1
|
Abstract
The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix.
Collapse
Affiliation(s)
- David
B. Iaea
- Department
of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States,Weill Cornell Medical
College, Rockefeller University, and Memorial Sloan-Kettering Cancer
Center Tri-Institutional Chemical Biology Program, New York, New York 10065, United States
| | - Igor Dikiy
- Department
of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States
| | - Irene Kiburu
- Department
of Physiology and Biophysics, Weill Cornell
Medical College, 1300
York Avenue, New York, New
York 10065, United
States
| | - David Eliezer
- Department
of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States,Weill Cornell Medical
College, Rockefeller University, and Memorial Sloan-Kettering Cancer
Center Tri-Institutional Chemical Biology Program, New York, New York 10065, United States
| | - Frederick R. Maxfield
- Department
of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States,Weill Cornell Medical
College, Rockefeller University, and Memorial Sloan-Kettering Cancer
Center Tri-Institutional Chemical Biology Program, New York, New York 10065, United States,E-mail: . Telephone: (212) 746-6405. Fax: (212) 746-8875
| |
Collapse
|
2
|
London E, Ladokhin AS. Measuring the depth of amino acid residues in membrane-inserted peptides by fluorescence quenching. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)52006-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
3
|
Abstract
Eosin B and eosin Y have been used to estimate micro- and submicrogram quantities of proteins respectively as shown in our previous reports. In the present study we describe the mechanism of eosin binding to proteins. At pH lower than 3.0 the absorbance of unbound dye is greatly reduced. After the dye binds to protein, the absorption maximum of the dye changes from 514 to 530 +/- 5 nm. The absorbance and bathochromatic shift in absorption maximum of the protein-dye complex are proportional to the concentration of protein. The pH of the assay solution does not change due to protein. Arginine, histidine, and lysine (at both acidic and neutral pH) and tryptophan (at acidic pH) residues of a protein bind electrostatically to carboxylic and phenolic groups of the dye to produce a stable water-soluble protein-dye complex. The binding constants of eosin B with poly-L-arginine, poly-L-histidine, poly-L-lysine, and poly-L-tryptophan at pH 1.96 are 0.37, 0.32, 0.33 and 0.33 nmol/nmol of amino acid, respectively. The binding constants of eosin B and eosin Y with bovine serum albumin (BSA) at pH 1.96 are essentially the same, i.e., 0.82 nmol/nmol of reactive amino acid of BSA. The binding constant varies with solution pH so that a wide range of protein concentrations can be estimated. The reason for the higher absorbance of protein-eosin Y complex compared to that of protein-eosin B complex is discussed.
Collapse
Affiliation(s)
- A A Waheed
- Department of Protein Biochemistry, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | | | | |
Collapse
|
4
|
Gerber D, Shai Y. Insertion and organization within membranes of the delta-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J Biol Chem 2000; 275:23602-7. [PMID: 10811807 DOI: 10.1074/jbc.m002596200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pore-forming domain of Bacillus thuringiensis Cry1Ac insecticidal protein comprises of a seven alpha-helix bundle (alpha1-alpha7). According to the "umbrella model," alpha4 and alpha5 helices form a hairpin structure thought to be inserted into the membrane upon binding. Here, we have synthesized and characterized the hairpin domain, alpha4-loop-alpha5, its alpha4 and alpha5 helices, as well as mutant alpha4 peptides based on mutations that increased or decreased toxin toxicity. Membrane permeation studies revealed that the alpha4-loop-alpha5 hairpin is extremely active compared with the isolated helices or their mixtures, indicating the complementary role of the two helices and the need for the loop for efficient insertion into membranes. Together with spectrofluorometric studies, we provide direct evidence for the role of alpha4-loop-alpha5 as the membrane-inserted pore-forming hairpin in which alpha4 and alpha5 line the lumen of the channel and alpha5 also participates in the oligomerization of the toxin. Strikingly, the addition of the active alpha4 mutant peptide completely inhibits alpha4-loop-alpha5 pore formation, thus providing, to our knowledge, the first example that a mutated helix within a pore can function as an "immunity protein" by directly interacting with the segments that form the pore. This presents a potential means of interfering with the assembly and function of other membrane proteins as well.
Collapse
Affiliation(s)
- D Gerber
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
5
|
Mattila K, Kinder R, Bechinger B. The alignment of a voltage-sensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magnetic resonance and molecular modeling. Biophys J 1999; 77:2102-13. [PMID: 10512830 PMCID: PMC1300491 DOI: 10.1016/s0006-3495(99)77051-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The S4 segments of voltage-gated sodium channels are important parts of the voltage-sensing elements of these proteins. Furthermore, the addition of the isolated S4 polypeptide to planar lipid bilayers results in stepwise increases of ion conductivity. In order to gain insight into the mechanisms of pore formation by amphipathic peptides, the structure and orientation of the S4 segment of the first internal repeat of the rat brain II sodium channel was investigated in the presence of DPC micelles by multidimensional solution NMR spectroscopy and solid-state NMR spectroscopy on oriented phospholipid bilayers. Both the anisotropic chemical shift observed by proton-decoupled (15)N solid-state NMR spectroscopy and the attenuating effects of DOXYL-stearates on TOCSY crosspeak intensities of micelle-associated S4 indicate that the central alpha-helical portion of this peptide is oriented approximately parallel to the membrane surface. Simulated annealing and molecular dynamics calculations of the peptide in a biphasic tetrachloromethane-water environment indicate that the peptide alpha-helix extends over approximately 12 residues. A less regular structure further toward the C-terminus allows for the hydrophobic residues of this part of the peptide to be positioned in the tetrachloromethane environment. The implications for possible pore-forming mechanisms are discussed.
Collapse
Affiliation(s)
- K Mattila
- Max-Planck-Institut für-Biochemie, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
6
|
Koster JC, Bentle KA, Nichols CG, Ho K. Assembly of ROMK1 (Kir 1.1a) inward rectifier K+ channel subunits involves multiple interaction sites. Biophys J 1998; 74:1821-9. [PMID: 9545044 PMCID: PMC1299526 DOI: 10.1016/s0006-3495(98)77892-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ROMK1 (Kir 1.1a) channel is formed by a tetrameric complex of subunits, each characterized by cytoplasmic N- and C-termini and a core region of two transmembrane helices flanking a pore-forming segment. To delineate the general regions mediating the assembly of ROMK1 subunits we constructed epitope-tagged N-terminal, C-terminal, and transmembrane segment deletion mutants. Nonfunctional subunits with N-terminal, core region, and C-terminal deletions had dominant negative effects when coexpressed with wild-type ROMK1 subunits in Xenopus oocytes. In contrast, coexpression of these nonfunctional subunits with Kv 2.1 (DRK1) did not suppress Kv 2.1 currents in control oocytes. Interactions between epitope-tagged mutant and wild-type ROMK1 subunits were studied in parallel by immunoprecipitating [35S]-labeled oocyte membrane proteins. Complexes containing both wild-type and mutant subunits that retained H5, M2, and C-terminal regions were coimmunoprecipitated to a greater extent than complexes consisting of wild-type and mutant subunits with core region and/or C-terminal deletions. The present findings are consistent with the hypothesis that multiple interaction sites located in the core region and cytoplasmic termini of ROMK1 subunits mediate homomultimeric assembly.
Collapse
Affiliation(s)
- J C Koster
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|