rugged energy landscapes to enable key conformational changes that regulate their function.
Collapse
Affiliation(s)
- Zev A Ripstein
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Siavash Vahidi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lewis E Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
40
|
|
41
|
Paik B, Calero-Rubio C, Lee JY, Jia X, Kiick KL, Roberts CJ. Characterizing aggregate growth and morphology of alanine-rich polypeptides as a function of sequence chemistry and solution temperature from scattering, spectroscopy, and microscopy. Biophys Chem 2020; 267:106481. [PMID: 33035751 DOI: 10.1016/j.bpc.2020.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
The aggregation behavior and stability of a series of alanine-rich peptides, which are included as components of peptide-polymer conjugates, were characterized using a combination of biophysical techniques. Light scattering techniques were used to monitor changes in peptide morphology and size distributions as a function of time and temperature. The results show large particles immediately upon dissolution in buffer. At room temperature, these particles relaxed to reach a mostly monomeric peptide state, while at higher temperatures, they grew to form aggregates. Circular dichroism spectroscopy (CD) was used to monitor temperature- and time-dependent conformational changes as a function of peptide sequence and incubation time. CD measurements reveal that all of the sequences are helical at low temperatures with transitions to non-helical conformation with increased temperature. Samples incubated at room temperature were able to recover their original helicity. At increased temperature, the shorter and longer peptide sequences showed notable changes in conformation, and were not able to recover their original helicity after 72 h. After incubation for up to one week, β-sheet conformations were observed in these two cases, while only α-helical conformation loss was observed for the peptide of intermediate molecular weight. Transmission electron microscopy measurements reveal the formation of fibrils after 72 h of incubation at 60 °C for all samples, in agreement with the scattering measurements. Additional quenching experiments show that peptide aggregation can be stalled when solutions are cooled to room temperature.
Collapse
Affiliation(s)
- Bradford Paik
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America
| | - Cesar Calero-Rubio
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Jee Young Lee
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America
| | - Xinqiao Jia
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America
| | - Kristi L Kiick
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America.
| | - Christopher J Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States of America.
| |
Collapse
|
42
|
Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213418] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Stylianakis I, Shalev A, Scheiner S, Sigalas MP, Arkin IT, Glykos N, Kolocouris A. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide. J Comput Chem 2020; 41:2177-2188. [PMID: 32735736 DOI: 10.1002/jcc.26381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25 ). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25 . DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25 . This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25 . Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariella Shalev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Michael P Sigalas
- Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Nikolas Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
44
|
Kammari R, Topp EM. Effects of Secondary Structure on Solid-State Hydrogen–Deuterium Exchange in Model α-Helix and β-Sheet Peptides. Mol Pharm 2020; 17:3501-3512. [DOI: 10.1021/acs.molpharmaceut.0c00521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rajashekar Kammari
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Elizabeth M. Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- National Institute for Bioprocessing Research and Training, Belfield, Blackrock, Co., Dublin A94 X099, Ireland
| |
Collapse
|
45
|
Nagao S, Suda A, Kobayashi H, Shibata N, Higuchi Y, Hirota S. Thermodynamic Control of Domain Swapping by Modulating the Helical Propensity in the Hinge Region of Myoglobin. Chem Asian J 2020; 15:1743-1749. [DOI: 10.1002/asia.202000307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Satoshi Nagao
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
- Present address: Graduate School of Life ScienceUniversity of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Ayaka Suda
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Hisashi Kobayashi
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Naoki Shibata
- Graduate School of Life ScienceUniversity of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Yoshiki Higuchi
- Graduate School of Life ScienceUniversity of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Shun Hirota
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| |
Collapse
|
46
|
Biswas S, Mallik BS. Aqueous hydroxyl group as the vibrational probe to access the hydrophobicity of amide derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Bhatt Mitra J, Sharma VK, Mukherjee A, Garcia Sakai V, Dash A, Kumar M. Ubiquicidin-Derived Peptides Selectively Interact with the Anionic Phospholipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:397-408. [PMID: 31793791 DOI: 10.1021/acs.langmuir.9b03243] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ubiquicidin (UBI)/ribosomal protein S30 (RS30) is an intracellular protein with antimicrobial activities against various pathogens. UBI (29-41) and UBI (31-38) are two crucial peptides derived from Ubiquicidin, which have shown potential as infection imaging probes. Here, we report the interactions of UBI-derived peptides with anionic and zwitterionic phospholipid membranes. Our isothermal titration calorimetry results show that both peptides selectively interact with the anionic phospholipid membrane (a model bacterial membrane) and reside mainly on the membrane surface. The interaction of UBI-derived peptides with the anionic phospholipid membrane is exothermic and driven by both enthalpy (ΔH) and entropy (ΔS), with the entropic term TΔS being greater than ΔH. This large entropic term can be a result of the aggregation of the anionic vesicles, which is confirmed by dynamic light scattering (DLS) measurements. DLS data show that vesicle aggregation is enhanced with increasing peptide-to-lipid molar ratios (P/L) and is found to be more pronounced in the case of UBI (29-41). DLS results are found to be consistent with independent transmission measurements. To study the effects of UBI-derived peptides on the microscopic dynamics of the model bacterial membrane, quasielastic neutron scattering (QENS) measurements have been carried out. The QENS results show that both peptides restrict the lateral motion of the lipid within the leaflet. UBI (29-41) acts as a stronger stiffening agent, hindering the lateral diffusion of lipids more efficiently than UBI (31-38). To our knowledge, this is the first report illustrating the mechanism of interaction of UBI-derived peptides with model membranes. This study also has implications for the improvement and design of antimicrobial peptide-based infection imaging probes.
Collapse
Affiliation(s)
| | | | - Archana Mukherjee
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - V Garcia Sakai
- ISIS Facility, Science and Technology Facilities Council , Rutherford Appleton Laboratory , Didcot OX11 0QX , U.K
| | - Ashutosh Dash
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - Mukesh Kumar
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| |
Collapse
|
48
|
Pantoja-Uceda D, Oroz J, Fernández C, de Alba E, Giraldo R, Laurents DV. Conformational Priming of RepA-WH1 for Functional Amyloid Conversion Detected by NMR Spectroscopy. Structure 2020; 28:336-347.e4. [PMID: 31918960 DOI: 10.1016/j.str.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
How proteins with a stable globular fold acquire the amyloid state is still largely unknown. RepA, a versatile plasmidic DNA binding protein from Pseudomonas savastanoi, is functional as a transcriptional repressor or as an initiator or inhibitor of DNA replication, the latter via assembly of an amyloidogenic oligomer. Its N-terminal domain (WH1) is responsible for discrimination between these functional abilities by undergoing insufficiently understood structural changes. RepA-WH1 is a stable dimer whose conformational dynamics had not been explored. Here, we have studied it through NMR {1H}-15N relaxation and H/D exchange kinetics measurements. The N- and the C-terminal α-helices, and the internal amyloidogenic loop, are partially unfolded in solution. S4-indigo, a small inhibitor of RepA-WH1 amyloidogenesis, binds to and tethers the N-terminal α-helix to a β-hairpin that is involved in dimerization, thus providing evidence for a priming role of fraying ends and dimerization switches in the amyloidogenesis of folded proteins.
Collapse
Affiliation(s)
- David Pantoja-Uceda
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Javier Oroz
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Cristina Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Eva de Alba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
49
|
Jayawant ES, Beadle JD, Wilkening I, Raubo P, Shipman M, Notman R, Dixon AM. Impact of oxetane incorporation on the structure and stability of alpha-helical peptides. Phys Chem Chem Phys 2020; 22:25075-25083. [DOI: 10.1039/d0cp03818k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here we reveal the tolerance of oxetane modification within alpha helical peptides using a combined molecular dynamics and experimental biophysics approach.
Collapse
Affiliation(s)
| | | | - Ina Wilkening
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - Piotr Raubo
- Medicinal Chemistry
- Research and Early Development
- Oncology R&D
- AstraZeneca
- Cambridge
| | | | | | - Ann M. Dixon
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| |
Collapse
|
50
|
In silico Approach to Elucidate Factors Associated with GH1 β-Glucosidase Thermostability. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|