1
|
Schweitzer-Stenner R. Probing the versatility of cytochrome c by spectroscopic means: A Laudatio on resonance Raman spectroscopy. J Inorg Biochem 2024; 259:112641. [PMID: 38901065 DOI: 10.1016/j.jinorgbio.2024.112641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Over the last 50 years resonance Raman spectroscopy has become an invaluable tool for the exploration of chromophores in biological macromolecules. Among them, heme proteins and metal complexes have attracted considerable attention. This interest results from the fact that resonance Raman spectroscopy probes the vibrational dynamics of these chromophores without direct interference from the surrounding. However, the indirect influence via through-bond and through-space chromophore-protein interactions can be conveniently probed and analyzed. This review article illustrates this point by focusing on class 1 cytochrome c, a comparatively simple heme protein generally known as electron carrier in mitochondria. The article demonstrates how through selective excitation of resonance Raman active modes information about the ligation, the redox state and the spin state of the heme iron can be obtained from band positions in the Raman spectra. The investigation of intensities and depolarization ratios emerged as tools for the analysis of in-plane and out-of-plane deformations of the heme macrocycle. The article further shows how resonance Raman spectroscopy was used to characterize partially unfolded states of oxidized cytochrome c. Finally, it describes its use for exploring structural changes due to the protein's binding to anionic surfaces like cardiolipin containing membranes.
Collapse
|
2
|
Redox state changes of mitochondrial cytochromes in brain and breast cancers by Raman spectroscopy and imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
3
|
Hirota S, Chiu CL, Chang CJ, Lo PH, Chen T, Yang H, Yamanaka M, Mashima T, Xie C, Masuhara H, Sugiyama T. Structural region essential for amyloid fibril formation in cytochrome c elucidated by optical trapping. Chem Commun (Camb) 2022; 58:12839-12842. [DOI: 10.1039/d2cc04647d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amyloid fibril formation of cytochrome c is spatially and temporally controlled by the optical trapping method, identifying that the structural change in the region containing Ala83 is essential for the amyloid fibril formation.
Collapse
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Chun-Liang Chiu
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Chieh-Ju Chang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Pei-Hua Lo
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Tien Chen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Hongxu Yang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Cheng Xie
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Teruki Sugiyama
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| |
Collapse
|
4
|
Hniopek J, Bocklitz T, Schmitt M, Popp J. Probing Protein Secondary Structure Influence on Active Centers with Hetero Two-Dimensional Correlation (Resonance) Raman Spectroscopy: A Demonstration on Cytochrome C. APPLIED SPECTROSCOPY 2021; 75:1043-1052. [PMID: 34242104 PMCID: PMC8320570 DOI: 10.1177/00037028211028916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The functionality of active centers in proteins is governed by the secondary and higher structure of proteins which often lead to structures in the active center that are different from the structures found in protein-free models of the active center. To elucidate this structure-function relationship, it is therefore necessary to investigate both the protein structure and the local structure of the active center. In this work, we investigate the application of hetero (resonance) Raman two-dimensional correlation spectroscopy (2D-COS) to this problem. By employing a combination of near-infrared-Fourier transform-Raman- and vis-resonance Raman spectroscopy, we could show that this combination of techniques is able to directly probe the structure-function relationship of proteins. We were able to correlate the transition of the heme center in cytochrome c from low to high spin with changes in the secondary structure with the above mentioned two spectroscopic in situ techniques and without sample preparation. Thereby, we were able to reveal that the combination of a spectroscopic method to selectively observe the active center with a technique that monitors the whole system offers a promising toolkit to investigate the structure-function relationship of proteins with photoactive centers in general.
Collapse
Affiliation(s)
- Julian Hniopek
- Department of Spectroscopy/Imaging, Leibniz-Institute of Photonic Technologies, Jena, Germany
- Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Bocklitz
- Department of Spectroscopy/Imaging, Leibniz-Institute of Photonic Technologies, Jena, Germany
- Department of Photonic Data Science, Leibniz-Institute of Photonic Technologies, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen Popp
- Department of Spectroscopy/Imaging, Leibniz-Institute of Photonic Technologies, Jena, Germany
- Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Diz V, Bieza SA, Oviedo Rouco S, Estrin DA, Murgida DH, Bari SE. Reactivity of inorganic sulfide species towards a pentacoordinated heme model system. J Inorg Biochem 2021; 220:111459. [PMID: 33894504 DOI: 10.1016/j.jinorgbio.2021.111459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The reactivity of inorganic sulfide towards ferric bis(N-acetyl)- microperoxidase 11 in sodium dodecyl sulfate has been explored by means of visible absorption and resonance Raman spectroscopies. The reaction has been previously studied in buffered solutions at neutral pH and in the presence of excess sulfide, revealing the formation of a moderately stable hexacoordinated low spin ferric sulfide complex that yields the ferrous form in the hour's timescale. In the surfactant solution, instead, the ferrous form is rapidly formed. The spectroscopic characterization of the heme structure in the surfactant milieu revealed the stabilization of a major ferric mono-histidyl high spin heme, which may be ascribed to out of plane distortions prompting the detachment of the axially ligated water molecule, thus leading to a differential reactivity. The ferric bis(N-acetyl)- microperoxidase 11 in sodium dodecyl sulfate provides a model for pentacoordinated heme platforms with an imidazole-based ligand.
Collapse
Affiliation(s)
- Virginia Diz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Silvina A Bieza
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Santiago Oviedo Rouco
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Darío A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Daniel H Murgida
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Zhang J, Ge W, Yu Q. Structural evaluation of cytochrome c by Raman spectroscopy and its relationship with apoptosis and protein degradation in postmortem bovine muscle. Food Chem 2021; 362:130189. [PMID: 34087710 DOI: 10.1016/j.foodchem.2021.130189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/29/2021] [Accepted: 05/23/2021] [Indexed: 11/25/2022]
Abstract
Structural changes of cytochrome c and its relationship with apoptosis and protein degradation of bovine muscle during postmortem aging were investigated. Results from amide I and amide II ~ VI showed that the π* orbital d electron decreased, the π electron density increased, and the frequency of the C-N stretching vibration increased. The distance between heme Fe and N atoms of the porphyrin decreased, the bond length decreased, and the heme core size decreased. Besides, Fe ligand vibration related Raman bands of cytochrome c had red (right) shift gradually with the extension of aging. The apoptotic rate and the degradation products of desmin and troponin-T were increased (P < 0.05). Correlation analysis results suggested that Fe ligand vibration, not amide I ~ VI related Raman bands were correlated with cytochrome c mediated apoptosis and degradation of myofibrillar protein of bovine muscle during aging.
Collapse
Affiliation(s)
- Jiaying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Refolding kinetics of cytochrome c studied with microsecond timescale continuous-flow UV–vis spectroscopy and rapid freeze-quench EPR. J Inorg Biochem 2018; 184:42-49. [DOI: 10.1016/j.jinorgbio.2018.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022]
|
8
|
Chertkova RV, Brazhe NA, Bryantseva TV, Nekrasov AN, Dolgikh DA, Yusipovich AI, Sosnovtseva O, Maksimov GV, Rubin AB, Kirpichnikov MP. New insight into the mechanism of mitochondrial cytochrome c function. PLoS One 2017; 12:e0178280. [PMID: 28562658 PMCID: PMC5451065 DOI: 10.1371/journal.pone.0178280] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
We investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the analysis of informational structure (ANIS), we propose a model of functioning of cytochrome c. According to this model, conformational rearrangements of the P76GTKMIFA83 loop fragment have a significant effect on conformational mobility of the heme. It is suggested that the conformational mobility of cytochrome c heme is responsible for its optimal orientation with respect to electron donor and acceptor within ubiquinol–cytochrome c oxidoreductase (complex III) and cytochrome c oxidase (complex IV), respectively, thus, ensuring electron transfer from complex III to complex IV. To validate the model, we design several mutant variants of horse cytochrome c with multiple substitutions of amino acid residues in the P76GTKMIFA83 sequence that reduce its ability to undergo conformational rearrangements. With this, we study the succinate–cytochrome c reductase and cytochrome c oxidase activities of rat liver mitoplasts in the presence of mutant variants of cytochrome c. The electron transport activity of the mutant variants decreases to different extent. Resonance Raman spectroscopy (RRS) and surface-enhanced Raman spectroscopy (SERS) data demonstrate, that all mutant cytochromes possess heme with the higher degree of ruffling deformation, than that of the wild-type (WT) cytochrome c. The increase in the ruffled deformation of the heme of oxidized cytochromes correlated with the decrease in the electron transport rate of ubiquinol–cytochrome c reductase (complex III). Besides, all mutant cytochromes have lower mobility of the pyrrol rings and methine bridges, than WT cytochrome c. We show that a decrease in electron transport activity in the mutant variants correlates with conformational changes and reduced mobility of heme porphyrin. This points to a significant role of the P76GTKMIFA83 fragment in the electron transport function of cytochrome c.
Collapse
Affiliation(s)
- Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- * E-mail: (RVC); (NAB)
| | - Nadezda A. Brazhe
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- * E-mail: (RVC); (NAB)
| | - Tatiana V. Bryantseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey N. Nekrasov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander I. Yusipovich
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Georgy V. Maksimov
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Andrei B. Rubin
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Gu J, Shin DW, Pletneva EV. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c. Biochemistry 2017; 56:2950-2966. [PMID: 28474881 DOI: 10.1021/acs.biochem.6b01187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perturbations in protein structure define the mechanism of allosteric regulation and biological information transfer. In cytochrome c (cyt c), ligation of Met80 to the heme iron is critical for the protein's electron-transfer (ET) function in oxidative phosphorylation and for suppressing its peroxidase activity in apoptosis. The hard base Lys is a better match for the hard ferric iron than the soft base Met is, suggesting the key role of the protein scaffold in favoring Met ligation. To probe the role of the protein structure in the maintenance of Met ligation, mutations T49V and Y67R/M80A were designed to disrupt hydrogen bonding and packing of the heme coordination loop, respectively. Electronic absorption, nuclear magnetic resonance, and electron paramagnetic resonance spectra reveal that ferric forms of both variants are Lys-ligated at neutral pH. A minor change in the tertiary contacts in T49V, away from the heme coordination loop, appears to be sufficient to execute a change in ligation, suggesting a cross-talk between the different regions of the protein structure and a possibility of built-in conformational switches in cyt c. Analyses of thermodynamic stability, kinetics of Lys binding and dissociation, and the pH-dependent changes in ligation provide a detailed characterization of the Lys coordination in these variants and relate these properties to the extent of structural perturbations. The findings emphasize the importance of the hydrogen-bonding network in controlling ligation of the native Met80 to the heme iron.
Collapse
Affiliation(s)
- Jie Gu
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | - Dong-Woo Shin
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | - Ekaterina V Pletneva
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| |
Collapse
|
10
|
A New Method to Determine the Transmembrane Conformation of Substrates in Intramembrane Proteolysis by Deep-UV Resonance Raman Spectroscopy. Methods Enzymol 2016; 584:207-228. [PMID: 28065264 DOI: 10.1016/bs.mie.2016.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present a new method based on deep-UV resonance Raman spectroscopy to determine the backbone conformation of intramembrane protease substrates. The classical amide vibrational modes reporting on the conformation of just the transmembrane region of the substrate can be resolved from solvent exchangeable regions outside the detergent micelle by partial deuteration of the solvent. In the presence of isotopically triple-labeled intramembrane protease, these amide modes can be accurately measured to monitor the transmembrane conformation of the substrate during intramembrane proteolysis.
Collapse
|
11
|
Tognaccini L, Ciaccio C, D'Oria V, Cervelli M, Howes BD, Coletta M, Mariottini P, Smulevich G, Fiorucci L. Structure-function relationships in human cytochrome c: The role of tyrosine 67. J Inorg Biochem 2015; 155:56-66. [PMID: 26610191 DOI: 10.1016/j.jinorgbio.2015.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022]
Abstract
Spectroscopic and functional properties of human cytochrome c and its Tyr67 residue mutants (i.e., Tyr67His and Tyr67Arg) have been investigated. In the case of the Tyr67His mutant, we have observed only a very limited structural alteration of the heme pocket and of the Ω-loop involving, among others, the residue Met80 and its bond with the heme iron. Conversely, in the Tyr67Arg mutant the Fe-Met80 bond is cleaved; consequently, a much more extensive structural alteration of the Ω-loop can be envisaged. The structural, and thus the functional modifications, of the Tyr67Arg mutant are present in both the ferric [Fe(III)] and the ferrous [Fe(II)] forms, indicating that the structural changes are independent of the heme iron oxidation state, depending instead on the type of substituting residue. Furthermore, a significant peroxidase activity is evident for the Tyr67Arg mutant, highlighting the role of Arg as a basic, positively charged residue at pH7.0, located in the heme distal pocket, which may act as an acid to cleave the O-O bond in H2O2. As a whole, our results indicate that a delicate equilibrium is associated with the spatial arrangement of the Ω-loop. Clearly, Arg, but not His, is able to stabilize and polarize the negative charge on the Fe(III)-OOH complex during the formation of Compound I, with important consequences on cytochrome peroxidation activity and its role in the apoptotic process, which is somewhat different in yeast and mammals.
Collapse
Affiliation(s)
- Lorenzo Tognaccini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems (CIRCMSB), Bari, Italy
| | - Valentina D'Oria
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Barry D Howes
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems (CIRCMSB), Bari, Italy
| | | | - Giulietta Smulevich
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems (CIRCMSB), Bari, Italy.
| | - Laura Fiorucci
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
12
|
Bueno J, Long D, Kauffman JF, Arzhantsev S. Deep-Ultraviolet Resonance Raman (DUVRR) Spectroscopy of Therapeutic Monoclonal Antibodies Subjected to Thermal Stress. Anal Chem 2015; 87:7880-6. [PMID: 26132464 DOI: 10.1021/acs.analchem.5b01606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The structural assessment of Rituximab, an IgG1 mAb, was investigated with deep-ultraviolet resonance Raman (DUVRR) spectroscopy. DUVRR spectroscopy was used to monitor the changes to the secondary structure of Rituximab under thermal stress. DUVRR spectra showed obvious changes from 22 to 72 °C. Specifically, changes in the amide I vibrational mode were assigned to an increase in unordered structure (random coil). Structural changes in samples heated to 72 °C were related to loss in drug potency via a complement dependent cytotoxicity (CDC) bioassay. The DUVRR spectroscopic method shows promise as a tool for the quality assessment of mAb drug products and would represent an improvement over current methodology in terms of analysis time and sample preparation. To determine the scope of the method, protein pharmaceuticals of different molecular weights (ranging from 4 to 143 kDa) and secondary structure (β-sheet, α-helix and unordered structure) were analyzed. The model illustrated the method's sensitivity for the analysis of protein drug products of different secondary structure. Results show promise for DUVRR spectroscopy as a rapid screening tool of a variety of formulated protein pharmaceuticals.
Collapse
Affiliation(s)
- Justin Bueno
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, Food and Drug Administration, 645 S. Newstead Avenue, St Louis, Missouri 63110, United States
| | - Dianna Long
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, Food and Drug Administration, 645 S. Newstead Avenue, St Louis, Missouri 63110, United States
| | - John F Kauffman
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, Food and Drug Administration, 645 S. Newstead Avenue, St Louis, Missouri 63110, United States
| | - Sergey Arzhantsev
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, Food and Drug Administration, 645 S. Newstead Avenue, St Louis, Missouri 63110, United States
| |
Collapse
|
13
|
Choi J, Cho DW, Tojo S, Fujitsuka M, Majima T. Configurational changes of heme followed by cytochrome c folding reaction. MOLECULAR BIOSYSTEMS 2014; 11:218-22. [PMID: 25358103 DOI: 10.1039/c4mb00551a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although the folding kinetics of cytochrome c (Cyt-c), ferric or ferrous Cyt-c, has been extensively investigated as a paradigm for a protein folding reaction using various time-resolved spectroscopic techniques, the configurational change of heme associated with the folding reaction from a ferric Cyt-c to a ferrous Cyt-c induced by one-electron reduction has not been elucidated. To address this issue, we investigated the configurational change of heme in the Cyt-c folding process induced by one-electron reduction using a combination of time-resolved resonance Raman spectroscopy and pulse radiolysis. The results presented herein reveal that the reduction of ferric Cyt-c and the ligation of Met80 occur simultaneously within a timescale of approximately 2 μs, and that the ligand binding and exchange of heme depend on the initial configuration of the heme. The rapid ligation of Met80 observed in this study may be attributed to the intramolecular diffusion of Met80 into ferrous Cyt-c with a 5-coordinated high-spin configuration. Conversely, the ligand exchange of a ferrous Cyt-c with a 6-coordinated low-spin configuration was significantly slower.
Collapse
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | | | |
Collapse
|
14
|
Deshpande MS, Parui PP, Kamikubo H, Yamanaka M, Nagao S, Komori H, Kataoka M, Higuchi Y, Hirota S. Formation of Domain-Swapped Oligomer of Cytochrome c from Its Molten Globule State Oligomer. Biochemistry 2014; 53:4696-703. [DOI: 10.1021/bi500497s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Megha Subhash Deshpande
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Partha Pratim Parui
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Hironari Kamikubo
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hirofumi Komori
- Faculty
of Education, Kagawa University, 1-1 Saiwai, Takamatsu, Kagawa 760-8522, Japan
| | - Mikio Kataoka
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshiki Higuchi
- Department
of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1
Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shun Hirota
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
15
|
Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c. Proc Natl Acad Sci U S A 2014; 111:6570-5. [PMID: 24753591 DOI: 10.1073/pnas.1322274111] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome (cyt) c is an important electron transfer protein. The ruffling deformation of its heme cofactor has been suggested to relate to its electron transfer rate. However, there is no direct experimental evidence demonstrating this correlation. In this work, we studied Pseudomonas aeruginosa cytochrome c551 and its F7A mutant. These two proteins, although similar in their X-ray crystal structure, display a significant difference in their heme out-of-plane deformations, mainly along the ruffling coordinate. Resonance Raman and vibrational coherence measurements also indicate significant differences in ruffling-sensitive modes, particularly the low-frequency γa mode found between ∼50-60 cm(-1). This supports previous assignments of γa as having a large ruffling content. Measurement of the photoreduction kinetics finds an order of magnitude decrease of the photoreduction cross-section in the F7A mutant, which has nearly twice the ruffling deformation as the WT. Additional measurements on cytochrome c demonstrate that heme ruffling is correlated exponentially with the electron transfer rates and suggest that ruffling could play an important role in redox control. A major relaxation of heme ruffling in cytochrome c, upon binding to the mitochondrial membrane, is discussed in this context.
Collapse
|
16
|
Muenzner J, Pletneva EV. Structural transformations of cytochrome c upon interaction with cardiolipin. Chem Phys Lipids 2013; 179:57-63. [PMID: 24252639 DOI: 10.1016/j.chemphyslip.2013.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/08/2013] [Accepted: 11/09/2013] [Indexed: 01/07/2023]
Abstract
Interactions of cytochrome c (cyt c) with cardiolipin (CL) play a critical role in early stages of apoptosis. Upon binding to CL, cyt c undergoes changes in secondary and tertiary structure that lead to a dramatic increase in its peroxidase activity. Insertion of the protein into membranes, insertion of CL acyl chains into the protein interior, and extensive unfolding of cyt c after adsorption to the membrane have been proposed as possible modes for interaction of cyt c with CL. Dissociation of Met80 is accompanied by opening of the heme crevice and binding of another heme ligand. Fluorescence studies have revealed conformational heterogeneity of the lipid-bound protein ensemble with distinct polypeptide conformations that vary in the degree of protein unfolding. We correlate these recent findings to other biophysical observations and rationalize the role of experimental conditions in defining conformational properties and peroxidase activity of the cyt c ensemble. Latest time-resolved studies propose the trigger and the sequence of cardiolipin-induced structural transitions of cyt c.
Collapse
Affiliation(s)
- Julia Muenzner
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | | |
Collapse
|
17
|
Sun Y, Karunakaran V, Champion PM. Investigations of the low-frequency spectral density of cytochrome c upon equilibrium unfolding. J Phys Chem B 2013; 117:9615-25. [PMID: 23863217 DOI: 10.1021/jp404881k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The equilibrium unfolding process of ferric horse heart cytochrome c (cyt c), induced by guanidinium hydrochloride (GdHCl), was studied using UV-vis absorption spectroscopy, resonance Raman spectroscopy, and vibrational coherence spectroscopy (VCS). The unfolding process was successfully fit using a three-state model which included the fully folded (N) and unfolded (U) states, along with an intermediate (I) assigned to a Lys bound heme. The VCS spectra revealed for the first time several low-frequency heme modes that are sensitive to cyt c unfolding: γ(a) (~50 cm(-1)), γ(b) (~80 cm(-1)), γ(c) (~100 cm(-1)), and ν(s)(His-Fe-His) at 205 cm(-1). These out-of-plane modes have potential functional relevance and are activated by protein-induced heme distortions. The free energies for the N-I and the I-U transitions at pH 7.0 and 20 °C were found to be 4.6 kcal/M and 11.6 kcal/M, respectively. Imidazole was also introduced to replace the methionine ligand so the unfolding can be modeled as a two-state system. The intensity of the mode γ(b)~80 cm(-1) remains nearly constant during the unfolding process, while the amplitudes of the other low frequency modes track with spectral changes observed at higher frequency. This confirms that the heme deformation changes are coupled to the protein tertiary structural changes that take place upon unfolding. These studies also reveal that damping of the coherent oscillations depends sensitively on the coupling between heme and the surrounding water solvent.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
18
|
Brown MC, Mutter A, Koder RL, JiJi RD, Cooley JW. Observation of persistent α-helical content and discrete types of backbone disorder during a molten globule to ordered peptide transition via deep-UV resonance Raman spectroscopy. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2013; 44:957-962. [PMID: 27795611 PMCID: PMC5082991 DOI: 10.1002/jrs.4316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The molten globule state can aide in the folding of a protein to a functional structure and is loosely defined as an increase in structural disorder with conservation of the ensemble secondary structure content. Simultaneous observation of persistent secondary structure content with increased disorder has remained experimentally problematic. As a consequence, modeling how the molten globule state remains stable and how it facilitates proper folding remains difficult due to a lack of amenable spectroscopic techniques to characterize this class of partially unfolded proteins. Previously, deep-UV resonance Raman (dUVRR) spectroscopy has proven useful in the resolution of global and local structural fluctuations in the secondary structure of proteins. In this work, dUVRR was employed to study the molten globule to ordered transition of a model four-helix bundle protein, HP7. Both the average ensemble secondary structure and types of local disorder were monitored, without perturbation of the solvent, pH, or temperature. The molten globule to ordered transition is induced by stepwise coordination of two heme molecules. Persistent dUVRR spectral features in the amide III region at 1295-1301 and 1335-1338 cm-1 confirm previous observations that HP7 remains predominantly helical in the molten globule versus the fully ordered state. Additionally, these spectra represent the first demonstration of conserved helical content in a molten globule protein. With successive heme binding significant losses are observed in the spectral intensity of the amide III3 and S regions (1230-1260 and 1390 cm-1, respectively), which are known to be sensitive to local disorder. These observations indicate that there is a decrease in the structural populations able to explore various extended conformations, with successive heme binding events. DUVRR spectra indicate that the first heme coordination between two helical segments diminishes exploration of more elongated backbone structural conformations in the inter-helical regions. A second heme coordination by the remaining two helices further restricts protein motion.
Collapse
Affiliation(s)
- Mia C. Brown
- Department of Chemistry, University of Missouri, Columbia, MO 65211
| | - Andrew Mutter
- Department of Physics, The City College of New York, New York, NY 10031
| | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY 10031
| | - Renee D. JiJi
- Department of Chemistry, University of Missouri, Columbia, MO 65211
| | - Jason W. Cooley
- Department of Chemistry, University of Missouri, Columbia, MO 65211
| |
Collapse
|
19
|
Snider EJ, Muenzner J, Toffey JR, Hong Y, Pletneva EV. Multifaceted effects of ATP on cardiolipin-bound cytochrome c. Biochemistry 2013; 52:993-5. [PMID: 23331169 PMCID: PMC3658621 DOI: 10.1021/bi301682c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using a collection of dye-labeled cytochrome c (cyt c) variants, we identify transformations of the heterogeneous cardiolipin (CL)-bound cyt c ensemble with added ATP. Distributions of dye-to-heme distances P(r) from time-resolved fluorescence resonance energy transfer show that ATP decreases the population of largely unfolded cyt c conformers, but its effects are distinct from those of a simple salt. The high peroxidase activity of CL-bound cyt c with added ATP suggests binding interactions that favor protein structures with the open heme pocket. Although ATP weakens cyt c-CL binding interactions, it also boosts the apoptosis-relevant peroxidase activity of CL-bound cyt c.
Collapse
Affiliation(s)
- Erik J. Snider
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Julia Muenzner
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Jason R. Toffey
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Yuning Hong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | | |
Collapse
|
20
|
Balakrishnan G, Hu Y, Spiro TG. His26 protonation in cytochrome c triggers microsecond β-sheet formation and heme exposure: implications for apoptosis. J Am Chem Soc 2012; 134:19061-9. [PMID: 23094892 PMCID: PMC3529097 DOI: 10.1021/ja307100a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytochrome c unfolds locally and reversibly upon heating at pH 3. UV resonance Raman (UVRR) spectra reveal that instead of producing unordered structure, unfolding converts turns and some helical elements to β-sheet. It also disrupts the Met80-heme bond, and has been previously shown to induce peroxidase activity. Aromatic residues that are H-bonded to a heme propionate (Trp59 and Tyr48) alter their orientation, indicating heme displacement. T-jump/UVRR measurements give time constants of 0.2, 3.9, and 67 μs for successive phases of β-sheet formation and concomitant reorientation of Trp59. UVRR spectra reveal protonation of histidines, and specifically of His26, whose H-bond to Pro44 anchors the 40s Ω loop; this loop is known to be the least stable 'foldon' in the protein. His26 protonation is proposed to disrupt its H-bond with Pro44, triggering the extension of a short β-sheet segment at the 'neck' of the 40s Ω loop into the loop itself and back into the 60s and 70s helices. The secondary structure change displaces the heme via H-bonds from residues in the growing β-sheet, thereby exposing it to exogenous ligands, and inducing peroxidase activity. This unfolding mechanism may play a role in cardiolipin peroxidation by cyt c during apoptosis.
Collapse
|
21
|
Takeuchi H. Raman spectral marker of tryptophan conformation: Theoretical basis and extension to a wider range of torsional angle. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.03.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Battistuzzi G, Bortolotti CA, Bellei M, Di Rocco G, Salewski J, Hildebrandt P, Sola M. Role of Met80 and Tyr67 in the Low-pH Conformational Equilibria of Cytochrome c. Biochemistry 2012; 51:5967-78. [DOI: 10.1021/bi3007302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gianantonio Battistuzzi
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Marzia Bellei
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Giulia Di Rocco
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Johannes Salewski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Marco Sola
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| |
Collapse
|
23
|
Misiūnas A, Niaura G, Barauskas J, Meškys R, Rutkienė R, Razumas V, Nylander T. Horse heart cytochrome c entrapped into the hydrated liquid-crystalline phases of phytantriol: X-ray diffraction and Raman spectroscopic characterization. J Colloid Interface Sci 2012; 378:232-40. [DOI: 10.1016/j.jcis.2012.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
24
|
Freeman TL, Hong Y, Schiavoni KH, Indika Bandara DM, Pletneva EV. Changes in the heme ligation during folding of a Geobacter sulfurreducens sensor GSU0935. Dalton Trans 2012; 41:8022-30. [DOI: 10.1039/c2dt30166k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Ahluwalia U, Prakash C, Agrawal R, Deep S. Characterization of cytochrome c folding intermediates induced by sucrose and phosphate. Int J Biol Macromol 2011; 49:752-60. [DOI: 10.1016/j.ijbiomac.2011.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022]
|
26
|
Ray M, Chatterjee S, Das T, Bhattacharyya S, Ayyub P, Mazumdar S. Conjugation of cytochrome c with hydrogen titanate nanotubes: novel conformational state with implications for apoptosis. NANOTECHNOLOGY 2011; 22:415705. [PMID: 21918298 DOI: 10.1088/0957-4484/22/41/415705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We show that hydrogen titanate (H(2)Ti(3)O(7)) nanotubes form strongly associated reversible nano-bio-conjugates with the vital respiratory protein, cytochrome c. Resonance Raman spectroscopy along with direct electrochemical studies indicate that in this nano-bio-conjugate, cytochrome c exists in an equilibrium of two conformational states with distinctly different formal redox potentials and coordination geometries of the heme center. The nanotube-conjugated cytochrome c also showed enhanced peroxidase activity similar to the membrane-bound protein that is believed to be an apoptosis initiator. This suggests that such a nanotube-cytochrome c conjugate may be a good candidate for cancer therapy applications.
Collapse
Affiliation(s)
- Moumita Ray
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | |
Collapse
|
27
|
Dillman KL, Beck WF. Vibrational Coherence from van der Waals Modes in the Native and Molten-Globule States of Zn II-Substituted Cytochrome c. J Phys Chem B 2011; 115:8657-66. [DOI: 10.1021/jp204571m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin L. Dillman
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Warren F. Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
28
|
Khan MKA, Rahaman H, Ahmad F. Conformation and thermodynamic stability of pre-molten and molten globule states of mammalian cytochromes-c. Metallomics 2011; 3:327-38. [DOI: 10.1039/c0mt00078g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
The non-native conformations of cytochrome c in sodium dodecyl sulfate and their modulation by ATP. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:259-71. [PMID: 21116622 DOI: 10.1007/s00249-010-0643-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/16/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
To understand the interaction of cytochrome c (cyt c) with membranes, a systematic investigation of sodium dodecyl sulfate (SDS)-induced conformational alterations in native horse heart ferricytochrome c (pH 7.0) was carried out using heme absorbance, tryptophan fluorescence and circular dichroism (CD) spectroscopy. ATP interaction with membrane-bound cyt c is known to regulate the process of apoptosis. To understand the effect of nucleotide phosphates on membrane-bound cyt c, we also carried out studies of the interaction of ATP with cyt c in the presence of SDS. Fluorescence and UV-Vis data suggest that SDS induces two different transitions (F to C1, C1 to C2) in cyt c, one in the pre-micellar region and the other in the post-micellar region. The fluorescence data further indicated the increase in distance between Trp 59 and heme in the intermediates in both the regions, suggesting loosening up of cyt c on titration with SDS. The far-UV and near-UV CD data suggest partial loss of secondary and tertiary structure in C1, but complete loss of tertiary structure and no further loss of secondary structure in C2. On titration of C1 and C2 with ATP, the secondary structure is restored. However, the heme ligation pattern and heme exposure change only for C2, but not for C1 on the addition of ATP.
Collapse
|
30
|
Bhuyan AK. Off-Pathway Status for the Alkali Molten Globule of Horse Ferricytochrome c. Biochemistry 2010; 49:7764-73. [DOI: 10.1021/bi100880d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abani K. Bhuyan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
31
|
Sinibaldi F, Howes BD, Piro MC, Polticelli F, Bombelli C, Ferri T, Coletta M, Smulevich G, Santucci R. Extended cardiolipin anchorage to cytochrome c: a model for protein-mitochondrial membrane binding. J Biol Inorg Chem 2010; 15:689-700. [PMID: 20238133 DOI: 10.1007/s00775-010-0636-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 02/14/2010] [Indexed: 11/25/2022]
Abstract
Two models have been proposed to explain the interaction of cytochrome c with cardiolipin (CL) vesicles. In one case, an acyl chain of the phospholipid accommodates into a hydrophobic channel of the protein located close the Asn52 residue, whereas the alternative model considers the insertion of the acyl chain in the region of the Met80-containing loop. In an attempt to clarify which proposal offers a more appropriate explanation of cytochrome c-CL binding, we have undertaken a spectroscopic and kinetic study of the wild type and the Asn52Ile mutant of iso-1-cytochrome c from yeast to investigate the interaction of cytochrome c with CL vesicles, considered here a model for the CL-containing mitochondrial membrane. Replacement of Asn52, an invariant residue located in a small helix segment of the protein, may provide data useful to gain novel information on which region of cytochrome c is involved in the binding reaction with CL vesicles. In agreement with our recent results revealing that two distinct transitions take place in the cytochrome c-CL binding reaction, data obtained here support a model in which two (instead of one, as considered so far) adjacent acyl chains of the liposome are inserted, one at each of the hydrophobic sites, into the same cytochrome c molecule to form the cytochrome c-CL complex.
Collapse
Affiliation(s)
- Federica Sinibaldi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma "Tor Vergata", Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Juszczak LJ, Desamero RZB. Extension of the tryptophan chi2,1 dihedral angle-W3 band frequency relationship to a full rotation: correlations and caveats. Biochemistry 2009; 48:2777-87. [PMID: 19267450 DOI: 10.1021/bi801293v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The correlation of the UVRR nuW3 mode with the tryptophan chi(2,1) dihedral angle [Maruyama and Takeuchi (1995) J. Raman Spectrosc. 26, 319; Miura et al. (1989) J. Raman Spectrosc. 20, 667; Takeuchi (2003) Biopolymers 72, 305] has been extended to a full, 360 degrees rotation. The 3-fold periodicity of the relationship (cos 3chi(2,1)) over 360 degrees results in up to six dihedral angles for a given nuW3. Consideration of a Newman plot of dihedral angles for proteinaceous tryptophans taken from the Protein Data Bank shows that sterically hindered ranges of dihedral angle reduce the possible chi(2,1) to one or two. However, not all proteinaceous tryptophans follow the nuW3-chi(2,1) relationship. Hydrogen bonding at the indole amine, weaker, electrostatic cation-pi and anion-quadrapole interactions, and environmental hydrophobicity are examined as possible contributing factors to noncompliance with the relationship. This evaluation suggests that cumulative weak electrostatic and nonpolar interactions, contributing to steric hindrance, characterize the environment of tryptophans that obey the nuW3-chi(2,1) relationship, matching that of the crystalline tryptophan derivatives used to formulate the relationship. In the absence of methods to quantify these weak interactions, measurement of the full width half-maximum bandwidth (fwhm) of the W3 band is suggested as a primary screen for evaluating the applicability of the nuW3-chi(2,1) relationship.
Collapse
Affiliation(s)
- Laura J Juszczak
- Chemistry Department, Brooklyn College, The City University of New York, Brooklyn, New York 11210, USA.
| | | |
Collapse
|
33
|
Takekiyo T, Yoshimura Y, Ikeji Y, Hatano N, Koizumi T. Raman Spectroscopic Study on the Coordination Behavior of Rare Earth Ions in N-Methylacetamide. J Phys Chem B 2008; 112:13355-8. [DOI: 10.1021/jp802128e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| | - Yohei Ikeji
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| | - Naohiro Hatano
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| | - Toshio Koizumi
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| |
Collapse
|
34
|
Kubo M, Gruia F, Benabbas A, Barabanschikov A, Montfort WR, Maes EM, Champion PM. Low-frequency mode activity of heme: femtosecond coherence spectroscopy of iron porphine halides and nitrophorin. J Am Chem Soc 2008; 130:9800-11. [PMID: 18597456 PMCID: PMC2765994 DOI: 10.1021/ja800916d] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The low-frequency mode activity of metalloporphyrins has been studied for iron porphine-halides (Fe(P)(X), X = Cl, Br) and nitrophorin 4 (NP4) using femtosecond coherence spectroscopy (FCS) in combination with polarized resonance Raman spectroscopy and density functional theory (DFT). It is confirmed that the mode symmetry selection rules for FCS are the same as for Raman scattering and that both Franck-Condon and Jahn-Teller mode activities are observed for Fe(P)(X) under Soret resonance conditions. The DFT-calculated low-frequency (20-400 cm (-1)) modes, and their frequency shifts upon halide substitution, are in good agreement with experimental Raman and coherence data, so that mode assignments can be made. The doming mode is located at approximately 80 cm (-1) for Fe(P)(Cl) and at approximately 60 cm (-1) for Fe(P)(Br). NP4 is also studied with coherence techniques, and the NO-bound species of ferric and ferrous NP4 display a mode at approximately 30-40 cm (-1) that is associated with transient heme doming motion following NO photolysis. The coherence spectra of three ferric derivatives of NP4 with different degrees of heme ruffling distortion are also investigated. We find a mode at approximately 60 cm (-1) whose relative intensity in the coherence spectra depends quadratically on the magnitude of the ruffling distortion. To quantitatively account for this correlation, a new "distortion-induced" Raman enhancement mechanism is presented. This mechanism is unique to low-frequency "soft modes" of the molecular framework that can be distorted by environmental forces. These results demonstrate the potential of FCS as a sensitive probe of dynamic and functionally important nonplanar heme vibrational excitations that are induced by the protein environmental forces or by the chemical reactions in the aqueous phase.
Collapse
Affiliation(s)
- Minoru Kubo
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Varhač R, Antalík M. Correlation of acid-induced conformational transition of ferricytochrome c with cyanide binding kinetics. J Biol Inorg Chem 2008; 13:713-21. [DOI: 10.1007/s00775-008-0357-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 02/16/2008] [Indexed: 10/22/2022]
|
36
|
Balakrishnan G, Hu Y, Oyerinde OF, Su J, Groves JT, Spiro TG. A conformational switch to beta-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis. J Am Chem Soc 2007; 129:504-5. [PMID: 17227009 PMCID: PMC2596592 DOI: 10.1021/ja0678727] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
37
|
Tight β-turns in peptides. DFT-based study of infrared absorption and vibrational circular dichroism for various conformers including solvent effects. Theor Chem Acc 2006. [DOI: 10.1007/s00214-006-0183-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Sinibaldi F, Piro MC, Coletta M, Santucci R. Salt-induced formation of the A-state of ferricytochrome c--effect of the anion charge on protein structure. FEBS J 2006; 273:5347-57. [PMID: 17059462 DOI: 10.1111/j.1742-4658.2006.05527.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural information on partially folded forms is important for a deeper understanding of the folding mechanism(s) and the factors affecting protein stabilization. The non-native compact state of equine cytochrome c stabilized by salts in an acidic environment (pH 2.0-2.2), called the A-state, is considered a suitable model for the molten globule of cytochrome c, as it possesses a native-like alpha-helix conformation but a fluctuating tertiary structure. In this article, we extend our knowledge on anion-induced protein stabilization by determining the effect of anions carrying a double negative charge; unlike monovalent anions (which are thought to exert an 'ionic atmosphere' effect on the macromolecule), divalent anions are thought to bind to the protein at specific surface sites. Our data indicate that divalent anions, in comparison to monovalent ions, have a greater tendency to stabilize the native-like M-Fe(III)-H coordinated state of the protein. The possibility that divalent anions may bind to the protein at the same sites previously identified for polyvalent anions was evaluated. To investigate this issue, the behavior of the K88E, K88E/T89K and K13N mutants was investigated. The data obtained indicate that the mutated residues, which contribute to form the binding sites of polyanions, are important for stabilization of the native conformation; the mutants investigated, in fact, all show an increased amount of the misligated H-Fe(III)-H state and, with respect to wild-type cytochrome c, appear to be less sensitive to the presence of the anion. These residues also modulate the conformation of unfolded cytochrome c, influencing its spin state and the coordination to the prosthetic group.
Collapse
Affiliation(s)
- Federica Sinibaldi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma 'Tor Vergata', Italy
| | | | | | | |
Collapse
|
39
|
Naeem A, Ashraf MT, Akram M, Khan RH. Comparative study of effects of polyols, salts, and alcohols on trichloroacetic acid-induced state of cytochrome c. BIOCHEMISTRY (MOSCOW) 2006; 71:1101-9. [PMID: 17125458 DOI: 10.1134/s0006297906100075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A systematic investigation of the effect of polyethylene glycols, salts, and alcohols on the trichloroacetic acid (TCA)-induced state of ferricytochrome c was made using various spectroscopic techniques. Native cytochrome c (Cyt c) has a fluorescence maximum at 335 nm, whereas the TCA-induced state of Cyt c has a red shift of 7 nm with enhanced fluorescence intensity. The near- and far-UV CD spectra showed a significant loss of tertiary and secondary structure, although the protein is relatively less unfolded as compared with a conformation at pH 2.0. Addition of 70% (v/v) polyols to TCA (3.3 mM)-induced state of Cyt c resulted in increased 1-anilino-8-naphthalene sulfonate binding and increased mean residue ellipticity at 222 nm, indicating increase in compactness with enhanced exposure of hydrophobic surface area. Also, the stabilizing effect of salts and alcohols on the TCA-induced state was studied and compared with their effect on trifluoroacetic acid-unfolded state of Cyt c. Among all the polyols, salts, and alcohols studied, PEG-400, K3[Fe(CN)6], and butanol were the most efficient in inducing secondary structure in TCA-induced state as examined by the above-mentioned spectroscopic techniques. For salts, the efficiency in inducing the secondary structure followed the order K3[Fe(CN)6] > KClO4 > K2SO4 > KCl. For alcohols, this order was found to be as follows: butanol > propanol > ethanol > methanol.
Collapse
Affiliation(s)
- Aabgeena Naeem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | | | | | | |
Collapse
|
40
|
Sinibaldi F, Howes BD, Piro MC, Caroppi P, Mei G, Ascoli F, Smulevich G, Santucci R. Insights into the role of the histidines in the structure and stability of cytochrome c. J Biol Inorg Chem 2005; 11:52-62. [PMID: 16320010 DOI: 10.1007/s00775-005-0057-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 10/26/2005] [Indexed: 11/26/2022]
Abstract
In this paper we investigate the role played by each histidine in the amino acid sequence of yeast iso-1-cytochrome c (with the exception of H18, the residue axially coordinated to the heme iron) in determining the protein structure and stability. To this end, we have generated and characterized the double mutants H26Y/H33Y, H26Y/H39K and H33Y/H39K obtained from the C102T variant of the protein, which retain only one histidine side chain in the amino acid sequence. In particular, the H39K mutation inserts a lysine at position 39 as in the sequence of equine cytochrome c. The H26Y/H33Y/H39K triple mutant, which lacks all three histidines, was also produced and its spectroscopic properties are compared with those of the double mutants. The data highlight the critical role played by H26 in determining protein stability. Recombinant horse cytochrome c and the corresponding H26Y mutant were also generated and characterized. Since equine cytochrome c exhibits higher stability than the yeast protein, this provides a valuable opportunity to understand the role played by the invariant H26 residue in determining structure and stability.
Collapse
Affiliation(s)
- Federica Sinibaldi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Droghetti E, Smulevich G. Effect of sol–gel encapsulation on the unfolding of ferric horse heart cytochrome c. J Biol Inorg Chem 2005; 10:696-703. [PMID: 16184400 DOI: 10.1007/s00775-005-0027-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Electronic absorption and resonance Raman spectra of ferric cytochrome c embedded in wet silica gels, in the presence of guanidine HCl as unfolding agent, between pH 0.35 and 7.0 are presented. The data clearly show that the ferric form of the protein encapsulated in sol-gel preserves its active site conformation. However, the spectra of the unfolded embedded protein are different from the corresponding spectra in solution suggesting that a strong interaction between the protein and the sol-gel takes place upon unfolding. The unfolding process mainly depends on the interaction between the exposed positive charges of the unfolded protein and the negatively charged functional groups of the silica surfaces. While this interaction partially stabilizes the protein in its native structure even at very acidic pH, in the presence of denaturants it has the opposite effect, causing mainly the weakening of both the heme-protein and the heme-ligand interactions.
Collapse
Affiliation(s)
- Enrica Droghetti
- Dipartimento di Chimica, Universitá di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | | |
Collapse
|
42
|
Santoni E, Scatragli S, Sinibaldi F, Fiorucci L, Santucci R, Smulevich G. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment. J Inorg Biochem 2005; 98:1067-77. [PMID: 15149817 DOI: 10.1016/j.jinorgbio.2004.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 02/09/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
We have characterized the ferric and ferrous forms of the heme-containing (1-56 residues) N-fragment of horse heart cytochrome c (cyt c) at different pH values and low ionic strength by UV-visible absorption and resonance Raman (RR) scattering. The results are compared with native cyt c in the same experimental conditions as this may provide a deeper insight into the cyt c unfolding-folding process. Folding of cyt c leads to a state having the heme iron coordinated to a histidine (His18) and a methionine (Met80) as axial ligands. At neutral pH the N-fragment (which lacks Met80) shows absorption and RR spectra that are consistent with the presence of a bis-His low spin heme, like several non-native forms of the parental protein. In particular, the optical spectra are identical to those of cyt c in the presence of a high concentration of denaturants; this renders the N-fragment a suitable model to study the heme pocket microenvironment of the misfolded (His-His) intermediate formed during folding of cyt c. Acid pH affects the ligation state in both cyt c and the N-fragment. Data obtained as a function of pH allow a correlation between the structural properties in the heme pocket of the N-fragment and those of non-native forms of cyt c. The results underline that the (57-104 residues) segment under native-like conditions imparts structural stability to the protein by impeding solvent access into the heme pocket.
Collapse
Affiliation(s)
- Elisa Santoni
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Sinibaldi F, Mei G, Polticelli F, Piro MC, Howes BD, Smulevich G, Santucci R, Ascoli F, Fiorucci L. ATP specifically drives refolding of non-native conformations of cytochrome c. Protein Sci 2005; 14:1049-58. [PMID: 15741329 PMCID: PMC2253445 DOI: 10.1110/ps.041069405] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/19/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
An increasing body of evidence ascribes to misfolded forms of cytochrome c (cyt c) a role in pathophysiological events such as apoptosis and disease. Here, we examine the conformational changes induced by lipid binding to horse heart cyt c at pH 7 and study the ability of ATP (and other nucleotides) to refold several forms of unfolded cyt c such as oleic acid-bound cyt c, nicked cyt c, and acid denatured cyt c. The CD and fluorescence spectra demonstrate that cyt c unfolded by oleic acid has an intact secondary structure, and a disrupted tertiary structure and heme environment. Furthermore, evidence from the Soret CD, electronic absorption, and resonance Raman spectra indicates the presence of an equilibrium of at least two low-spin species having distinct heme-iron(III) coordination. As a whole, the data indicate that binding of cyt c to oleic acid leads to a partially unfolded conformation of the protein, resembling that typical of the molten globule state. Interestingly, the native conformation is almost fully recovered in the presence of ATP or dATP, while other nucleotides, such as GTP, are ineffective. Molecular modeling of ATP binding to cyt c and mutagenesis experiments show the interactions of phosphate groups with Lys88 and Arg91, with adenosine ring interaction with Glu62 explaining the unfavorable binding of GTP. The finding that ATP and dATP are unique among the nucleotides in being able to turn non-native states of cyt c back to native conformation is discussed in the light of cyt c involvement in cell apoptosis.
Collapse
Affiliation(s)
- Federica Sinibaldi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Naeem A, Khan RH. Characterization of molten globule state of cytochrome c at alkaline, native and acidic pH induced by butanol and SDS. Int J Biochem Cell Biol 2005; 36:2281-92. [PMID: 15313473 DOI: 10.1016/j.biocel.2004.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/26/2004] [Accepted: 04/14/2004] [Indexed: 11/23/2022]
Abstract
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.
Collapse
Affiliation(s)
- Aabgeena Naeem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
45
|
Caroppi P, Sinibaldi F, Santoni E, Howes BD, Fiorucci L, Ferri T, Ascoli F, Smulevich G, Santucci R. The 40s ?-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c. J Biol Inorg Chem 2004; 9:997-1006. [PMID: 15503233 DOI: 10.1007/s00775-004-0601-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
The structural and redox properties of a non-covalent complex reconstituted upon mixing two non-contiguous fragments of horse cytochrome c, the residues 1-38 heme-containing N-fragment with the residues 57-104 C-fragment, have been investigated. With respect to native cyt c, the complex lacks a segment of 18 residues, corresponding, in the native protein, to an omega (Omega)-loop region. The fragment complex shows compact structure, native-like alpha-helix content but a less rigid atomic packing and reduced stability with respect to the native protein. Structural heterogeneity is observed at pH 7.0, involving formation of an axially misligated low-spin species and consequent partial displacement of Met80 from the sixth coordination position of the heme-iron. Spectroscopic data suggest that a lysine (located in the Met80-containing loop, namely Lys72, Lys73, or Lys79) replaces the methionine residue. The residues 1-38/57-104 fragment complex shows an unusual biphasic alkaline titration characterized by a low (p K(a1)=6.72) and a high p K(a)-associated state transition (p K(a2)=8.56); this behavior differs from that of native cyt c, which shows a monophasic alkaline transition (p K(a)=8.9). The data indicate that the 40s Omega-loop plays an important role in the stability of cyt c and in ensuring a correct alkaline conformational transition of the protein.
Collapse
Affiliation(s)
- Paola Caroppi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xu Q, Keiderling TA. Optical spectroscopic differentiation of various equilibrium denatured states of horse cytochrome c. Biopolymers 2004; 73:716-26. [PMID: 15048775 DOI: 10.1002/bip.20011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Thermal unfolding of cytochrome c (cyt c) from several states has been studied using equilibrium spectroscopic techniques. CD in the uv, vibrational circular dichroism, infrared, and uv-vis absorption spectra measured at various temperatures, pHs, salt concentrations, and GuHCl concentrations are used to show the conformational as well as heme structural differences between native and various denatured states. The difference in thermal denaturation behaviors of cyt c starting from acid denatured, molten globule (MG), and the A and native states are explored. Different final high temperature states were observed for cytochrome c unfolding from four different initial states (native, MG, A, and acid denatured state) by electronic CD, Fourier transform infrared (FTIR), and vibrational CD (VCD). Consistent with this, different thermal unfolding pathways for the MG and A states are suggested by the FTIR and VCD data for this process.
Collapse
Affiliation(s)
- Qi Xu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St. (m/c 111), Chicago, IL 60607-7061, USA
| | | |
Collapse
|
47
|
Li D, Stuehr DJ, Yeh SR, Rousseau DL. Heme distortion modulated by ligand-protein interactions in inducible nitric-oxide synthase. J Biol Chem 2004; 279:26489-99. [PMID: 15066989 DOI: 10.1074/jbc.m400968200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic center of nitric-oxide synthase (NOS) consists of a thiolate-coordinated heme macrocycle, a tetrahydrobiopterin (H4B) cofactor, and an l-arginine (l-Arg)/N-hydroxyarginine substrate binding site. To determine how the interplay between the cofactor, the substrates, and the protein matrix housing the heme regulates the enzymatic activity of NOS, the CO-, NO-, and CN(-)-bound adducts of the oxygenase domain of the inducible isoform of NOS (iNOS(oxy)) were examined with resonance Raman spectroscopy. The Raman data of the CO-bound ferrous protein demonstrated that the presence of l-Arg causes the Fe-C-O moiety to adopt a bent structure because of an H-bonding interaction whereas H4B binding exerts no effect. Similar behavior was found in the CN(-)-bound ferric protein and in the nitric oxide (NO)-bound ferrous protein. In contrast, in the NO-bound ferric complexes, the addition of l-Arg alone does not affect the structural properties of the Fe-N-O moiety, but H4B binding forces it to adopt a bent structure, which is further enhanced by the subsequent addition of l-Arg. The differential interactions between the various heme ligands and the protein matrix in response to l-Arg and/or H4B binding is coupled to heme distortions, as reflected by the development of a variety of out-of-plane heme modes in the low frequency Raman spectra. The extent and symmetry of heme deformation modulated by ligand, substrate, and cofactor binding may provide important control over the catalytic and autoinhibitory properties of the enzyme.
Collapse
Affiliation(s)
- David Li
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
48
|
Hirota S, Suzuki M, Watanabe Y. Hydrophobic effect of trityrosine on heme ligand exchange during folding of cytochrome c. Biochem Biophys Res Commun 2004; 314:452-8. [PMID: 14733927 DOI: 10.1016/j.bbrc.2003.12.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effect of a hydrophobic peptide on folding of oxidized cytochrome c (cyt c) is studied with trityrosine. Folding of cyt c was initiated by pH jump from 2.3 (acid-unfolded) to 4.2 (folded). The Soret band of the 2-ms transient absorption spectrum during folding decreased its intensity and red-shifted from 397 to 400 nm by interaction with trityrosine, whereas tyrosinol caused no significant effect. The change in the transient absorption spectrum by interaction with trityrosine was similar to that obtained with 100 mM imidazole, which showed that the population of the intermediate His/His coordinated species increased during folding of cyt c by interaction with trityrosine. The absorption change was biphasic, the fast phase (82+/-9s(-1)) corresponding to the transition from the His/H(2)O to the His/Met coordinated species, whereas the slow phase (24+/-3s(-1)) from His/His to His/Met. By addition of trityrosine, the relative ratio of the slow phase increased, due to increase of the His/His species at the initial stage of folding. According to the resonance Raman spectra of cyt c, the high-spin 6-coordinate and low-spin 6-coordinate species were dominated at pH 2.3 and 4.2, respectively, and these species were not affected by addition of trityrosine. These results demonstrated that the His/His species increased by interaction with trityrosine at the initial stage of cyt c folding, whereas the heme coordination structure was not affected by trityrosine when the protein was completely unfolded or folded. Hydrophobic peptides thus may be useful to study the effects of hydrophobic interactions on protein folding.
Collapse
Affiliation(s)
- Shun Hirota
- Department of Physical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, 607-8414 Kyoto, Japan.
| | | | | |
Collapse
|
49
|
Sinibaldi F, Howes BD, Smulevich G, Ciaccio C, Coletta M, Santucci R. Anion concentration modulates the conformation and stability of the molten globule of cytochrome c. J Biol Inorg Chem 2003; 8:663-70. [PMID: 12748881 DOI: 10.1007/s00775-003-0462-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 03/14/2003] [Indexed: 10/26/2022]
Abstract
Anions induce collapse of acid-denatured cytochrome c into a compact state, the A-state, showing molten globule character. Since structural information on partially folded forms of proteins is important for a deeper understanding of folding mechanisms and of the factors affecting protein stabilization, in this paper we have investigated in detail the effects of anions on the tertiary conformation of the A-state. We have found that the salt-induced collapse of acid-denatured cytochrome c leads to a number of equilibria between high-spin and low-spin heme states and between two types of low-spin states. The two latter states are characterized by conformations leading to a native-like Met-Fe-His axial coordination and a bis-His configuration. The equilibrium between these two A-states is dependent on the concentration and/or size of the anions (i.e. the bigger the anion, the greater its effect). Further, on the basis of fast kinetic data, a kinetic model of the folding process from the acid-unfolded protein to the A-state (at low and high anion concentration) is described.
Collapse
Affiliation(s)
- Federica Sinibaldi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma "Tor Vergata", V Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Kim JE, Pan D, Mathies RA. Picosecond dynamics of G-protein coupled receptor activation in rhodopsin from time-resolved UV resonance Raman spectroscopy. Biochemistry 2003; 42:5169-75. [PMID: 12731857 PMCID: PMC1404556 DOI: 10.1021/bi030026d] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein response to retinal chromophore isomerization in the visual pigment rhodopsin is studied using picosecond time-resolved UV resonance Raman spectroscopy. High signal-to-noise Raman spectra are obtained using a 1 kHz Ti:Sapphire laser apparatus that provides <3 ps visible (466 nm) pump and UV (233 nm) probe pulses. When there is no time delay between the pump and probe events, tryptophan modes W18, W16, and W3 exhibit decreased Raman scattering intensity. At longer pump-probe time delays of +5 and +20 ps, both tryptophan (W18, W16, W3, and W1) and tyrosine (Y1 + 2xY16a, Y7a, Y8a) peak intensities drop by up to 3%. These intensity changes are attributed to decreased hydrophobicity in the microenvironment near at least one tryptophan and one tyrosine residue that likely arise from weakened interaction with the beta-ionone ring of the chromophore following cis-to-trans isomerization. Examination of the crystal structure suggests that W265 and Y268 are responsible for these signals. These UV Raman spectral changes are nearly identical to those observed for the rhodopsin-to-Meta I transition, implying that impulsively driven protein motion by the isomerizing chromophore during the 200 fs primary transition drives key structural changes that lead to protein activation.
Collapse
Affiliation(s)
- Judy E Kim
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|