1
|
Boro N, Alexandrino Fernandes P, Mukherjee AK. Computational analysis to comprehend the structure-function properties of fibrinolytic enzymes from Bacillus spp for their efficient integration into industrial applications. Heliyon 2024; 10:e33895. [PMID: 39055840 PMCID: PMC11269858 DOI: 10.1016/j.heliyon.2024.e33895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Background The fibrinolytic enzymes from Bacillus sp. are proposed as therapeutics in preventing thrombosis. Computational-based analyses of these enzymes' amino acid composition, basic physiological properties, presence of functional domain and motifs, and secondary and tertiary structure analyses can lead to developing a specific enzyme with improved catalytic activity and other properties that may increase their therapeutic potential. Methods The nucleotide sequences of fibrinolytic enzymes produced by the genus Bacillus and its corresponding protein sequences were retrieved from the NCBI database and aligned using the PRALINE programme. The varied physiochemical parameters and structural and functional analysis of the enzyme sequences were carried out with the ExPASy-ProtParam tool, MEME server, SOPMA, PDBsum tool, CYS-REC tool, SWISS-MODEL, SAVES servers, TMHMM program, GlobPlot, and peptide cutter software. The assessed in-silico data were compared with the published experimental results for validation. Results The alignment of sixty fibrinolytic serine protease enzymes (molecular mass 12-86 kDa) sequences showed 49 enzymes possess a conserved domain with a catalytic triad of Asp196, His242, and Ser569. The predicted instability and aliphatic indexes were 1.94-37.77, and 68.9-93.41, respectively, indicating high thermostability. The random coil means value suggested the predominance of this secondary structure in these proteases. A set of 50 amino acid residues representing motif 3 signifies the Peptidase S8/S53 domain that was invariably observed in 56 sequences. Additionally, 28 sequences have transmembrane helices, with two having the most disordered areas, and they pose 25 enzyme cleavage sites. A comparative analysis of the experimental work with the results of in-silico study put forward the characteristics of the enzyme sequences JF739176.1 and MF677779.1 to be considered when creating a potential mutant enzyme as these sequences are stable at high pH with thermostability and to exhibit αβ-fibrinogenase activity in both experimental and in-silico studies.
Collapse
Affiliation(s)
- Nitisha Boro
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| |
Collapse
|
2
|
Kiya M, Shiga S, Ding P, Koide S, Makabe K. β-Strand-mediated Domain-swapping in the Absence of Hydrophobic Core Repacking. J Mol Biol 2024; 436:168405. [PMID: 38104859 DOI: 10.1016/j.jmb.2023.168405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Domain swapping is a process wherein a portion of a protein is exchanged with its counterpart in another copy of the molecule, resulting in the formation of homo-oligomers with concomitant repacking of a hydrophobic core. Here, we report domain swapping triggered upon modifying a β-hairpin sequence within a single-layer β-sheet (SLB) of a model protein, OspA that did not involve the formation of a reorganized hydrophobic core. The replacement of two β-hairpin sequences with a Gly-Gly and shorteing of a β-hairpin resulted in a protein that formed two distinct crystal structures under similar conditions: one was monomeric, similar to the parental molecule, whereas the other was a domain-swapped dimer, mediated by an intermolecular β-sheet in the SLB portion. Based on the dimer interface structure, we replaced the Gly-Gly sequence with three-residue sequences that enable the formation of a consecutive intermolecular β-sheet, including the Cys-Thr-Cys sequence that formed a stable disulfide-linked dimer. These results provide new insights into protein folding, evolution, and the designability of protein structure.
Collapse
Affiliation(s)
- Mikoto Kiya
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shota Shiga
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Peiwei Ding
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, and Perlmutter Cancer Center at NYU Langone Health, New York, NY 10016, USA
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
3
|
Nazzaro A, Lu B, Sawyer N, Watkins AM, Arora PS. Macrocyclic β-Sheets Stabilized by Hydrogen Bond Surrogates. Angew Chem Int Ed Engl 2023; 62:e202303943. [PMID: 37170337 PMCID: PMC10592574 DOI: 10.1002/anie.202303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
Mimics of protein secondary and tertiary structure offer rationally-designed inhibitors of biomolecular interactions. β-Sheet mimics have a storied history in bioorganic chemistry and are typically designed with synthetic or natural turn segments. We hypothesized that replacement of terminal inter-β-strand hydrogen bonds with hydrogen bond surrogates (HBS) may lead to conformationally-defined macrocyclic β-sheets without the requirement for natural or synthetic β-turns, thereby providing a minimal mimic of a protein β-sheet. To access turn-less antiparallel β-sheet mimics, we developed a facile solid phase synthesis protocol. We surveyed a dataset of protein β-sheets for naturally observed interstrand side chain interactions. This bioinformatics survey highlighted an over-abundance of aromatic-aromatic, cation-π and ionic interactions in β-sheets. In correspondence with natural β-sheets, we find that minimal HBS mimics show robust β-sheet formation when specific amino acid residue pairings are incorporated. In isolated β-sheets, aromatic interactions endow superior conformational stability over ionic or cation-π interactions. Circular dichroism and NMR spectroscopies, along with high-resolution X-ray crystallography, support our design principles.
Collapse
Affiliation(s)
- Alex Nazzaro
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| | - Brandon Lu
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| | - Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| | | | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| |
Collapse
|
4
|
Williams RV, Rogals MJ, Eletsky A, Huang C, Morris LC, Moremen KW, Prestegard JH. AssignSLP_GUI, a software tool exploiting AI for NMR resonance assignment of sparsely labeled proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107336. [PMID: 36442299 PMCID: PMC9742323 DOI: 10.1016/j.jmr.2022.107336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 05/06/2023]
Abstract
Not all proteins are amenable to uniform isotopic labeling with 13C and 15N, something needed for the widely used, and largely deductive, triple resonance assignment process. Among them are proteins expressed in mammalian cell culture where native glycosylation can be maintained, and proper formation of disulfide bonds facilitated. Uniform labeling in mammalian cells is prohibitively expensive, but sparse labeling with one or a few isotopically enriched amino acid types is an option for these proteins. However, assignment then relies on accessing the best match between a variety of measured NMR parameters and predictions based on 3D structure, often from X-ray crystallography. Finding this match is a challenging process that has benefitted from many computational tools, including trained neural nets for chemical shift prediction, genetic algorithms for searches through a myriad of assignment possibilities, and now AI-based prediction of high-quality structures for protein targets. AssignSLP_GUI, a new version of a software package for assignment of resonances from sparsely-labeled proteins, uses many of these tools. These tools and new additions to the package are highlighted in an application to a sparsely-labeled domain from a glycoprotein, CEACAM1.
Collapse
Affiliation(s)
- Robert V Williams
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Monique J Rogals
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Alexander Eletsky
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Chin Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Laura C Morris
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Williams RV, Huang C, Moremen KW, Amster IJ, Prestegard JH. NMR analysis suggests the terminal domains of Robo1 remain extended but are rigidified in the presence of heparan sulfate. Sci Rep 2022; 12:14769. [PMID: 36042257 PMCID: PMC9427851 DOI: 10.1038/s41598-022-18769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Human roundabout 1 (hRobo1) is an extracellular receptor glycoprotein that plays important roles in angiogenesis, organ development, and tumor progression. Interaction between hRobo1 and heparan sulfate (HS) has been shown to be essential for its biological activity. To better understand the effect of HS binding we engineered a lanthanide-binding peptide sequence (Loop) into the Ig2 domain of hRobo1. Native mass spectrometry was used to verify that loop introduction did not inhibit HS binding or conformational changes previously suggested by gas phase ion mobility measurements. NMR experiments measuring long-range pseudocontact shifts were then performed on 13C-methyl labeled hRobo1-Ig1-2-Loop in HS-bound and unbound forms. The magnitude of most PCSs for methyl groups in the Ig1 domain increase in the bound state confirming a change in the distribution of interdomain geometries. A grid search over Ig1 orientations to optimize the fit of data to a single conformer for both forms produced two similar structures, both of which differ from existing X-ray crystal structures and structures inferred from gas-phase ion mobility measurements. The structures and degree of fit suggest that the hRobo1-Ig1-2 structure changes slightly and becomes more rigid on HS binding. This may have implications for Robo-Slit signaling.
Collapse
Affiliation(s)
- Robert V Williams
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Chin Huang
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - I Jonathan Amster
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA, USA
| | - James H Prestegard
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Yue K. Modeling protein structure as a stable static equilibrium. Phys Rev E 2022; 106:024410. [PMID: 36110022 DOI: 10.1103/physreve.106.024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
We present evidence that the protein structure can be modeled as a stable static equilibrium, determined mainly by compressive supports in the nonpolar interior. That is, protein structures derive their structural strength through the same mechanical principles as do conventional structures like bridges and buildings. This is based on the observation that the experimentally elucidated structural determinants, the interior nonpolar side chains, are engaged in strong compressions in static terms. At the same time, major substructures in proteins, helices and h-bonded strands, because of their geometry, inherently leave gaps in the space they occupy. Under the compressive force, nonpolar side chains from one substructure can protrude into the gaps of another neighboring substructure and block its motion. As a result, interlocking of substructures can form, which builds up the nonpolar core assembly. The native structure then is the one with the structurally most stable core assembly. While intuitively appealing, this is a radical departure from the prevailing thinking that protein native structure is determined by global energy minimum, which is founded on thermodynamic hypothesis. Furthermore, to develop an effective model for analyzing protein structure with conventional tools, a proper mechanical representation must be established. By proving that the stability of the equilibrium in compressive interactions is conditioned on a form of mechanical energy minimum, we show that our notion of native structure can be equally consistent with the thermodynamic hypothesis. By mathematically treating the blocking action, an interaction, as a bar, a physical object, we succeed in representing and analyzing the core assembly as truss, a conventional structure. In this paper we define and expound step-by-step increasingly integrated interlocking patterns. We then analyze the core assemblies of a large set of diverse protein database structures. A native structure can be distinguished from decoys by comparing the composition and strength of their core assemblies. We show the results for two sets of native structures vs decoys.
Collapse
Affiliation(s)
- Kaizhi Yue
- Conformational Search Solutions, Palo Alto, California 94306, USA
| |
Collapse
|
7
|
The Effects of Charged Amino Acid Side-Chain Length on Diagonal Cross-Strand Interactions between Carboxylate- and Ammonium-Containing Residues in a β-Hairpin. Molecules 2022; 27:molecules27134172. [PMID: 35807421 PMCID: PMC9268152 DOI: 10.3390/molecules27134172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/02/2023] Open
Abstract
The β-sheet is one of the common protein secondary structures, and the aberrant aggregation of β-sheets is implicated in various neurodegenerative diseases. Cross-strand interactions are an important determinant of β-sheet stability. Accordingly, both diagonal and lateral cross-strand interactions have been studied. Surprisingly, diagonal cross-strand ion-pairing interactions have yet to be investigated. Herein, we present a systematic study on the effects of charged amino acid side-chain length on a diagonal ion-pairing interaction between carboxylate- and ammonium-containing residues in a β-hairpin. To this end, 2D-NMR was used to investigate the conformation of the peptides. The fraction folded population and the folding free energy were derived from the chemical shift data. The fraction folded population for these peptides with potential diagonal ion pairs was mostly lower compared to the corresponding peptide with a potential lateral ion pair. The diagonal ion-pairing interaction energy was derived using double mutant cycle analysis. The Asp2-Dab9 (Asp: one methylene; Dab: two methylenes) interaction was the most stabilizing (−0.79 ± 0.14 kcal/mol), most likely representing an optimal balance between the entropic penalty to enable the ion-pairing interaction and the number of side-chain conformations that can accommodate the interaction. These results should be useful for designing β-sheet containing molecular entities for various applications.
Collapse
|
8
|
Choi Y. Computational Identification and Design of Complementary β-Strand Sequences. Methods Mol Biol 2022; 2405:83-94. [PMID: 35298809 DOI: 10.1007/978-1-0716-1855-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ß-sheet is a regular secondary structure element which consists of linear segments called ß-strands. They are involved in many important biological processes, and some are known to be related to serious diseases such as neurologic disorders and amyloidosis. The self-assembly of ß-sheet peptides also has practical applications in material sciences since they can be building blocks of repeated nanostructures. Therefore, computational algorithms for identification of ß-sheet formation can offer useful insight into the mechanism of disease-prone protein segments and the construction of biocompatible nanomaterials. Despite the recent advances in structure-based methods for the assessment of atomic interactions, identifying amyloidogenic peptides has proven to be extremely difficult since they are structurally very flexible. Thus, an alternative strategy is required to describe ß-sheet formation. It has been hypothesized and observed that there are certain amino acid propensities between ß-strand pairs. Based on this hypothesis, a database search algorithm, B-SIDER, is developed for the identification and design of ß-sheet forming sequences. Given a target sequence, the algorithm identifies exact or partial matches from the structure database and constructs a position-specific score matrix. The score matrix can be utilized to design novel sequences that can form a ß-sheet specifically with the target.
Collapse
Affiliation(s)
- Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
9
|
Richaud AD, Zhao G, Hobloss S, Roche SP. Folding in Place: Design of β-Strap Motifs to Stabilize the Folding of Hairpins with Long Loops. J Org Chem 2021; 86:13535-13547. [PMID: 34499510 PMCID: PMC8576641 DOI: 10.1021/acs.joc.1c01442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite their pivotal role in defining antibody affinity and protein function, β-hairpins harboring long noncanonical loops remain synthetically challenging because of the large entropic penalty associated with their conformational folding. Little is known about the contribution and impact of stabilizing motifs on the folding of β-hairpins with loops of variable length and plasticity. Here, we report a design of minimalist β-straps (strap = strand + cap) that offset the entropic cost of long-loop folding. The judicious positioning of noncovalent interactions (hydrophobic cluster and salt-bridge) within the novel 8-mer β-strap design RW(V/H)W···WVWE stabilizes hairpins with up to 10-residue loops of varying degrees of plasticity (Tm up to 52 °C; 88 ± 1% folded at 18 °C). This "hyper" thermostable β-strap outperforms the previous gold-standard technology of β-strand-β-cap (16-mer) and provides a foundation for producing new classes of long hairpins as a viable and practical alternative to macrocyclic peptides.
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Samir Hobloss
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
10
|
Agerschou ED, Borgmann V, Wördehoff MM, Hoyer W. Inhibitor and substrate cooperate to inhibit amyloid fibril elongation of α-synuclein. Chem Sci 2020; 11:11331-11337. [PMID: 34094375 PMCID: PMC8162328 DOI: 10.1039/d0sc04051g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
In amyloid fibril elongation, soluble growth substrate binds to the fibril-end and converts into the fibril conformation. This process is targeted by inhibitors that block fibril-ends. Here, we investigated how the elongation of α-synuclein (αS) fibrils, which are associated with Parkinson's disease and other synucleinopathies, is inhibited by αS variants with a preformed hairpin in the critical N-terminal region comprising residues 36-57. The inhibitory efficiency is strongly dependent on the specific position of the hairpin. We find that the inhibitor and substrate concentration dependencies can be analyzed with models of competitive enzyme inhibition. Remarkably, the growth substrate, i.e., wild-type αS, supports inhibition by stabilizing the elongation-incompetent blocked state. This observation allowed us to create inhibitor-substrate fusions that achieved inhibition at low nanomolar concentration. We conclude that inhibitor-substrate cooperativity can be exploited for the design of fibril growth inhibitors.
Collapse
Affiliation(s)
- Emil Dandanell Agerschou
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
| | - Vera Borgmann
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
| | - Michael M Wördehoff
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich 52425 Jülich Germany
| |
Collapse
|
11
|
Abstract
A class of secondary structure prediction algorithms use the information from the statistics of the residue pairs found in secondary structural elements. Because the protein folding process is dominated by backbone hydrogen bonding, an approach based on backbone hydrogen-bonded residue pairings would improve the predicting capabilities of these class algorithms. The reliability of the prediction algorithms depends on the quality of the statistics, therefore, of the data set. In this study, it was aimed to determine the propensities of the backbone hydrogen-bonded residue pairings for secondary structural elements of α-helix and β-sheet in globular proteins using a new and comprehensive data set created from the peptides deposited in Worldwide Protein Data Bank. A master data set including 4882 globular peptide chains with resolution better than 2.5 Å, sequence identity smaller than 25% and length of no shorter than 100 residues were created. Separate data sub sets also were created for helix and sheet structures from master set and each sub set includes 4594 and 4483 chains, respectively. Backbone hydrogen-bonded residue pairings in helices and sheets were detected and the propensities of them were represented as odds ratios (observed/[random or expected]) in matrices. Propensities assigned by this study to the residue pairings in secondary structural elements (as helix, overall strands, parallel strands and antiparallel strands) differ from the previous studies by 19 to 34%. These dissimilarities are important and they would cause further improvements in secondary structure prediction algorithms.
Collapse
Affiliation(s)
- Cevdet Nacar
- Department of Biophysics, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
12
|
Est CB, Mangrolia P, Murphy RM. ROSETTA-informed design of structurally stabilized cyclic anti-amyloid peptides. Protein Eng Des Sel 2019; 32:47-57. [PMID: 31650164 DOI: 10.1093/protein/gzz016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
β-amyloid oligomers are thought to be the most toxic species formed en route to fibril deposition in Alzheimer's disease. Transthyretin is a natural sequestering agent of β-amyloid oligomers: the binding site to β-amyloid has been traced to strands G/H of the inner β-sheet of transthyretin. A linear peptide, with the same primary sequence as the β-amyloid binding domain on transthyretin, was moderately effective at inhibiting β-amyloid fibril growth. Insertion of a β-turn template and cyclization greatly increased stability against proteolysis and improved efficacy as an amyloid inhibitor. However, the cyclic peptide still contained a significant amount of disorder. Using the Simple Cyclic Peptide Application within ROSETTA as an in silico predictor of cyclic peptide conformation and stability, we investigated putative structural enhancements, including stabilization by disulfide linkages and insertion of a second β-turn template. Several candidates were synthesized and tested for secondary structure and ability to inhibit β-amyloid aggregation. The results demonstrate that cyclization, β-sheet structure and conformational homogeneity are all preferable design features, whereas disulfide bond formation across the two β-strands is not preferable.
Collapse
Affiliation(s)
- Chandler B Est
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Parth Mangrolia
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| |
Collapse
|
13
|
Yu TG, Kim HS, Choi Y. B-SIDER: Computational Algorithm for the Design of Complementary β-Sheet Sequences. J Chem Inf Model 2019; 59:4504-4511. [PMID: 31512871 DOI: 10.1021/acs.jcim.9b00548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The β-sheet is an element of protein secondary structure, and intra-/intermolecular β-sheet interactions play pivotal roles in biological regulatory processes including scaffolding, transporting, and oligomerization. In nature, a β-sheet formation is tightly regulated because dysregulated β-stacking often leads to severe diseases such as Alzheimer's, Parkinson's, systemic amyloidosis, or diabetes. Thus, the identification of intrinsic β-sheet-forming propensities can provide valuable insight into protein designs for the development of novel therapeutics. However, structure-based design methods may not be generally applicable to such amyloidogenic peptides mainly owing to high structural plasticity and complexity. Therefore, an alternative design strategy based on complementary sequence information is of significant importance. Herein, we developed a database search method called β-Stacking Interaction DEsign for Reciprocity (B-SIDER) for the design of complementary β-strands. This method makes use of the structural database information and generates target-specific score matrices. The discriminatory power of the B-SIDER score function was tested on representative amyloidogenic peptide substructures against a sequence-based score matrix (PASTA 2.0) and two popular ab initio protein design score functions (Rosetta and FoldX). B-SIDER is able to distinguish wild-type amyloidogenic β-strands as favored interactions in a more consistent manner than other methods. B-SIDER was prospectively applied to the design of complementary β-strands for a splitGFP scaffold. Three variants were identified to have stronger interactions than the original sequence selected through a directed evolution, emitting higher fluorescence intensities. Our results indicate that B-SIDER can be applicable to the design of other β-strands, assisting in the development of therapeutics against disease-related amyloidogenic peptides.
Collapse
Affiliation(s)
- Tae-Geun Yu
- Department of Biological Sciences , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Hak-Sung Kim
- Department of Biological Sciences , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Yoonjoo Choi
- Department of Biological Sciences , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
14
|
Verma N, Dollinger P, Kovacic F, Jaeger KE, Gohlke H. The Membrane-Integrated Steric Chaperone Lif Facilitates Active Site Opening of Pseudomonas aeruginosa Lipase A. J Comput Chem 2019; 41:500-512. [PMID: 31618459 DOI: 10.1002/jcc.26085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
Lipases are essential and widely used biocatalysts. Hence, the production of lipases requires a detailed understanding of the molecular mechanism of its folding and secretion. Lipase A from Pseudomonas aeruginosa, PaLipA, constitutes a prominent example that has additional relevance because of its role as a virulence factor in many diseases. PaLipA requires the assistance of a membrane-integrated steric chaperone, the lipase-specific foldase Lif, to achieve its enzymatically active state. However, the molecular mechanism of how Lif activates its cognate lipase has remained elusive. Here, we show by molecular dynamics simulations at the atomistic level and potential of mean force computations that Lif catalyzes the activation process of PaLipA by structurally stabilizing an intermediate PaLipA conformation, particularly a β-sheet in the region of residues 17-30, such that the opening of PaLipA's lid domain is facilitated. This opening allows substrate access to PaLipA's catalytic site. A surprising and so far not fully understood aspect of our study is that the open state of PaLipA is unstable compared to the closed one according to our computational and in vitro biochemical results. We thus speculate that further interactions of PaLipA with the Xcp secretion machinery and/or components of the extracellular matrix contribute to the remaining activity of secreted PaLipA. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neha Verma
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Peter Dollinger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| |
Collapse
|
15
|
Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Arch Biochem Biophys 2019; 661:149-167. [DOI: 10.1016/j.abb.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
16
|
Haworth NL, Wouters MJ, Hunter MO, Ma L, Wouters MA. Cross-strand disulfides in the hydrogen bonding site of antiparallel β-sheet (aCSDhs): Forbidden disulfides that are highly strained, easily broken. Protein Sci 2018; 28:239-256. [PMID: 30383331 DOI: 10.1002/pro.3545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Some disulfide bonds perform important structural roles in proteins, but another group has functional roles via redox reactions. Forbidden disulfides are stressed disulfides found in recognizable protein contexts, which currently constitute more than 10% of all disulfides in the PDB. They likely have functional redox roles and constitute a major subset of all redox-active disulfides. The torsional strain of forbidden disulfides is typically higher than for structural disulfides, but not so high as to render them immediately susceptible to reduction under physionormal conditions. Previously we characterized the most abundant forbidden disulfide in the Protein Data Bank, the aCSDn: a canonical motif in which disulfide-bonded cysteine residues are positioned directly opposite each other on adjacent anti-parallel β-strands such that the backbone hydrogen-bonded moieties are directed away from each other. Here we perform a similar analysis for the aCSDh, a less common motif in which the opposed cysteine residues are backbone hydrogen bonded. Oxidation of two Cys in this context places significant strain on the protein system, with the β-chains tilting toward each other to allow disulfide formation. Only left-handed aCSDh conformations are compatible with the inherent right-handed twist of β-sheets. aCSDhs tend to be more highly strained than aCSDns, particularly when both hydrogen bonds are formed. We discuss characterized roles of aCSDh motifs in proteins of the dataset, which include catalytic disulfides in ribonucleotide reductase and ahpC peroxidase as well as a redox-active disulfide in P1 lysozyme, involved in a major conformation change. The dataset also includes many binding proteins.
Collapse
Affiliation(s)
- Naomi L Haworth
- Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.,Structural & Computational Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Michael J Wouters
- Electricity Section, National Measurement Institute, Lindfield, New South Wales, Australia
| | - Morgan O Hunter
- Bioinformatics, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Lixia Ma
- School of Statistics, Henan University of Economics and Law, Henan Province, China
| | - Merridee A Wouters
- Bioinformatics, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.,Cancer Data Science, Children's Medical Research Institute, Westmead, New South Wales, Australia
| |
Collapse
|
17
|
Oi C, Treado JD, Levine ZA, Lim CS, Knecht KM, Xiong Y, O'Hern CS, Regan L. A threonine zipper that mediates protein-protein interactions: Structure and prediction. Protein Sci 2018; 27:1969-1977. [PMID: 30198622 PMCID: PMC6201716 DOI: 10.1002/pro.3505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 01/31/2023]
Abstract
We present the structure of an engineered protein-protein interface between two beta barrel proteins, which is mediated by interactions between threonine (Thr) residues. This Thr zipper structure suggests that the protein interface is stabilized by close-packing of the Thr residues, with only one intermonomer hydrogen bond (H-bond) between two of the Thr residues. This Thr-rich interface provides a unique opportunity to study the behavior of Thr in the context of many other Thr residues. In previous work, we have shown that the side chain (χ1 ) dihedral angles of interface and core Thr residues can be predicted with high accuracy using a hard sphere plus stereochemical constraint (HS) model. Here, we demonstrate that in the Thr-rich local environment of the Thr zipper structure, we are able to predict the χ1 dihedral angles of most of the Thr residues. Some, however, are not well predicted by the HS model. We therefore employed explicitly solvated molecular dynamics (MD) simulations to further investigate the side chain conformations of these residues. The MD simulations illustrate the role that transient H-bonding to water, in combination with steric constraints, plays in determining the behavior of these Thr side chains. Broader Audience Statement: Protein-protein interactions are critical to life and the search for ways to disrupt adverse protein-protein interactions involved in disease is an ongoing area of drug discovery. We must better understand protein-protein interfaces, both to be able to disrupt existing ones and to engineer new ones for a variety of biotechnological applications. We have discovered and characterized an artificial Thr-rich protein-protein interface. This novel interface demonstrates a heretofore unknown property of Thr-rich surfaces: mediating protein-protein interactions.
Collapse
Affiliation(s)
- Curran Oi
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticut06520
| | - John D. Treado
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticut06520
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticut06520
| | - Zachary A. Levine
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
- Department of PathologyYale School of MedicineNew HavenConnecticut06520
| | - Christopher S. Lim
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
| | - Kirsten M. Knecht
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
| | - Yong Xiong
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
| | - Corey S. O'Hern
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticut06520
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticut06520
- Department of PhysicsYale UniversityNew HavenConnecticut06520
- Department of Applied PhysicsYale UniversityNew HavenConnecticut06520
| | - Lynne Regan
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticut06520
- Department of ChemistryYale UniversityNew HavenConnecticut06520
- Institute of Quantitative BiologyBiochemistry and Biotechnology, Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh
| |
Collapse
|
18
|
Ribosomal RACK1:Protein Kinase C βII Modulates Intramolecular Interactions between Unstructured Regions of Eukaryotic Initiation Factor 4G (eIF4G) That Control eIF4E and eIF3 Binding. Mol Cell Biol 2018; 38:MCB.00306-18. [PMID: 30012864 DOI: 10.1128/mcb.00306-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
The receptor for activated C kinase (RACK1), a conserved constituent of eukaryotic ribosomes, mediates phosphorylation of eukaryotic initiation factor 4G1(S1093) [eIF4G1(S1093)] and eIF3a(S1364) by protein kinase C βII (PKCβII) (M. I. Dobrikov, E. Y. Dobrikova, and M. Gromeier, Mol Cell Biol 38:e00304-18, 2018, https://doi.org/10.1128/MCB.00304-18). RACK1:PKCβII activation drives a phorbol ester-induced surge of global protein synthesis and template-specific translation induction of PKC-Raf-extracellular signal-regulated kinase 1/2 (ERK1/2)-responsive genes. For unraveling mechanisms of RACK1:PKCβII-mediated translation stimulation, we used sequentially truncated eIF4G1 in coimmunoprecipitation analyses to delineate a set of autoinhibitory elements in the N-terminal unstructured region (surrounding the eIF4E-binding motif) and the interdomain linker (within the eIF3-binding site) of eIF4G1. Computer-based predictions of secondary structure, mutational analyses, and fluorescent titration with the β-sheet dye thioflavin T suggest that eIF4G1(S1093) modulates a 4-stranded β-sheet composed of antiparallel β-hairpins formed by the autoinhibitory elements in eIF4G1's unstructured regions. The intact β-sheet "locks" the eIF4G configuration, preventing assembly with eIF3/40S ribosomal subunits. Upon PKC stimulation, activated RACK1:PKCβII phosphorylates eIF4G(S1093) in the tight 48S initiation complex, possibly facilitating dissociation/recycling of eIF4F.
Collapse
|
19
|
Jana P, Ehlers M, Zellermann E, Samanta K, Schmuck C. pH-Controlled Formation of a Stable β-Sheet and Amyloid-like Fibers from an Amphiphilic Peptide: The Importance of a Tailor-Made Binding Motif for Secondary Structure Formation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Poulami Jana
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Martin Ehlers
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Elio Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Krishnananda Samanta
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| |
Collapse
|
20
|
Jana P, Ehlers M, Zellermann E, Samanta K, Schmuck C. pH-Controlled Formation of a Stable β-Sheet and Amyloid-like Fibers from an Amphiphilic Peptide: The Importance of a Tailor-Made Binding Motif for Secondary Structure Formation. Angew Chem Int Ed Engl 2016; 55:15287-15291. [DOI: 10.1002/anie.201608069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Poulami Jana
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Martin Ehlers
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Elio Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Krishnananda Samanta
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| |
Collapse
|
21
|
Smith DJ, Brat GA, Medina SH, Tong D, Huang Y, Grahammer J, Furtmüller GJ, Oh BC, Nagy-Smith KJ, Walczak P, Brandacher G, Schneider. JP. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. NATURE NANOTECHNOLOGY 2016; 11:95-102. [PMID: 26524396 PMCID: PMC4706483 DOI: 10.1038/nnano.2015.238] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 09/08/2015] [Indexed: 05/21/2023]
Abstract
Many surgeries are complicated by the need to anastomose, or reconnect, micrometre-scale vessels. Although suturing remains the gold standard for anastomosing vessels, it is difficult to place sutures correctly through collapsed lumen, making the procedure prone to failure. Here, we report a multiphase transitioning peptide hydrogel that can be injected into the lumen of vessels to facilitate suturing. The peptide, which contains a photocaged glutamic acid, forms a solid-like gel in a syringe and can be shear-thin delivered to the lumen of collapsed vessels (where it distends the vessel) and the space between two vessels (where it is used to approximate the vessel ends). Suturing is performed directly through the gel. Light is used to initiate the final gel-sol phase transition that disrupts the hydrogel network, allowing the gel to be removed and blood flow to resume. This gel adds a new tool to the armamentarium for micro- and supermicrosurgical procedures.
Collapse
Affiliation(s)
- Daniel J. Smith
- National Cancer Institute, Chemical Biology Laboratory, Frederick, MD 21702 USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 USA
| | - Gabriel A. Brat
- Johns Hopkins University School of Medicine, Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Baltimore, Maryland 21287 USA
| | - Scott H. Medina
- National Cancer Institute, Chemical Biology Laboratory, Frederick, MD 21702 USA
| | - Dedi Tong
- Johns Hopkins University School of Medicine, Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Baltimore, Maryland 21287 USA
| | - Yong Huang
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland 21218 USA
| | - Johanna Grahammer
- Johns Hopkins University School of Medicine, Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Baltimore, Maryland 21287 USA
| | - Georg J. Furtmüller
- Johns Hopkins University School of Medicine, Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Baltimore, Maryland 21287 USA
| | - Byoung Chol Oh
- Johns Hopkins University School of Medicine, Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Baltimore, Maryland 21287 USA
| | - Katelyn J. Nagy-Smith
- National Cancer Institute, Chemical Biology Laboratory, Frederick, MD 21702 USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 USA
| | - Piotr Walczak
- Johns Hopkins University School of Medicine, Department of Radiology and Radiological Science, Baltimore, Maryland 21287 USA
| | - Gerald Brandacher
- Johns Hopkins University School of Medicine, Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Baltimore, Maryland 21287 USA
| | - Joel P. Schneider.
- National Cancer Institute, Chemical Biology Laboratory, Frederick, MD 21702 USA
- Corresponding author, Tel: 301 846 5954,
| |
Collapse
|
22
|
Abstract
In this issue of Structure, Zhang and colleagues compare the helix-helix interaction spaces of an extensive database of soluble and membrane proteins. Intriguingly, the resultant clusters show similar helix interaction geometries between the protein classes, differing in detail only by patterns of local interactions and inter-helical distances.
Collapse
|
23
|
Zigoneanu IG, Sims CE, Allbritton NL. Separation of peptide fragments of a protein kinase C substrate fused to a β-hairpin by capillary electrophoresis. Anal Bioanal Chem 2015; 407:8999-9008. [PMID: 26427499 PMCID: PMC4662605 DOI: 10.1007/s00216-015-9065-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 01/23/2023]
Abstract
Synthetic peptides incorporating well-folded β-hairpin peptides possess advantages in a variety of cell biology applications by virtue of increased resistance to proteolytic degradation. In this study, the WKpG β-hairpin peptide fused to a protein kinase C (PKC) substrate was synthesized, and capillary-electrophoretic separation conditions for this peptide and its proteolytic fragments were developed. Fragments of WKpG-PKC were generated by enzymatic treatment with trypsin and Pronase E to produce standards for identification of degradation fragments in a cellular lysate. A simple buffer system of 250 mM H3PO4, pH 1.5 enabled separation of WKpG-PKC and its fragments by capillary electrophoresis in less than 16 min. Using a cellular lysate produced from Ba/F3 cells, the β-hairpin-conjugated substrate and its PKCα-phosphorylated product could be detected and separated from peptidase-generated fragments produced in a cell lysate. The method has potential application for identification and quantification of WKpG-PKC and its fragments in complex biological systems when the peptide is used as a reporter to assay PKC activity.
Collapse
Affiliation(s)
- Imola G Zigoneanu
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
- North Carolina State University, Raleigh, NC, 27695, USA
| | - Christopher E Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nancy L Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA.
- North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
24
|
De novo protein design: how do we expand into the universe of possible protein structures? Curr Opin Struct Biol 2015; 33:16-26. [DOI: 10.1016/j.sbi.2015.05.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 01/08/2023]
|
25
|
Eisert RJ, Kennedy SA, Waters ML. Investigation of the β-Sheet Interactions between dHP1 Chromodomain and Histone 3. Biochemistry 2015; 54:2314-22. [DOI: 10.1021/acs.biochem.5b00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Robyn J. Eisert
- Department
of Chemistry,
CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sarah A. Kennedy
- Department
of Chemistry,
CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department
of Chemistry,
CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
26
|
Kuo HT, Liu SL, Chiu WC, Fang CJ, Chang HC, Wang WR, Yang PA, Li JH, Huang SJ, Huang SL, Cheng RP. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin. Amino Acids 2015; 47:885-98. [PMID: 25646959 DOI: 10.1007/s00726-015-1916-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif.
Collapse
Affiliation(s)
- Hsiou-Ting Kuo
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Haworth NL, Wouters MA. Cross-strand disulfides in the non-hydrogen bonding site of antiparallel β-sheet (aCSDns): poised for biological switching. RSC Adv 2015. [DOI: 10.1039/c5ra10672a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
aCSDns are forbidden disulfides with protein redox-activity. Within the aCSDn structural motif, a cognate substrate of Trx-like enzymes, the disulfide bonds are strained and metastable, facilitating their role as redox-regulated protein switches.
Collapse
Affiliation(s)
- Naomi L. Haworth
- Life and Environmental Sciences
- Deakin University
- Geelong 3217
- Australia
- Victor Chang Cardiac Research Institute
| | - Merridee A. Wouters
- Olivia Newton-John Cancer Research Institute
- Heidelberg 3084
- Australia
- School of Cancer Medicine
- La Trobe University
| |
Collapse
|
28
|
Fu M, Huang Z, Mao Y, Tao S. Neighbor preferences of amino acids and context-dependent effects of amino acid substitutions in human, mouse, and dog. Int J Mol Sci 2014; 15:15963-80. [PMID: 25210846 PMCID: PMC4200849 DOI: 10.3390/ijms150915963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 12/23/2022] Open
Abstract
Amino acids show apparent propensities toward their neighbors. In addition to preferences of amino acids for their neighborhood context, amino acid substitutions are also considered to be context-dependent. However, context-dependence patterns of amino acid substitutions still remain poorly understood. Using relative entropy, we investigated the neighbor preferences of 20 amino acids and the context-dependent effects of amino acid substitutions with protein sequences in human, mouse, and dog. For 20 amino acids, the highest relative entropy was mostly observed at the nearest adjacent site of either N- or C-terminus except C and G. C showed the highest relative entropy at the third flanking site and periodic pattern was detected at G flanking sites. Furthermore, neighbor preference patterns of amino acids varied greatly in different secondary structures. We then comprehensively investigated the context-dependent effects of amino acid substitutions. Our results showed that nearly half of 380 substitution types were evidently context dependent, and the context-dependent patterns relied on protein secondary structures. Among 20 amino acids, P elicited the greatest effect on amino acid substitutions. The underlying mechanisms of context-dependent effects of amino acid substitutions were possibly mutation bias at a DNA level and natural selection. Our findings may improve secondary structure prediction algorithms and protein design; moreover, this study provided useful information to develop empirical models of protein evolution that consider dependence between residues.
Collapse
Affiliation(s)
- Mingchuan Fu
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Zhuoran Huang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Yuanhui Mao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
29
|
Affiliation(s)
- Zhaoqian Su
- Physics Department, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Cristiano L. Dias
- Physics Department, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
30
|
Tumminakatti S, Reddy DN, Lakshmi AN, Prabhakaran EN. Synthesis of 5,6-dihydro-4H-1,3-thiazine containing peptide mimics from N-(3-hydroxypropyl)thioamides and epimerization studies. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.06.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
|
32
|
A theoretical study of the stability of disulfide bridges in various β-sheet structures of protein segment models. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.12.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Rabong C, Schuster C, Liptaj T, Prónayová N, Delchev VB, Jordis U, Phopase J. NXO beta structure mimicry: an ultrashort turn/hairpin mimic that folds in water. RSC Adv 2014. [DOI: 10.1039/c4ra01210k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An NXO building block derived tetrapeptide mimic emulates a natural proline-glycine β-turn/hairpin in polar media, including water at room temperature.
Collapse
Affiliation(s)
- Constantin Rabong
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- A-1060 Vienna, Austria
| | - Christoph Schuster
- Department of Environmental Geosciences
- University of Vienna
- A-1090 Vienna, Austria
| | - Tibor Liptaj
- Department of NMR and Mass Spectrometry
- Institute of Analytical Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- 81237 Bratislava, Slovak Republic
| | - Nadežda Prónayová
- Department of NMR and Mass Spectrometry
- Institute of Analytical Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- 81237 Bratislava, Slovak Republic
| | - Vassil B. Delchev
- Department of Physical Chemistry
- University of Plovdiv
- 4000 Plovdiv, Bulgaria
| | - Ulrich Jordis
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- A-1060 Vienna, Austria
| | - Jaywant Phopase
- Integrative Regenerative Medicine Centre (IGEN) & Department of Physics
- Chemistry and Biology (IFM)
- 58183 Linköping, Sweden
| |
Collapse
|
34
|
Abstract
Since the first report in 1993 (JACS 115, 5887-5888) of a peptide able to form a monomeric β-hairpin structure in aqueous solution, the design of peptides forming either β-hairpins (two-stranded antiparallel β-sheets) or three-stranded antiparallel β-sheets has become a field of growing interest and activity. These studies have yielded great insights into the principles governing the stability and folding of β-hairpins and antiparallel β-sheets. This chapter provides an overview of the reported β-hairpin/β-sheet peptides focussed on the applied design criteria, reviews briefly the factors contributing to β-hairpin/β-sheet stability, and describes a protocol for the de novo design of β-sheet-forming peptides based on them. Guidelines to select appropriate turn and strand residues and to avoid self-association are provided. The methods employed to check the success of new designed peptides are also summarized. Since NMR is the best technique to that end, NOEs and chemical shifts characteristic of β-hairpins and three-stranded antiparallel β-sheets are given.
Collapse
Affiliation(s)
- M Angeles Jiménez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Física Rocasolano (IQFR), Serrano 119, 28006, Madrid, Spain,
| |
Collapse
|
35
|
Kuo HT, Fang CJ, Tsai HY, Yang MF, Chang HC, Liu SL, Kuo LH, Wang WR, Yang PA, Huang SJ, Huang SL, Cheng RP. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate-containing residues and lysine analogues in a β-hairpin. Biochemistry 2013; 52:9212-22. [PMID: 24328126 DOI: 10.1021/bi400974x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
β-Sheets are one of the fundamental three-dimensional building blocks for protein structures. Oppositely charged amino acids are frequently observed directly across one another in antiparallel sheet structures, suggesting the importance of cross-strand ion pairing interactions. Despite the apparent electrostatic nature of ion pairing interactions, the charged amino acids Asp, Glu, Arg, Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. Accordingly, the effect of charged amino acid side chain length on cross-strand ion pairing interactions at lateral non-hydrogen bonded positions was investigated in a β-hairpin motif. The negatively charged residues with a carboxylate (Asp, Glu, Aad in increasing length) were incorporated at position 4, and the positively charged residues with an ammonium (Dap, Dab, Orn, Lys in increasing length) were incorporated at position 9. The fraction folded population and folding free energy were derived from the chemical shift deviation data. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Only the Asp/Glu-Dap interactions with shorter side chains and the Aad-Orn/Lys interactions with longer side chains exhibited stabilizing energetics, mostly relying on electrostatics and hydrophobics, respectively. This suggested the need for length matching of the interacting residues to stabilize the β-hairpin motif. A survey of a nonredundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Lys < Glu-Lys, also implying the need for length matching of the oppositely charged residues.
Collapse
Affiliation(s)
- Hsiou-Ting Kuo
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Craveur P, Joseph AP, Rebehmed J, de Brevern AG. β-Bulges: extensive structural analyses of β-sheets irregularities. Protein Sci 2013; 22:1366-78. [PMID: 23904395 DOI: 10.1002/pro.2324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 12/30/2022]
Abstract
β-Sheets are quite frequent in protein structures and are stabilized by regular main-chain hydrogen bond patterns. Irregularities in β-sheets, named β-bulges, are distorted regions between two consecutive hydrogen bonds. They disrupt the classical alternation of side chain direction and can alter the directionality of β-strands. They are implicated in protein-protein interactions and are introduced to avoid β-strand aggregation. Five different types of β-bulges are defined. Previous studies on β-bulges were performed on a limited number of protein structures or one specific family. These studies evoked a potential conservation during evolution. In this work, we analyze the β-bulge distribution and conservation in terms of local backbone conformations and amino acid composition. Our dataset consists of 66 times more β-bulges than the last systematic study (Chan et al. Protein Science 1993, 2:1574-1590). Novel amino acid preferences are underlined and local structure conformations are highlighted by the use of a structural alphabet. We observed that β-bulges are preferably localized at the N- and C-termini of β-strands, but contrary to the earlier studies, no significant conservation of β-bulges was observed among structural homologues. Displacement of β-bulges along the sequence was also investigated by Molecular Dynamics simulations.
Collapse
Affiliation(s)
- Pierrick Craveur
- INSERM, U665, DSIMB, F-75739, Paris, France; University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739, Paris, France; Institut National de la Transfusion Sanguine (INTS), F-75739, Paris, France; Laboratoire d'Excellence GR-Ex, F-75739, Paris, France
| | | | | | | |
Collapse
|
37
|
Statistical Analysis of Terminal Extensions of Protein β-Strand Pairs. Adv Bioinformatics 2013; 2013:909436. [PMID: 23424587 PMCID: PMC3569888 DOI: 10.1155/2013/909436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 12/30/2012] [Accepted: 12/30/2012] [Indexed: 11/17/2022] Open
Abstract
The long-range interactions, required to the accurate predictions of tertiary structures of β-sheet-containing proteins, are still difficult to simulate. To remedy this problem and to facilitate β-sheet structure predictions, many efforts have been made by computational methods. However, known efforts on β-sheets mainly focus on interresidue contacts or amino acid partners. In this study, to go one step further, we studied β-sheets on the strand level, in which a statistical analysis was made on the terminal extensions of paired β-strands. In most cases, the two paired β-strands have different lengths, and terminal extensions exist. The terminal extensions are the extended part of the paired strands besides the common paired part. However, we found that the best pairing required a terminal alignment, and β-strands tend to pair to make bigger common parts. As a result, 96.97% of β-strand pairs have a ratio of 25% of the paired common part to the whole length. Also 94.26% and 95.98% of β-strand pairs have a ratio of 40% of the paired common part to the length of the two β-strands, respectively. Interstrand register predictions by searching interacting β-strands from several alternative offsets should comply with this rule to reduce the computational searching space to improve the performances of algorithms.
Collapse
|
38
|
Haworth NL, Wouters MA. Between-strand disulfides: forbidden disulfides linking adjacent β-strands. RSC Adv 2013. [DOI: 10.1039/c3ra42486c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
39
|
Wathen B, Jia Z. A hierarchical order within protein structures underlies large separations between strands in β-sheets. Proteins 2012; 81:163-75. [PMID: 22933362 DOI: 10.1002/prot.24173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 08/11/2012] [Accepted: 08/25/2012] [Indexed: 11/12/2022]
Abstract
Protein β-sheets often involve nonlocal interactions between parts of the polypeptide chain that are separated by hundreds of residues, raising the question of how these nonlocal contacts form. A recent study of the smallest β-sheets found that their formation was not driven by signals hidden in the primary sequence. Instead, the strands in these sheets were either local in sequence, or, when separated by large sequential distances, the intervening residues were found to fold into compact modules that anchored distant parts of the chain in close spatial proximity. Here, we examine larger β-sheets to investigate the extensibility of this principle. From an analysis of the β-sheets in a nonredundant protein dataset, we find that a highly ordered hierarchical relationship exists in the intervening structure between nonlocal β-strands. This observation is almost universal: virtually all β-sheets, no matter their complexity, appear to adopt an antiparallel model to manage the nonlocal aspects of their assembly, one where the chain, having left the vicinity of an unfinished β-sheet, retraces its steps via the same route to complete the initial sheet. Exceptions typically involve unstructured regions at chain termini. Moreover, an analysis of the residues involved in nonlocal crossstrand interactions did not produce any evidence of a signal hidden in the sequence that might direct long-range interactions. These results build on those reported for the smallest sheets, suggesting that sheet formation is either local in sequence or local in space following prior folding events that anchor disparate parts of the chain in close proximity.
Collapse
Affiliation(s)
- Brent Wathen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
40
|
Singh R, Vince R. 2-Azabicyclo[2.2.1]hept-5-en-3-one: Chemical Profile of a Versatile Synthetic Building Block and its Impact on the Development of Therapeutics. Chem Rev 2012; 112:4642-86. [DOI: 10.1021/cr2004822] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rohit Singh
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| | - Robert Vince
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| |
Collapse
|
41
|
|
42
|
Butterfield S, Hejjaoui M, Fauvet B, Awad L, Lashuel HA. Chemical strategies for controlling protein folding and elucidating the molecular mechanisms of amyloid formation and toxicity. J Mol Biol 2012; 421:204-36. [PMID: 22342932 DOI: 10.1016/j.jmb.2012.01.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/12/2022]
Abstract
It has been more than a century since the first evidence linking the process of amyloid formation to the pathogenesis of Alzheimer's disease. During the last three decades in particular, increasing evidence from various sources (pathology, genetics, cell culture studies, biochemistry, and biophysics) continues to point to a central role for the pathogenesis of several incurable neurodegenerative and systemic diseases. This is in part driven by our improved understanding of the molecular mechanisms of protein misfolding and aggregation and the structural properties of the different aggregates in the amyloid pathway and the emergence of new tools and experimental approaches that permit better characterization of amyloid formation in vivo. Despite these advances, detailed mechanistic understanding of protein aggregation and amyloid formation in vitro and in vivo presents several challenges that remain to be addressed and several fundamental questions about the molecular and structural determinants of amyloid formation and toxicity and the mechanisms of amyloid-induced toxicity remain unanswered. To address this knowledge gap and technical challenges, there is a critical need for developing novel tools and experimental approaches that will not only permit the detection and monitoring of molecular events that underlie this process but also allow for the manipulation of these events in a spatial and temporal fashion both in and out of the cell. This review is primarily dedicated in highlighting recent results that illustrate how advances in chemistry and chemical biology have been and can be used to address some of the questions and technical challenges mentioned above. We believe that combining recent advances in the development of new fluorescent probes, imaging tools that enabled the visualization and tracking of molecular events with advances in organic synthesis, and novel approaches for protein synthesis and engineering provide unique opportunities to gain a molecular-level understanding of the process of amyloid formation. We hope that this review will stimulate further research in this area and catalyze increased collaboration at the interface of chemistry and biology to decipher the mechanisms and roles of protein folding, misfolding, and aggregation in health and disease.
Collapse
Affiliation(s)
- Sara Butterfield
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Almeida AM, Li R, Gellman SH. Parallel β-sheet secondary structure is stabilized and terminated by interstrand disulfide cross-linking. J Am Chem Soc 2012; 134:75-8. [PMID: 22148521 PMCID: PMC3266109 DOI: 10.1021/ja208856c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Disulfide bonds between Cys residues in adjacent strands of parallel β-sheets are rare among proteins, which suggests that parallel β-sheet structure is not stabilized by such disulfide cross-links. We report experimental results that show, surprisingly, that an interstrand disulfide bond can stabilize parallel β-sheets formed by an autonomously folding peptide in aqueous solution. NMR analysis reveals that parallel β-sheet structure is terminated beyond the disulfide bond, which causes deviation from the extended backbone conformation at one of the Cys residues.
Collapse
Affiliation(s)
- Aaron M. Almeida
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wi, 53706 (USA)
| | - Rebecca Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wi, 53706 (USA)
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wi, 53706 (USA)
| |
Collapse
|
44
|
Norris NC, Bingham RJ, Harris G, Speakman A, Jones RPO, Leech A, Turkenburg JP, Potts JR. Structural and functional analysis of the tandem β-zipper interaction of a Streptococcal protein with human fibronectin. J Biol Chem 2011; 286:38311-38320. [PMID: 21840989 PMCID: PMC3207447 DOI: 10.1074/jbc.m111.276592] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/01/2011] [Indexed: 11/06/2022] Open
Abstract
Bacterial fibronectin-binding proteins (FnBPs) contain a large intrinsically disordered region (IDR) that mediates adhesion of bacteria to host tissues, and invasion of host cells, through binding to fibronectin (Fn). These FnBP IDRs consist of Fn-binding repeats (FnBRs) that form a highly extended tandem β-zipper interaction on binding to the N-terminal domain of Fn. Several FnBR residues are highly conserved across bacterial species, and here we investigate their contribution to the interaction. Mutation of these residues to alanine in SfbI-5 (a disordered FnBR from the human pathogen Streptococcus pyogenes) reduced binding, but for each residue the change in free energy of binding was <2 kcal/mol. The structure of an SfbI-5 peptide in complex with the second and third F1 modules from Fn confirms that the conserved FnBR residues play equivalent functional roles across bacterial species. Thus, in SfbI-5, the binding energy for the tandem β-zipper interaction with Fn is distributed across the interface rather than concentrated in a small number of "hot spot" residues that are frequently observed in the interactions of folded proteins. We propose that this might be a common feature of the interactions of IDRs and is likely to pose a challenge for the development of small molecule inhibitors of FnBP-mediated adhesion to and invasion of host cells.
Collapse
Affiliation(s)
- Nicole C Norris
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Richard J Bingham
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Gemma Harris
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Adrian Speakman
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Richard P O Jones
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Andrew Leech
- Technology Facility, Department of Biology (Area 15), University of York, York, YO10 5DD, United Kingdom
| | - Johan P Turkenburg
- Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Jennifer R Potts
- Department of Biology, University of York, York, YO10 5DD, United Kingdom; Department of Chemistry, University of York, York, YO10 5DD, United Kingdom.
| |
Collapse
|
45
|
Dittli SM, Rao H, Tonelli M, Quijada J, Markley JL, Max M, Assadi-Porter F. Structural role of the terminal disulfide bond in the sweetness of brazzein. Chem Senses 2011; 36:821-30. [PMID: 21765060 PMCID: PMC3195789 DOI: 10.1093/chemse/bjr057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 11/12/2022] Open
Abstract
Brazzein, a 54 residue sweet-tasting protein, is thought to participate in a multipoint binding interaction with the sweet taste receptor. Proposed sites for interaction with the receptor include 2 surface loops and the disulfide bond that connects the N- and C-termini. However, the importance of each site is not well understood. To characterize the structural role of the termini in the sweetness of brazzein, the position of the disulfide bond connecting the N- and C-termini was shifted by substituting K3-C4-K5 with C3-K4-R5. The apparent affinity and V(max) of the C3-K4-R5-brazzein (CKR-brazzein) variant were only modestly decreased compared with the wild-type (WT) brazzein. We determined a high-resolution structure of CKR-brazzein by nuclear magnetic resonance spectroscopy (backbone root mean square deviation of 0.39 Å). Comparing the structure of CKR-brazzein with that of WT-brazzein revealed that the terminal β-strands of the variant display extended β-structure and increased dynamics relative to WT-brazzein. These results support previous mutagenesis studies and further suggest that, whereas interactions involving the termini are necessary for full function of brazzein, the termini do not constitute the primary site of interaction between brazzein and the sweet taste receptor.
Collapse
Affiliation(s)
- Sannali M. Dittli
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Drive, Madison, WI 53706, USA
| | - Hongyu Rao
- Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Jeniffer Quijada
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - John L. Markley
- Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Marianna Max
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, USA
| | - Fariba Assadi-Porter
- Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
46
|
Computational studies of membrane proteins: models and predictions for biological understanding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:927-41. [PMID: 22051023 DOI: 10.1016/j.bbamem.2011.09.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 01/26/2023]
Abstract
We discuss recent progresses in computational studies of membrane proteins based on physical models with parameters derived from bioinformatics analysis. We describe computational identification of membrane proteins and prediction of their topology from sequence, discovery of sequence and spatial motifs, and implications of these discoveries. The detection of evolutionary signal for understanding the substitution pattern of residues in the TM segments and for sequence alignment is also discussed. We further discuss empirical potential functions for energetics of inserting residues in the TM domain, for interactions between TM helices or strands, and their applications in predicting lipid-facing surfaces of the TM domain. Recent progresses in structure predictions of membrane proteins are also reviewed, with further discussions on calculation of ensemble properties such as melting temperature based on simplified state space model. Additional topics include prediction of oligomerization state of membrane proteins, identification of the interfaces for protein-protein interactions, and design of membrane proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
|
47
|
Dias CL, Karttunen M, Chan HS. Hydrophobic interactions in the formation of secondary structures in small peptides. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041931. [PMID: 22181199 DOI: 10.1103/physreve.84.041931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Indexed: 05/31/2023]
Abstract
Effects of the attractive and repulsive parts of hydrophobic interactions on α helices and β sheets in small peptides are investigated using a simple atomic potential. Typically, a physical spatial range of attraction tends to favor β sheets, but α helices would be favored if the attractive range were more extended. We also found that desolvation barriers favor β sheets in collapsed conformations of polyalanine, polyvaline, polyleucine, and three fragments of amyloid peptides tested in this study. Our results provide insight into the multifaceted role of hydrophobicity in secondary structure formation, including the α to β transitions in certain amyloid peptides.
Collapse
Affiliation(s)
- Cristiano L Dias
- Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | | | |
Collapse
|
48
|
Studies on the rules of β-strand alignment in a protein β-sheet structure. J Theor Biol 2011; 285:69-76. [PMID: 21745480 DOI: 10.1016/j.jtbi.2011.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/31/2011] [Accepted: 06/24/2011] [Indexed: 11/21/2022]
Abstract
To further disclose the underlying mechanisms of protein β-sheet formation, studies were made on the rules of β-strands alignment forming β-sheet structure using statistical and machine learning approaches. Firstly, statistical analysis was performed on the sum of β-strands between each β-strand pairs in protein sequences. The results showed a propensity of near-neighbor pairing (or called "first come first pair") in the β-strand pairs. Secondly, based on the same dataset, the pairwise cross-combinations of real β-strand pairs and four pseudo-β-strand contained pairs were classified by support vector machine (SVM). A novel feature extracting approach was designed for classification using the average amino acid pairing encoding matrix (APEM). Analytical results of the classification indicated that a segment of β-strand had the ability to distinguish β-strands from segments of α-helix and coil. However, the result also showed that a β-strand was not strongly conserved to choose its real partner from all the alternative β-strand partners, which was corresponding with the ordination results of the statistical analysis each other. Thus, the rules of "first come first pair" propensity and the non-conservative ability to choose real partner, were possible important factors affecting the β-strands alignment forming β-sheet structures.
Collapse
|
49
|
Pérez Y, Mann E, Herradón B. Preparation and characterization of gold nanoparticles capped by peptide–biphenyl hybrids. J Colloid Interface Sci 2011; 359:443-53. [DOI: 10.1016/j.jcis.2011.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/30/2011] [Accepted: 04/09/2011] [Indexed: 01/15/2023]
|
50
|
Huang Y, Zhao R, Fu Y, Zhang Q, Xiong S, Li L, Zhou R, Liu G, Chen Y. Highly Specific Targeting and Imaging of Live Cancer Cells by Using a Peptide Probe Developed from Rationally Designed Peptides. Chembiochem 2011; 12:1209-15. [DOI: 10.1002/cbic.201100031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Indexed: 02/06/2023]
|