1
|
Beriashvili D, Folkers GE, Baldus M. Ubiquitin's Conformational Heterogeneity as Discerned by Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2024; 25:e202400508. [PMID: 39140844 PMCID: PMC11664922 DOI: 10.1002/cbic.202400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Visualizing a protein's molecular motions has been a long standing topic of research in the biophysics community. Largely this has been done by exploiting nuclear magnetic resonance spectroscopy (NMR), and arguably no protein's molecular motions have been better characterized by NMR than that of ubiquitin (Ub), a 76 amino acid polypeptide essential in ubiquitination-a key regulatory system within cells. Herein, we discuss ubiquitin's conformational plasticity as visualized, at atomic resolution, by more than 35 years of NMR work. In our discussions we point out the differences between data acquired in vitro, ex vivo, as well as in vivo and stress the need to investigate Ub's conformational plasticity in more biologically representative backgrounds.
Collapse
Affiliation(s)
- David Beriashvili
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Gert E. Folkers
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| |
Collapse
|
2
|
Abstract
Background Identifying CO2-binding proteins is vital for our knowledge of CO2-regulated molecular processes. The carbamate post-translational modification is a reversible CO2-mediated adduct that can form on neutral N-terminal α-amino or lysine ε-amino groups. Methods We have developed triethyloxonium ion (TEO) as a chemical proteomics tool to trap the carbamate post-translational modification on protein covalently. We use 13C-NMR and TEO and identify ubiquitin as a plant CO2-binding protein. Results We observe the carbamate post-translational modification on the Arabidopsis thaliana ubiquitin ε-amino groups of lysines 6, 33, and 48. We show that biologically relevant near atmospheric PCO2 levels increase ubiquitin conjugation dependent on lysine 6. We further demonstrate that CO2 increases the ubiquitin E2 ligase (AtUBC5) charging step via the transthioesterification reaction in which Ub is transferred from the E1 ligase active site to the E2 active site. Conclusions and general significance Therefore, plant ubiquitin is a CO2-binding protein, and the carbamate post-translational modification represents a potential mechanism through which plant cells can respond to fluctuating PCO2.
Collapse
Affiliation(s)
- Harry G Gannon
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Martin J Cann
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
3
|
Gauto DF, Lebedenko OO, Becker LM, Ayala I, Lichtenecker R, Skrynnikov NR, Schanda P. Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD. J Struct Biol X 2022; 7:100079. [PMID: 36578472 PMCID: PMC9791609 DOI: 10.1016/j.yjsbx.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Probing the dynamics of aromatic side chains provides important insights into the behavior of a protein because flips of aromatic rings in a protein's hydrophobic core report on breathing motion involving a large part of the protein. Inherently invisible to crystallography, aromatic motions have been primarily studied by solution NMR. The question how packing of proteins in crystals affects ring flips has, thus, remained largely unexplored. Here we apply magic-angle spinning NMR, advanced phenylalanine 1H-13C/2H isotope labeling and MD simulation to a protein in three different crystal packing environments to shed light onto possible impact of packing on ring flips. The flips of the two Phe residues in ubiquitin, both surface exposed, appear remarkably conserved in the different crystal forms, even though the intermolecular packing is quite different: Phe4 flips on a ca. 10-20 ns time scale, and Phe45 are broadened in all crystals, presumably due to µs motion. Our findings suggest that intramolecular influences are more important for ring flips than intermolecular (packing) effects.
Collapse
Affiliation(s)
- Diego F. Gauto
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
- ICSN, CNRS UPR2301, Univ. Paris-Saclay, Gif-sur-Yvette, France
| | - Olga O. Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Lea Marie Becker
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Isabel Ayala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | - Paul Schanda
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
4
|
A litmus test for classifying recognition mechanisms of transiently binding proteins. Nat Commun 2022; 13:3792. [PMID: 35778416 PMCID: PMC9249894 DOI: 10.1038/s41467-022-31374-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Partner recognition in protein binding is critical for all biological functions, and yet, delineating its mechanism is challenging, especially when recognition happens within microseconds. We present a theoretical and experimental framework based on straight-forward nuclear magnetic resonance relaxation dispersion measurements to investigate protein binding mechanisms on sub-millisecond timescales, which are beyond the reach of standard rapid-mixing experiments. This framework predicts that conformational selection prevails on ubiquitin’s paradigmatic interaction with an SH3 (Src-homology 3) domain. By contrast, the SH3 domain recognizes ubiquitin in a two-state binding process. Subsequent molecular dynamics simulations and Markov state modeling reveal that the ubiquitin conformation selected for binding exhibits a characteristically extended C-terminus. Our framework is robust and expandable for implementation in other binding scenarios with the potential to show that conformational selection might be the design principle of the hubs in protein interaction networks. The authors provide a litmus test for the recognition mechanism of transiently binding proteins based on nuclear magnetic resonance and find a conformational selection binding mechanism through concentration-dependent kinetics of ubiquitin and SH3.
Collapse
|
5
|
Potnuru LR, Duong NT, Sasank B, Raran-Kurussi S, Nishiyama Y, Agarwal V. Selective 1H- 1H recoupling via symmetry sequences in fully protonated samples at fast magic angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 328:107004. [PMID: 34049237 DOI: 10.1016/j.jmr.2021.107004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Proton-detected solid-state NMR at fast Magic Angle Spinning (MAS) is becoming the norm to characterize molecules. Routinely 1H-1H and 1H-X dipolar couplings are used to characterize the structure and dynamics of molecules. Selective proton recoupling techniques are emerging as a method for structural characterization via estimation of qualitative and quantitative distances. In the present study, we demonstrate through numerical simulations and experiments that the well-characterized CNvn sequences can also be tailored for selective recoupling of proton spins by employing C elements of the type (β)Φ(4β)Φ+π(3β)Φ. Herein, several CNvn sequences were examined through numerical simulations and experiments. C614 recoupling sequence with a modified POST-element ((β)Φ(4β)Φ+π(3β)Φ) shows selective polarization transfer efficiencies on the order of 40-50% between various proton spin pairs in fully protonated samples at rf amplitudes ranging from 0.3 to 0.8 times the MAS frequency. These selective recoupling sequences have been labeled as frequency-selective-CNvn sequences. The extent of selectivity, polarization transfer efficiency and the feasibility of experimentally measuring proton-proton distances in fully protonated samples are explored here. The development of efficient and robust selective 1H-1H recoupling experiments is required to structurally characterize molecules without artificial isotope enrichment or the need for diffracting crystals.
Collapse
Affiliation(s)
- Lokeswara Rao Potnuru
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India
| | - Nghia Tuan Duong
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Budaraju Sasank
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India; Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Mohali 140306, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India
| | - Yusuke Nishiyama
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India.
| |
Collapse
|
6
|
Malär A, Völker LA, Cadalbert R, Lecoq L, Ernst M, Böckmann A, Meier BH, Wiegand T. Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding. J Phys Chem B 2021; 125:6222-6230. [PMID: 34097409 PMCID: PMC8215646 DOI: 10.1021/acs.jpcb.1c04061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/20/2021] [Indexed: 01/17/2023]
Abstract
Temperature-dependent NMR experiments are often complicated by rather long magnetic-field equilibration times, for example, occurring upon a change of sample temperature. We demonstrate that the fast temporal stabilization of a magnetic field can be achieved by actively stabilizing the temperature of the magnet bore, which allows quantification of the weak temperature dependence of a proton chemical shift, which can be diagnostic for the presence of hydrogen bonds. Hydrogen bonding plays a central role in molecular recognition events from both fields, chemistry and biology. Their direct detection by standard structure-determination techniques, such as X-ray crystallography or cryo-electron microscopy, remains challenging due to the difficulties of approaching the required resolution, on the order of 1 Å. We, herein, explore a spectroscopic approach using solid-state NMR to identify protons engaged in hydrogen bonds and explore the measurement of proton chemical-shift temperature coefficients. Using the examples of a phosphorylated amino acid and the protein ubiquitin, we show that fast magic-angle spinning (MAS) experiments at 100 kHz yield sufficient resolution in proton-detected spectra to quantify the rather small chemical-shift changes upon temperature variations.
Collapse
Affiliation(s)
| | | | | | - Lauriane Lecoq
- Molecular
Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Matthias Ernst
- Physical
Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular
Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Beat H. Meier
- Physical
Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Physical
Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Arasteh S, Zhang BW, Levy RM. Protein Loop Conformational Free Energy Changes via an Alchemical Path without Reaction Coordinates. J Phys Chem Lett 2021; 12:4368-4377. [PMID: 33938761 PMCID: PMC8170697 DOI: 10.1021/acs.jpclett.1c00778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We introduce a method called restrain-free energy perturbation-release 2.0 (R-FEP-R 2.0) to estimate conformational free energy changes of protein loops via an alchemical path. R-FEP-R 2.0 is a generalization of the method called restrain-free energy perturbation-release (R-FEP-R) that can only estimate conformational free energy changes of protein side chains but not loops. The reorganization of protein loops is a central feature of many biological processes. Unlike other advanced sampling algorithms such as umbrella sampling and metadynamics, R-FEP-R and R-FEP-R 2.0 do not require predetermined collective coordinates and transition pathways that connect the two endpoint conformational states. The R-FEP-R 2.0 method was applied to estimate the conformational free energy change of a β-turn flip in the protein ubiquitin. The result obtained by R-FEP-R 2.0 agrees with the benchmarks very well. We also comment on problems commonly encountered when applying umbrella sampling to calculate protein conformational free energy changes.
Collapse
Affiliation(s)
- Shima Arasteh
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Bin W Zhang
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Ronald M Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
8
|
Fritzsching KJ, Keeler EG, He C, McDermott AE. Scaled recoupling of chemical shift anisotropies at high magnetic fields under MAS with interspersed C-elements. J Chem Phys 2020; 153:104201. [PMID: 32933302 PMCID: PMC9250421 DOI: 10.1063/5.0020682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/17/2020] [Indexed: 11/14/2022] Open
Abstract
The power of chemical shift anisotropy (CSA) measurements for probing structure and dynamics of molecules has been long recognized. NMR pulse sequences that allow measurement of CSA values in an indirect dimension of a protein correlation spectrum have been employed for aliphatic groups, but for practical reasons, carbonyl functional groups have been little studied, despite the fact that carbonyls are expected to give particularly varied and informative CSA values. Specifically, the wide spectral widths of carbonyl tensors make their measurements difficult with typically attainable spectrometer settings. We present here an extended family of experiments that enable the recovery of static CSA lineshapes in an indirect dimension of magic angle spinning (MAS) solid-state NMR experiments, except for various real valued scaling factors. The experiment is suitable for uniformly labeled material, at moderate MAS rates (10 kHz-30 kHz) and at higher magnetic fields (ν0H > 600 MHz). Specifically, the experiments are based on pulse sequence elements from a previous commonly used pulse sequence for CSA measurement, recoupling of chemical shift anisotropy (ROCSA), while modification of scaling factors is achieved by interspersing different blocks of C-elements of the same Cnn 1 cycle. Using experimental conditions similar to the parent ROCSA sequence, a CSA scaling factor between 0 and 0.272 can be obtained, thus allowing a useful practical range of possibilities in experimental conditions for measurement of larger CSA values. Using these blocks, it is also possible to make a constant-time CSA recoupling sequence. The effectiveness of this approach, fROCSA, is shown on model compounds 1-13C-Gly, U-13C,15N-l-His, and microcrystalline U-13C,15N-Ubiquitin.
Collapse
Affiliation(s)
| | - Eric G. Keeler
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Chengming He
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
9
|
Potnuru LR, Duong NT, Ahlawat S, Raran-Kurussi S, Ernst M, Nishiyama Y, Agarwal V. Accuracy of 1H- 1H distances measured using frequency selective recoupling and fast magic-angle spinning. J Chem Phys 2020; 153:084202. [PMID: 32872876 DOI: 10.1063/5.0019717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Selective recoupling of protons (SERP) is a method to selectively and quantitatively measure magnetic dipole-dipole interaction between protons and, in turn, the proton-proton distance in solid-state samples at fast magic-angle spinning. We present a bimodal operator-based Floquet approach to describe the numerically optimized SERP recoupling sequence. The description calculates the allowed terms in the first-order effective Hamiltonian, explains the origin of selectivity during recoupling, and shows how different terms are modulated as a function of the radio frequency amplitude and the phase of the sequence. Analytical and numerical simulations have been used to evaluate the effect of higher-order terms and offsets on the polarization transfer efficiency and quantitative distance measurement. The experimentally measured 1H-1H distances on a fully protonated thymol sample are ∼10%-15% shorter than those reported from diffraction studies. A semi-quantitative model combined with extensive numerical simulations is used to rationalize the effect of the third-spin and the role of different parameters in the experimentally observed shorter distances. Measurements at high magnetic fields improve the match between experimental and diffraction distances. The measurement of 1H-1H couplings at offsets different from the SERP-offset has also been explored. Experiments were also performed on a perdeuterated ubiquitin sample to demonstrate the feasibility of simultaneously measuring multiple quantitative distances and to evaluate the accuracy of the measured distance in the absence of multispin effects. The estimation of proton-proton distances provides a boost to structural characterization of small pharmaceuticals and biomolecules, given that the positions of protons are generally not well defined in x-ray structures.
Collapse
Affiliation(s)
- Lokeswara Rao Potnuru
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India
| | - Nghia Tuan Duong
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Sahil Ahlawat
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India
| |
Collapse
|
10
|
Malär AA, Smith-Penzel S, Camenisch GM, Wiegand T, Samoson A, Böckmann A, Ernst M, Meier BH. Quantifying proton NMR coherent linewidth in proteins under fast MAS conditions: a second moment approach. Phys Chem Chem Phys 2019; 21:18850-18865. [PMID: 31432055 DOI: 10.1039/c9cp03414e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proton detected solid-state NMR under fast magic-angle-spinning (MAS) conditions is currently redefining the applications of solid-state NMR, in particular in structural biology. Understanding the contributions to the spectral linewidth is thereby of paramount importance. When disregarding the sample-dependent inhomogeneous contributions, the NMR proton linewidth is defined by homogeneous broadening, which has incoherent and coherent contributions. Understanding and disentangling these different contributions in multi-spin systems like proteins is still an open issue. The coherent contribution is mainly caused by the dipolar interaction under MAS and is determined by the molecular structure and the proton chemical shifts. Numerical simulation approaches based on numerically exact direct integration of the Liouville-von Neumann equation can give valuable information about the lineshape, but are limited to small spin systems (<12 spins). We present an alternative simulation method for the coherent contributions based on the rapid and partially analytic calculation of the second moments of large spin systems. We first validate the method on a simple system by predicting the 19F linewidth in CaF2 under MAS. We compare simulation results to experimental data for microcrystalline ubiquitin (deuterated 100% back-exchanged at 110 kHz and fully-protonated at 125 kHz). Our results quantitatively explain the observed linewidth per-residue basis for the vast majority of residues.
Collapse
Affiliation(s)
- Alexander A Malär
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Susanne Smith-Penzel
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Gian-Marco Camenisch
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Thomas Wiegand
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Ago Samoson
- School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia. and NMR Institute MTÜ, Tallinn, Estonia
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France.
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
11
|
Gauto DF, Hessel A, Rovó P, Kurauskas V, Linser R, Schanda P. Protein conformational dynamics studied by 15N and 1H R 1ρ relaxation dispersion: Application to wild-type and G53A ubiquitin crystals. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:86-95. [PMID: 28438365 PMCID: PMC5531261 DOI: 10.1016/j.ssnmr.2017.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/01/2017] [Accepted: 04/12/2017] [Indexed: 05/12/2023]
Abstract
Solid-state NMR spectroscopy can provide site-resolved information about protein dynamics over many time scales. Here we combine protein deuteration, fast magic-angle spinning (~45-60kHz) and proton detection to study dynamics of ubiquitin in microcrystals, and in particular a mutant in a region that undergoes microsecond motions in a β-turn region in the wild-type protein. We use 15N R1ρ relaxation measurements as a function of the radio-frequency (RF) field strength, i.e. relaxation dispersion, to probe how the G53A mutation alters these dynamics. We report a population-inversion of conformational states: the conformation that in the wild-type protein is populated only sparsely becomes the predominant state. We furthermore explore the potential to use amide-1H R1ρ relaxation to obtain insight into dynamics. We show that while quantitative interpretation of 1H relaxation remains beyond reach under the experimental conditions, due to coherent contributions to decay, one may extract qualitative information about flexibility.
Collapse
Affiliation(s)
- Diego F Gauto
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France; CEA, Institut de Biologie Structurale, F-38044 Grenoble, France; CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Audrey Hessel
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France; CEA, Institut de Biologie Structurale, F-38044 Grenoble, France; CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Petra Rovó
- Ludwig-Maximilians-Universität, Department Chemie, D-81377 München, Germany
| | - Vilius Kurauskas
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France; CEA, Institut de Biologie Structurale, F-38044 Grenoble, France; CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Rasmus Linser
- Ludwig-Maximilians-Universität, Department Chemie, D-81377 München, Germany
| | - Paul Schanda
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France; CEA, Institut de Biologie Structurale, F-38044 Grenoble, France; CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| |
Collapse
|
12
|
Slow conformational exchange and overall rocking motion in ubiquitin protein crystals. Nat Commun 2017; 8:145. [PMID: 28747759 PMCID: PMC5529581 DOI: 10.1038/s41467-017-00165-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/07/2017] [Indexed: 01/25/2023] Open
Abstract
Proteins perform their functions in solution but their structures are most frequently studied inside crystals. Here we probe how the crystal packing alters microsecond dynamics, using solid-state NMR measurements and multi-microsecond MD simulations of different crystal forms of ubiquitin. In particular, near-rotary-resonance relaxation dispersion (NERRD) experiments probe angular backbone motion, while Bloch–McConnell relaxation dispersion data report on fluctuations of the local electronic environment. These experiments and simulations reveal that the packing of the protein can significantly alter the thermodynamics and kinetics of local conformational exchange. Moreover, we report small-amplitude reorientational motion of protein molecules in the crystal lattice with an ~3–5° amplitude on a tens-of-microseconds time scale in one of the crystals, but not in others. An intriguing possibility arises that overall motion is to some extent coupled to local dynamics. Our study highlights the importance of considering the packing when analyzing dynamics of crystalline proteins. X-ray crystallography is the main method for protein structure determination. Here the authors combine solid-state NMR measurements and molecular dynamics simulations and show that crystal packing alters the thermodynamics and kinetics of local conformational exchange as well as overall rocking motion of protein molecules in the crystal lattice.
Collapse
|
13
|
Lakomek NA, Penzel S, Lends A, Cadalbert R, Ernst M, Meier BH. Microsecond Dynamics in Ubiquitin Probed by Solid-State 15
N NMR Spectroscopy R
1ρ
Relaxation Experiments under Fast MAS (60-110 kHz). Chemistry 2017; 23:9425-9433. [DOI: 10.1002/chem.201701738] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Nils-Alexander Lakomek
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| | - Susanne Penzel
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| | - Alons Lends
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| | - Riccardo Cadalbert
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| | - Matthias Ernst
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| | - Beat H. Meier
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| |
Collapse
|
14
|
Flexibility and Design: Conformational Heterogeneity along the Evolutionary Trajectory of a Redesigned Ubiquitin. Structure 2017; 25:739-749.e3. [PMID: 28416112 DOI: 10.1016/j.str.2017.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/20/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
Abstract
Although protein design has been used to introduce new functions, designed variants generally only function as well as natural proteins after rounds of laboratory evolution. One possibility for this pattern is that designed mutants frequently sample nonfunctional conformations. To test this idea, we exploited advances in multiconformer modeling of room-temperature X-ray data collection on redesigned ubiquitin variants selected for increasing binding affinity to the deubiquitinase USP7. Initial core mutations disrupt natural packing and lead to increased flexibility. Additional, experimentally selected mutations quenched conformational heterogeneity through new stabilizing interactions. Stabilizing interactions, such as cation-pi stacking and ordered waters, which are not included in standard protein design energy functions, can create specific interactions that have long-range effects on flexibility across the protein. Our results suggest that increasing flexibility may be a useful strategy to escape local minima during initial directed evolution and protein design steps when creating new functions.
Collapse
|
15
|
Olsson S, Noé F. Mechanistic Models of Chemical Exchange Induced Relaxation in Protein NMR. J Am Chem Soc 2016; 139:200-210. [DOI: 10.1021/jacs.6b09460] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Simon Olsson
- Computational Molecular
Biology,
FB Mathematik und Informatik, Freie Universität Berlin, Berlin 14195, Germany
| | - Frank Noé
- Computational Molecular
Biology,
FB Mathematik und Informatik, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
16
|
Wittmann JJ, Agarwal V, Hellwagner J, Lends A, Cadalbert R, Meier BH, Ernst M. Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS. JOURNAL OF BIOMOLECULAR NMR 2016; 66:233-242. [PMID: 27803998 DOI: 10.1007/s10858-016-0071-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/19/2016] [Indexed: 05/08/2023]
Abstract
Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton-proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[2H,13C,15N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.
Collapse
Affiliation(s)
- Johannes J Wittmann
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Vipin Agarwal
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- TIFR Center for Interdisciplinary Science, 21 Brundavan Colony, Narsingi, Hyderabad, 500075, India
| | - Johannes Hellwagner
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Alons Lends
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Riccardo Cadalbert
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
17
|
Lindorff-Larsen K, Maragakis P, Piana S, Shaw DE. Picosecond to Millisecond Structural Dynamics in Human Ubiquitin. J Phys Chem B 2016; 120:8313-20. [DOI: 10.1021/acs.jpcb.6b02024] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Paul Maragakis
- D. E. Shaw Research, New York, New York 10036, United States
| | - Stefano Piana
- D. E. Shaw Research, New York, New York 10036, United States
| | - David E. Shaw
- D. E. Shaw Research, New York, New York 10036, United States
- Department
of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
18
|
Allosteric switch regulates protein-protein binding through collective motion. Proc Natl Acad Sci U S A 2016; 113:3269-74. [PMID: 26961002 DOI: 10.1073/pnas.1519609113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many biological processes depend on allosteric communication between different parts of a protein, but the role of internal protein motion in propagating signals through the structure remains largely unknown. Through an experimental and computational analysis of the ground state dynamics in ubiquitin, we identify a collective global motion that is specifically linked to a conformational switch distant from the binding interface. This allosteric coupling is also present in crystal structures and is found to facilitate multispecificity, particularly binding to the ubiquitin-specific protease (USP) family of deubiquitinases. The collective motion that enables this allosteric communication does not affect binding through localized changes but, instead, depends on expansion and contraction of the entire protein domain. The characterization of these collective motions represents a promising avenue for finding and manipulating allosteric networks.
Collapse
|
19
|
Wang H, Hosoda K, Ishii T, Arai R, Kohno T, Terawaki SI, Wakamatsu K. Protein stabilizer, NDSB-195, enhances the dynamics of the β4 -α2 loop of ubiquitin. J Pept Sci 2016; 22:174-80. [PMID: 26856691 DOI: 10.1002/psc.2855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Non-detergent sulfobetaines (NDSBs) are a new group of small, synthetic protein stabilizers, which have advantages over classical compatible osmolytes, such as polyol, amines, and amino acids: they do not increase solution viscosity, unlike polyols, and they are zwitterionic at all pH ranges, unlike amines and amino acids. NDSBs also facilitate the crystallization and refolding of proteins. The mechanism whereby NDSBs exhibit such activities, however, remains elusive. To gain insight into this mechanism, we studied, using nuclear magnetic resonance (NMR), the effects of dimethylethylammonium propane sulfonate (NDSB-195) on the dynamics of ubiquitin, on which a wealth of information has been accumulated. By analyzing the line width of amide proton resonances and the transverse relaxation rates of nitrogen atoms, we found that NDSB-195 enhances the microsecond-millisecond dynamics of a β4 -α2 loop of ubiquitin. Although those compounds that enhance protein dynamics are generally considered to destabilize protein molecules, NDSB-195 enhanced the stability of ubiquitin against guanidium chloride denaturation. Thus, the simultaneous enhancement of stability and flexibility by a single compound can be attained.
Collapse
Affiliation(s)
- Haimei Wang
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazuo Hosoda
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Takeshi Ishii
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ryo Arai
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Toshiyuki Kohno
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shin-Ichi Terawaki
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kaori Wakamatsu
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
20
|
Vammi V, Song G. Ensembles of a small number of conformations with relative populations. JOURNAL OF BIOMOLECULAR NMR 2015; 63:341-351. [PMID: 26474790 DOI: 10.1007/s10858-015-9993-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
In our previous work, we proposed a new way to represent protein native states, using ensembles of a small number of conformations with relative Populations, or ESP in short. Using Ubiquitin as an example, we showed that using a small number of conformations could greatly reduce the potential of overfitting and assigning relative populations to protein ensembles could significantly improve their quality. To demonstrate that ESP indeed is an excellent alternative to represent protein native states, in this work we compare the quality of two ESP ensembles of Ubiquitin with several well-known regular ensembles or average structure representations. Extensive amount of significant experimental data are employed to achieve a thorough assessment. Our results demonstrate that ESP ensembles, though much smaller in size comparing to regular ensembles, perform equally or even better sometimes in all four different types of experimental data used in the assessment, namely, the residual dipolar couplings, residual chemical shift anisotropy, hydrogen exchange rates, and solution scattering profiles. This work further underlines the significance of having relative populations in describing the native states.
Collapse
Affiliation(s)
- Vijay Vammi
- Bioinformatics and Computational Biology Program, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011, USA.
| | - Guang Song
- Bioinformatics and Computational Biology Program, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011, USA
- Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA, USA
| |
Collapse
|
21
|
Observing the overall rocking motion of a protein in a crystal. Nat Commun 2015; 6:8361. [PMID: 26436197 PMCID: PMC4600728 DOI: 10.1038/ncomms9361] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/13/2015] [Indexed: 12/25/2022] Open
Abstract
The large majority of three-dimensional structures of biological macromolecules have been determined by X-ray diffraction of crystalline samples. High-resolution structure determination crucially depends on the homogeneity of the protein crystal. Overall ‘rocking' motion of molecules in the crystal is expected to influence diffraction quality, and such motion may therefore affect the process of solving crystal structures. Yet, so far overall molecular motion has not directly been observed in protein crystals, and the timescale of such dynamics remains unclear. Here we use solid-state NMR, X-ray diffraction methods and μs-long molecular dynamics simulations to directly characterize the rigid-body motion of a protein in different crystal forms. For ubiquitin crystals investigated in this study we determine the range of possible correlation times of rocking motion, 0.1–100 μs. The amplitude of rocking varies from one crystal form to another and is correlated with the resolution obtainable in X-ray diffraction experiments. Small-amplitude overall motion of molecules in crystals limits the achievable resolution in X-ray diffraction, yet little is known about its exact nature. Here, the authors obtain NMR, XRD and MD data from three different crystal forms of a protein (ubiquitin) to gain insight into amplitude and timescale of such motions.
Collapse
|
22
|
Fasshuber HK, Lakomek NA, Habenstein B, Loquet A, Shi C, Giller K, Wolff S, Becker S, Lange A. Structural heterogeneity in microcrystalline ubiquitin studied by solid-state NMR. Protein Sci 2015; 24:592-8. [PMID: 25644665 DOI: 10.1002/pro.2654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/07/2023]
Abstract
By applying [1-(13) C]- and [2-(13) C]-glucose labeling schemes to the folded globular protein ubiquitin, a strong reduction of spectral crowding and increase in resolution in solid-state NMR (ssNMR) spectra could be achieved. This allowed spectral resonance assignment in a straightforward manner and the collection of a wealth of long-range distance information. A high precision solid-state NMR structure of microcrystalline ubiquitin was calculated with a backbone rmsd of 1.57 to the X-ray structure and 1.32 Å to the solution NMR structure. Interestingly, we can resolve structural heterogeneity as the presence of three slightly different conformations. Structural heterogeneity is most significant for the loop region β1-β2 but also for β-strands β1, β2, β3, and β5 as well as for the loop connecting α1 and β3. This structural polymorphism observed in the solid-state NMR spectra coincides with regions that showed dynamics in solution NMR experiments on different timescales.
Collapse
Affiliation(s)
- Hannes Klaus Fasshuber
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; Institut für Biologie, Humboldt-Universität, zu Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xue Y, Skrynnikov NR. Ensemble MD simulations restrained via crystallographic data: accurate structure leads to accurate dynamics. Protein Sci 2015; 23:488-507. [PMID: 24452989 DOI: 10.1002/pro.2433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/06/2014] [Accepted: 01/18/2014] [Indexed: 11/07/2022]
Abstract
Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for (15) N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields.
Collapse
Affiliation(s)
- Yi Xue
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana, 47907-2084, USA
| | | |
Collapse
|
24
|
Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Böckmann A, Meier BH. De-novo-3D-Strukturaufklärung mit Proteinmengen unter einem Milligramm mittels 100-kHz-MAS-Festkörper-NMR-Spektroskopie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405730] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Böckmann A, Meier BH. De Novo 3D Structure Determination from Sub-milligram Protein Samples by Solid-State 100 kHz MAS NMR Spectroscopy. Angew Chem Int Ed Engl 2014; 53:12253-6. [DOI: 10.1002/anie.201405730] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 01/10/2023]
|
26
|
Vammi V, Lin TL, Song G. Enhancing the quality of protein conformation ensembles with relative populations. JOURNAL OF BIOMOLECULAR NMR 2014; 58:209-225. [PMID: 24519023 DOI: 10.1007/s10858-014-9818-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
The function and dynamics of many proteins are best understood not from a single structure but from an ensemble. A high quality ensemble is necessary for accurately delineating protein dynamics. However, conformations in an ensemble are generally given equal weights. Few attempts were made to assign relative populations to the conformations, mainly due to the lack of right experimental data. Here we propose a method for assigning relative populations to ensembles using experimental residue dipolar couplings (RDC) as constraints, and show that relative populations can significantly enhance an ensemble's ability in representing the native states and dynamics. The method works by identifying conformation states within an ensemble and assigning appropriate relative populations to them. Each of these conformation states is represented by a sub-ensemble consisting of a subset of the conformations. Application to the ubiquitin X-ray ensemble clearly identifies two key conformation states, with relative populations in excellent agreement with previous work. We then apply the method to a reprotonated ERNST ensemble that is enhanced with a switched conformation, and show that as a result of population reweighting, not only the reproduction of RDCs is significantly improved, but common conformational features (particularly the dihedral angle distributions of ϕ 53 and ψ 52) also emerge for both the X-ray ensemble and the reprotonated ERNST ensemble.
Collapse
Affiliation(s)
- Vijay Vammi
- Department of Computer Science, Bioinformatics and Computational Biology Program, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011, USA,
| | | | | |
Collapse
|
27
|
Lin Y, Lee YH, Yoshimura Y, Yagi H, Goto Y. Solubility and supersaturation-dependent protein misfolding revealed by ultrasonication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1845-1854. [PMID: 24059752 DOI: 10.1021/la403100h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although alcohols are useful cosolvents for producing amyloid fibrils, the underlying mechanism of alcohol-dependent fibrillation is unclear. We studied the alcohol-induced fibrillation of hen egg-white lysozyme at various concentrations of ethanol, 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). Under the conditions where the alcohol-denatured lysozyme retained metastability, ultrasonication effectively triggered fibrillation. The optimal alcohol concentration depended on the alcohol species. HFIP showed a sharp maximum at 12-16%. For TFE, a broad maximum at 40-80% was observed. Ethanol exhibited only an increase in fibrillation above 60%. These profiles were opposite to the equilibrium solubility of lysozyme in water/alcohol mixtures. The results indicate that although fibrillation is determined by solubility, supersaturation prevents conformational transitions and ultrasonication is highly effective in minimizing an effect of supersaturation. We propose an alcohol-dependent protein misfolding funnel useful for examining amyloidogenicity. This misfolding funnel will apply to fibrillation under physiological conditions where biological environments play important roles in decreasing the solubility.
Collapse
Affiliation(s)
- Yuxi Lin
- Institute for Protein Research, Osaka University , 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
28
|
Fragai M, Luchinat C, Parigi G, Ravera E. Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins. JOURNAL OF BIOMOLECULAR NMR 2013; 57:155-66. [PMID: 23990200 DOI: 10.1007/s10858-013-9776-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/23/2013] [Indexed: 05/09/2023]
Abstract
Great theoretical and methodological advances are pushing the limits of resolution and sensitivity in solid state NMR (SSNMR). However, sample preparation remains a critical issue for the success of an experiment. The factors affecting spectral quality in SSNMR samples are discussed, examining cases encountered in the literature and presenting new experimental data. A discussion on resolution and sensitivity in sedimented solutes is framed in this context.
Collapse
Affiliation(s)
- Marco Fragai
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | | | | | | |
Collapse
|
29
|
Aliev AE, Kulke M, Khaneja HS, Chudasama V, Sheppard TD, Lanigan RM. Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics. Proteins 2013; 82:195-215. [PMID: 23818175 PMCID: PMC4282583 DOI: 10.1002/prot.24350] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
Abstract
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abil E Aliev
- Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. JOURNAL OF BIOMOLECULAR NMR 2013; 56:227-41. [PMID: 23728592 PMCID: PMC3701756 DOI: 10.1007/s10858-013-9741-y] [Citation(s) in RCA: 879] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/03/2013] [Indexed: 05/05/2023]
Abstract
A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (ϕ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ(1) rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 126 NIH, Bethesda, MD 20892-0520, USA
| | | |
Collapse
|
31
|
Abstract
Equilibrium molecular dynamics simulations, in which proteins spontaneously and repeatedly fold and unfold, have recently been used to help elucidate the mechanistic principles that underlie the folding of fast-folding proteins. The extent to which the conclusions drawn from the analysis of such proteins, which fold on the microsecond timescale, apply to the millisecond or slower folding of naturally occurring proteins is, however, unclear. As a first attempt to address this outstanding issue, we examine here the folding of ubiquitin, a 76-residue-long protein found in all eukaryotes that is known experimentally to fold on a millisecond timescale. Ubiquitin folding has been the subject of many experimental studies, but its slow folding rate has made it difficult to observe and characterize the folding process through all-atom molecular dynamics simulations. Here we determine the mechanism, thermodynamics, and kinetics of ubiquitin folding through equilibrium atomistic simulations. The picture emerging from the simulations is in agreement with a view of ubiquitin folding suggested from previous experiments. Our findings related to the folding of ubiquitin are also consistent, for the most part, with the folding principles derived from the simulation of fast-folding proteins, suggesting that these principles may be applicable to a wider range of proteins.
Collapse
Affiliation(s)
| | | | - David E. Shaw
- D. E. Shaw Research, New York, NY 10036; and
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032
| |
Collapse
|
32
|
Kitazawa S, Kameda T, Yagi-Utsumi M, Sugase K, Baxter NJ, Kato K, Williamson MP, Kitahara R. Solution Structure of the Q41N Variant of Ubiquitin as a Model for the Alternatively Folded N2 State of Ubiquitin. Biochemistry 2013; 52:1874-85. [DOI: 10.1021/bi301420m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tomoshi Kameda
- Computational Biology Research
Center (CBRC), Advanced Industrial Science and Technology (AIST), 2-43 Aomi, Koto, Tokyo 135-0064, Japan
| | - Maho Yagi-Utsumi
- Okazaki Institute for Integrative
Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, Nagoya
467-8603, Japan
| | - Kenji Sugase
- Structure
and Function Group,
Division of Structural Biomolecular Science, Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503,
Japan
| | - Nicola J. Baxter
- Department of Molecular
Biology and
Biotechnology, University of Sheffield,
Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Koichi Kato
- Okazaki Institute for Integrative
Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, Nagoya
467-8603, Japan
| | - Michael P. Williamson
- Department of Molecular
Biology and
Biotechnology, University of Sheffield,
Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
33
|
Sundd M. Conformational and dynamic changes at the interface contribute to ligand binding by ubiquitin. Biochemistry 2012; 51:8111-24. [PMID: 23035694 DOI: 10.1021/bi3004268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquitin interacts with numerous domains and motifs in its lifetime that vary in structure but bind the same hydrophobic patch. To identify the structural features of ubiquitin that make it an exceptional protein-protein interaction partner, we have studied the interaction of ubiquitin with the signal transducing adaptor molecule-1 ubiquitin interacting motif (UIM) using nuclear magnetic resonance. Our studies bring to light the role of the inherent backbone flexibility of ubiquitin in its interactions with a large array of binding partners, revealed from the changes in C(α) chemical shifts, backbone dynamics, and hydrogen bond lengths upon UIM binding. The crystal structures of ubiquitin complexes lend further support to our findings, underscoring the importance of the unique and flexible hydrogen bond network within ubiquitin and simultaneously providing insights into the nature of the slow motions. Taken together, our studies provide an in-depth view of the molecular changes associated with ligand recognition by ubiquitin.
Collapse
Affiliation(s)
- Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
34
|
Tollinger M, Sivertsen A, Meier BH, Ernst M, Schanda P. Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy. J Am Chem Soc 2012; 134:14800-7. [PMID: 22908968 PMCID: PMC3557925 DOI: 10.1021/ja303591y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Indexed: 02/04/2023]
Abstract
We demonstrate that conformational exchange processes in proteins on microsecond-to-millisecond time scales can be detected and quantified by solid-state NMR spectroscopy. We show two independent approaches that measure the effect of conformational exchange on transverse relaxation parameters, namely Carr-Purcell-Meiboom-Gill relaxation-dispersion experiments and measurement of differential multiple-quantum coherence decay. Long coherence lifetimes, as required for these experiments, are achieved by the use of highly deuterated samples and fast magic-angle spinning. The usefulness of the approaches is demonstrated by application to microcrystalline ubiquitin. We detect a conformational exchange process in a region of the protein for which dynamics have also been observed in solution. Interestingly, quantitative analysis of the data reveals that the exchange process is more than 1 order of magnitude slower than in solution, and this points to the impact of the crystalline environment on free energy barriers.
Collapse
Affiliation(s)
- Martin Tollinger
- Institut für Organische
Chemie, Universität Innsbruck, 6020
Innsbruck, Austria
| | - Astrid
C. Sivertsen
- CEA, Institut de Biologie Structurale
Jean-Pierre Ebel, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- CNRS, Institut
de Biologie Structurale Jean-Pierre Ebel, Grenoble, 41 rue Jules Horowitz,
38027 Grenoble Cedex 1, France
- Université
Joseph Fourier−Grenoble 1, Institut de Biologie
Structurale Jean-Pierre Ebel, Grenoble, 41 rue Jules Horowitz, 38027
Grenoble Cedex 1, France
| | - Beat H. Meier
- Physical
Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse
10, 8093
Zürich, Switzerland
| | - Matthias Ernst
- Physical
Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse
10, 8093
Zürich, Switzerland
| | - Paul Schanda
- CEA, Institut de Biologie Structurale
Jean-Pierre Ebel, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- CNRS, Institut
de Biologie Structurale Jean-Pierre Ebel, Grenoble, 41 rue Jules Horowitz,
38027 Grenoble Cedex 1, France
- Université
Joseph Fourier−Grenoble 1, Institut de Biologie
Structurale Jean-Pierre Ebel, Grenoble, 41 rue Jules Horowitz, 38027
Grenoble Cedex 1, France
| |
Collapse
|
35
|
Salvi N, Ulzega S, Ferrage F, Bodenhausen G. Time Scales of Slow Motions in Ubiquitin Explored by Heteronuclear Double Resonance. J Am Chem Soc 2012; 134:2481-4. [DOI: 10.1021/ja210238g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Nicola Salvi
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences
et Ingénierie Chimiques, BCH, 1015 Lausanne, Switzerland
| | - Simone Ulzega
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences
et Ingénierie Chimiques, BCH, 1015 Lausanne, Switzerland
| | - Fabien Ferrage
- Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231
Paris Cedex 05, France
- Université Pierre et Marie Curie, Paris, France
- UMR 7203 Laboratoire des Biomolécules CNRS-UPMC-ENS, Paris, France
| | - Geoffrey Bodenhausen
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences
et Ingénierie Chimiques, BCH, 1015 Lausanne, Switzerland
- Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231
Paris Cedex 05, France
- Université Pierre et Marie Curie, Paris, France
- UMR 7203 Laboratoire des Biomolécules CNRS-UPMC-ENS, Paris, France
| |
Collapse
|
36
|
Bottaro S, Boomsma W, E. Johansson K, Andreetta C, Hamelryck T, Ferkinghoff-Borg J. Subtle Monte Carlo Updates in Dense Molecular Systems. J Chem Theory Comput 2012; 8:695-702. [DOI: 10.1021/ct200641m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandro Bottaro
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wouter Boomsma
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | | | | | - Thomas Hamelryck
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
37
|
Pozharski E. Apparent instability of crystallographic refinement in the presence of disordered model fragments and upon insufficiently restrained model geometry. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:966-72. [DOI: 10.1107/s090744491103914x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/23/2011] [Indexed: 05/26/2023]
Affiliation(s)
- Edwin Pozharski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| |
Collapse
|
38
|
Sidhu A, Surolia A, Robertson AD, Sundd M. A hydrogen bond regulates slow motions in ubiquitin by modulating a β-turn flip. J Mol Biol 2011; 411:1037-48. [PMID: 21741979 DOI: 10.1016/j.jmb.2011.06.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/16/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
Proteins exist as conformational ensembles composed of multiple interchanging substates separated by kinetic barriers. Interconverting conformations are often difficult to probe, owing to their sparse population and transient nature. Here, we report the identification and characterization of a subset of conformations in ubiquitin that participate in microsecond-to-millisecond motions in the amides of Ile23, Asn25, and Thr55. A novel side chain to the backbone hydrogen bond that regulates these motions has also been identified. Combining our NMR studies with the available X-ray data, we have unearthed the physical process underlying slow motions-the interconversion of a type I into a type II β-turn flip at residues Glu51 through Arg54. Interestingly, the dominant conformer of wild-type ubiquitin observed in solution near neutral pH is only represented by about 22% of the crystal structures. The conformers generated as a result of the dynamics of the hydrogen bond appear to be correlated to ligand recognition by ubiquitin.
Collapse
Affiliation(s)
- Arshdeep Sidhu
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | |
Collapse
|