1
|
Lee E, McLeod MJ, Redzic JS, Marcolin B, Thorne RE, Agarwal P, Eisenmesser EZ. Identifying structural and dynamic changes during the Biliverdin Reductase B catalytic cycle. Front Mol Biosci 2023; 10:1244587. [PMID: 37645217 PMCID: PMC10461185 DOI: 10.3389/fmolb.2023.1244587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Biliverdin Reductase B (BLVRB) is an NADPH-dependent reductase that catalyzes the reduction of multiple substrates and is therefore considered a critical cellular redox regulator. In this study, we sought to address whether both structural and dynamics changes occur between different intermediates of the catalytic cycle and whether these were relegated to just the active site or the entirety of the enzyme. Through X-ray crystallography, we determined the apo BLVRB structure for the first time, revealing subtle global changes compared to the holo structure and identifying the loss of a critical hydrogen bond that "clamps" the R78-loop over the coenzyme. Amide and Cα chemical shift perturbations were used to identify environmental and secondary structural changes between intermediates, with more distant global changes observed upon coenzyme binding compared to substrate interactions. NMR relaxation rate measurements provided insights into the dynamic behavior of BLVRB during the catalytic cycle. Specifically, the inherently dynamic R78-loop that becomes ordered upon coenzyme binding persists through the catalytic cycle while similar regions experience dynamic exchange. However, the dynamic exchange processes were found to differ through the catalytic cycle with several groups of residues exhibiting similar dynamic responses. Finally, both local and distal structural and dynamic changes occur within BLVRB that are dependent solely on the oxidative state of the coenzyme. Thus, through a comprehensive analysis here, this study revealed structural and dynamic alterations in BLVRB through its catalytic cycle that are not simply relegated to the active site, but instead, are allosterically coupled throughout the enzyme.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Matthew J. McLeod
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Barbara Marcolin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Robert E. Thorne
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Pratul Agarwal
- Department of Physiological Sciences and High Performance Computing Center, Oklahoma State University, Stillwater, OK, United States
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
2
|
Lee E, Redzic JS, Saviola AJ, Li X, Ebmeier CC, Kutateladze T, Hansen KC, Zhao R, Ahn N, Sluchanko NN, Eisenmesser E. Molecular insight into the specific interactions of the SARS-Coronavirus-2 nucleocapsid with RNA and host protein. Protein Sci 2023; 32:e4603. [PMID: 36807437 PMCID: PMC10019451 DOI: 10.1002/pro.4603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid protein is the most abundantly expressed viral protein during infection where it targets both RNA and host proteins. However, identifying how a single viral protein interacts with so many different targets remains a challenge, providing the impetus here for identifying the interaction sites through multiple methods. Through a combination of nuclear magnetic resonance (NMR), electron microscopy, and biochemical methods, we have characterized nucleocapsid interactions with RNA and with three host proteins, which include human cyclophilin-A, Pin1, and 14-3-3τ. Regarding RNA interactions, the nucleocapsid protein N-terminal folded domain preferentially interacts with smaller RNA fragments relative to the C-terminal region, suggesting an initial RNA engagement is largely dictated by this N-terminal region followed by weaker interactions to the C-terminal region. The nucleocapsid protein forms 10 nm ribonuclear complexes with larger RNA fragments that include 200 and 354 nucleic acids, revealing its potential diversity in sequestering different viral genomic regions during viral packaging. Regarding host protein interactions, while the nucleocapsid targets all three host proteins through its serine-arginine-rich region, unstructured termini of the nucleocapsid protein also engage host cyclophilin-A and host 14-3-3τ. Considering these host proteins play roles in innate immunity, the SARS-CoV-2 nucleocapsid protein may block the host response by competing interactions. Finally, phosphorylation of the nucleocapsid protein quenches an inherent dynamic exchange process within its serine-arginine-rich region. Our studies identify many of the diverse interactions that may be important for SARS-CoV-2 pathology during infection.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | | | - Tatiana Kutateladze
- Department of PharmacologySchool of Medicine, University of Colorado DenverAuroraColoradoUSA
| | - Kirk Charles Hansen
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Natalie Ahn
- Department of BiochemistryUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| |
Collapse
|
3
|
Redzic JS, Lee E, Born A, Issaian A, Henen MA, Nichols PJ, Blue A, Hansen KC, D'Alessandro A, Vögeli B, Eisenmesser EZ. The Inherent Dynamics and Interaction Sites of the SARS-CoV-2 Nucleocapsid N-Terminal Region. J Mol Biol 2021; 433:167108. [PMID: 34161778 PMCID: PMC8214912 DOI: 10.1016/j.jmb.2021.167108] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
The nucleocapsid protein is one of four structural proteins encoded by SARS-CoV-2 and plays a central role in packaging viral RNA and manipulating the host cell machinery, yet its dynamic behavior and promiscuity in nucleotide binding has made standard structural methods to address its atomic-resolution details difficult. To begin addressing the SARS-CoV-2 nucleocapsid protein interactions with both RNA and the host cell along with its dynamic behavior, we have specifically focused on the folded N-terminal domain (NTD) and its flanking regions using nuclear magnetic resonance solution studies. Studies performed here reveal a large repertoire of interactions, which includes a temperature-dependent self-association mediated by the disordered flanking regions that also serve as binding sites for host cell cyclophilin-A while nucleotide binding is largely mediated by the central NTD core. NMR studies that include relaxation experiments have revealed the complicated dynamic nature of this viral protein. Specifically, while much of the N-terminal core domain exhibits micro-millisecond motions, a central β-hairpin shows elevated inherent flexibility on the pico-nanosecond timescale and the serine/arginine-rich region of residues 176-209 undergoes multiple exchange phenomena. Collectively, these studies have begun to reveal the complexities of the nucleocapsid protein dynamics and its preferred interaction sites with its biological targets.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States
| | - Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States
| | - Alexandra Born
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States
| | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States; Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States.
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
4
|
Babu M, Favretto F, de Opakua AI, Rankovic M, Becker S, Zweckstetter M. Proline/arginine dipeptide repeat polymers derail protein folding in amyotrophic lateral sclerosis. Nat Commun 2021; 12:3396. [PMID: 34099711 PMCID: PMC8184751 DOI: 10.1038/s41467-021-23691-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with overlapping clinical features and the pathological hallmark of cytoplasmic deposits of misfolded proteins. The most frequent cause of familial forms of these diseases is a hexanucleotide repeat expansion in the non-coding region of the C9ORF72 gene that is translated into dipeptide repeat polymers. Here we show that proline/arginine repeat polymers derail protein folding by sequestering molecular chaperones. We demonstrate that proline/arginine repeat polymers inhibit the folding catalyst activity of PPIA, an abundant molecular chaperone and prolyl isomerase in the brain that is altered in amyotrophic lateral sclerosis. NMR spectroscopy reveals that proline/arginine repeat polymers bind to the active site of PPIA. X-ray crystallography determines the atomic structure of a proline/arginine repeat polymer in complex with the prolyl isomerase and defines the molecular basis for the specificity of disease-associated proline/arginine polymer interactions. The combined data establish a toxic mechanism that is specific for proline/arginine dipeptide repeat polymers and leads to derailed protein homeostasis in C9orf72-associated neurodegenerative diseases. The most frequent cause of familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are hexanucleotide repeat expansions in the non-coding region of the C9ORF72 gene that are translated into five dipeptide repeat (DPR) proteins. Here, the authors show that proline/arginine (PR) DPRs inhibit the prolyl isomerase PPIA and reveal the molecular mechanism of the impaired protein folding activity of PPIA by performing NMR measurements and determining a PR DPR bound PPIA crystal structure.
Collapse
Affiliation(s)
- Maria Babu
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Filippo Favretto
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Marija Rankovic
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. .,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
5
|
Redzic JS, Duff MR, Blue A, Pitts TM, Agarwal P, Eisenmesser EZ. Modulating Enzyme Function via Dynamic Allostery within Biliverdin Reductase B. Front Mol Biosci 2021; 8:691208. [PMID: 34095235 PMCID: PMC8173106 DOI: 10.3389/fmolb.2021.691208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
The biliverdin reductase B (BLVRB) class of enzymes catalyze the NADPH-dependent reduction of multiple flavin substrates and are emerging as critical players in cellular redox regulation. However, the role of dynamics and allostery have not been addressed, prompting studies here that have revealed a position 15 Å away from the active site within human BLVRB (T164) that is inherently dynamic and can be mutated to control global micro-millisecond motions and function. By comparing the inherent dynamics through nuclear magnetic resonance (NMR) relaxation approaches of evolutionarily distinct BLVRB homologues and by applying our previously developed Relaxation And Single Site Multiple Mutations (RASSMM) approach that monitors both the functional and dynamic effects of multiple mutations to the single T164 site, we have discovered that the most dramatic mutagenic effects coincide with evolutionary changes and these modulate coenzyme binding. Thus, evolutionarily changing sites distal to the active site serve as dynamic "dials" to globally modulate motions and function. Despite the distal dynamic and functional coupling modulated by this site, micro-millisecond motions span an order of magnitude in their apparent kinetic rates of motions. Thus, global dynamics within BLVRB are a collection of partially coupled motions tied to catalytic function.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Denver, CO, United States
| | - Michael R Duff
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, TN, United States
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Pratul Agarwal
- Department of Physiological Sciences and High Performance Computing Center, Oklahoma State University, Stillwater, OK, United States
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
6
|
Juárez-Jiménez J, Gupta AA, Karunanithy G, Mey ASJS, Georgiou C, Ioannidis H, De Simone A, Barlow PN, Hulme AN, Walkinshaw MD, Baldwin AJ, Michel J. Dynamic design: manipulation of millisecond timescale motions on the energy landscape of cyclophilin A. Chem Sci 2020; 11:2670-2680. [PMID: 34084326 PMCID: PMC8157532 DOI: 10.1039/c9sc04696h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins need to interconvert between many conformations in order to function, many of which are formed transiently, and sparsely populated. Particularly when the lifetimes of these states approach the millisecond timescale, identifying the relevant structures and the mechanism by which they interconvert remains a tremendous challenge. Here we introduce a novel combination of accelerated MD (aMD) simulations and Markov state modelling (MSM) to explore these 'excited' conformational states. Applying this to the highly dynamic protein CypA, a protein involved in immune response and associated with HIV infection, we identify five principally populated conformational states and the atomistic mechanism by which they interconvert. A rational design strategy predicted that the mutant D66A should stabilise the minor conformations and substantially alter the dynamics, whereas the similar mutant H70A should leave the landscape broadly unchanged. These predictions are confirmed using CPMG and R1ρ solution state NMR measurements. By efficiently exploring functionally relevant, but sparsely populated conformations with millisecond lifetimes in silico, our aMD/MSM method has tremendous promise for the design of dynamic protein free energy landscapes for both protein engineering and drug discovery.
Collapse
Affiliation(s)
- Jordi Juárez-Jiménez
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Arun A Gupta
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Gogulan Karunanithy
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Antonia S J S Mey
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Charis Georgiou
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Harris Ioannidis
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Alessio De Simone
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Paul N Barlow
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Alison N Hulme
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Malcolm D Walkinshaw
- School of Biological Sciences Michael Swann Building, Max Born Crescent Edinburgh EH9 3BF UK
| | - Andrew J Baldwin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
7
|
Eisenmesser EZ, Gottschlich A, Redzic JS, Paukovich N, Nix JC, Azam T, Zhang L, Zhao R, Kieft JS, The E, Meng X, Dinarello CA. Interleukin-37 monomer is the active form for reducing innate immunity. Proc Natl Acad Sci U S A 2019; 116:5514-5522. [PMID: 30819901 PMCID: PMC6431183 DOI: 10.1073/pnas.1819672116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Interleukin-37 (IL-37), a member of the IL-1 family of cytokines, is a fundamental suppressor of innate and acquired immunities. Here, we used an integrative approach that combines biophysical, biochemical, and biological studies to elucidate the unique characteristics of IL-37. Our studies reveal that single amino acid mutations at the IL-37 dimer interface that result in the stable formation of IL-37 monomers also remain monomeric at high micromolar concentrations and that these monomeric IL-37 forms comprise higher antiinflammatory activities than native IL-37 on multiple cell types. We find that, because native IL-37 forms dimers with nanomolar affinity, higher IL-37 only weakly suppresses downstream markers of inflammation whereas lower concentrations are more effective. We further show that IL-37 is a heparin binding protein that modulates this self-association and that the IL-37 dimers must block the activity of the IL-37 monomer. Specifically, native IL-37 at 2.5 nM reduces lipopolysaccharide (LPS)-induced vascular cell adhesion molecule (VCAM) protein levels by ∼50%, whereas the monomeric D73K mutant reduced VCAM by 90% at the same concentration. Compared with other members of the IL-1 family, both the N and the C termini of IL-37 are extended, and we show they are disordered in the context of the free protein. Furthermore, the presence of, at least, one of these extended termini is required for IL-37 suppressive activity. Based on these structural and biological studies, we present a model of IL-37 interactions that accounts for its mechanism in suppressing innate inflammation.
Collapse
Affiliation(s)
- Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80238;
| | | | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80238
| | - Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80238
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, CO 80238
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80238
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80238
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80238
| | - Erlinda The
- Department of Surgery, University of Colorado Denver, Aurora, CO 80238
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, CO 80238
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80238;
- Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Paukovich N, Xue M, Elder JR, Redzic JS, Blue A, Pike H, Miller BG, Pitts TM, Pollock DD, Hansen K, D'Alessandro A, Eisenmesser EZ. Biliverdin Reductase B Dynamics Are Coupled to Coenzyme Binding. J Mol Biol 2018; 430:3234-3250. [PMID: 29932944 DOI: 10.1016/j.jmb.2018.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Biliverdin reductase B (BLVRB) is a newly identified cellular redox regulator that catalyzes the NADPH-dependent reduction of multiple substrates. Through mass spectrometry analysis, we identified high levels of BLVRB in mature red blood cells, highlighting the importance of BLVRB in redox regulation. The BLVRB conformational changes that occur during conezyme/substrate binding and the role of dynamics in BLVRB function, however, remain unknown. Through a combination of NMR, kinetics, and isothermal titration calorimetry studies, we determined that BLVRB binds its coenzyme 500-fold more tightly than its substrate. While the active site of apo BLVRB is highly dynamic on multiple timescales, active site dynamics are largely quenched within holo BLVRB, in which dynamics are redistributed to other regions of the enzyme. We show that a single point mutation of Arg78➔Ala leads to both an increase in active site micro-millisecond motions and an increase in the microscopic rate constants of coenzyme binding. This demonstrates that altering BLVRB active site dynamics can directly cause a change in functional characteristics. Our studies thus address the solution behavior of apo and holo BLVRB and identify a role of enzyme dynamics in coenzyme binding.
Collapse
Affiliation(s)
- Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Mengjun Xue
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - James R Elder
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Hamish Pike
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Brian G Miller
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32310, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, Aurora, CO 80045, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Rodriguez-Bussey I, Yao XQ, Shouaib AD, Lopez J, Hamelberg D. Decoding Allosteric Communication Pathways in Cyclophilin A with a Comparative Analysis of Perturbed Conformational Ensembles. J Phys Chem B 2018; 122:6528-6535. [DOI: 10.1021/acs.jpcb.8b03824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isela Rodriguez-Bussey
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Abdullah Danish Shouaib
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Jonathan Lopez
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
10
|
Vu PJ, Yao XQ, Momin M, Hamelberg D. Unraveling Allosteric Mechanisms of Enzymatic Catalysis with an Evolutionary Analysis of Residue–Residue Contact Dynamical Changes. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Phuoc Jake Vu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303-2515, United States
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303-2515, United States
| | - Mohamed Momin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303-2515, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303-2515, United States
| |
Collapse
|
11
|
Zhang M, Tang J, Yin J, Wang X, Feng X, Yang X, Shan H, Zhang Q, Zhang J, Li Y. The clinical implication of serum cyclophilin A in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2018; 13:357-363. [PMID: 29403273 PMCID: PMC5783015 DOI: 10.2147/copd.s152898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Cyclophilin A (CyPA) is a secreted molecule that is regulated by inflammatory stimuli. Although inflammation has an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD), little is known regarding the relationship between serum CyPA and COPD. Methods Ninety-three COPD patients with acute exacerbation were enrolled in the study and were reassessed during the convalescence phase. Eighty-eight controls were matched for age, gender, body mass index, smoking index and comorbidity. The basic clinical information and pulmonary function of all participants were collected. Serum levels of CyPA and other inflammation indexes were further measured. Results Serum CyPA was significantly increased in convalescent COPD patients compared to healthy controls, and further elevated in COPD patients with acute exacerbation. Serum CyPA positively correlated with serum interleukin-6, matrix metalloproteinase-9 and high-sensitivity C-reactive protein in both the exacerbation and convalescence phases of COPD. Furthermore, it negatively correlated with percent value of forced expiratory volume in 1 second (FEV1%) predicted and FEV1/forced vital capacity in convalescent COPD patients. Conclusion These results suggest that serum CyPA can be used as a potential inflammatory biomarker for COPD and assessment of serum CyPA may reflect the severity of inflammation in COPD.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Jingjing Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Jiafeng Yin
- Department of Laboratory Examination, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Xiaoying Wang
- Health Examination Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiangli Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Hu Shan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Qiuhong Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - Yali Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| |
Collapse
|
12
|
Holliday MJ, Camilloni C, Armstrong GS, Vendruscolo M, Eisenmesser EZ. Networks of Dynamic Allostery Regulate Enzyme Function. Structure 2017; 25:276-286. [PMID: 28089447 DOI: 10.1016/j.str.2016.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022]
Abstract
Many protein systems rely on coupled dynamic networks to allosterically regulate function. However, the broad conformational space sampled by non-coherently dynamic systems has precluded detailed analysis of their communication mechanisms. Here, we have developed a methodology that combines the high sensitivity afforded by nuclear magnetic resonance relaxation techniques and single-site multiple mutations, termed RASSMM, to identify two allosterically coupled dynamic networks within the non-coherently dynamic enzyme cyclophilin A. Using this methodology, we discovered two key hotspot residues, Val6 and Val29, that communicate through these networks, the mutation of which altered active-site dynamics, modulating enzymatic turnover of multiple substrates. Finally, we utilized molecular dynamics simulations to identify the mechanism by which one of these hotspots is coupled to the larger dynamic networks. These studies confirm a link between enzyme dynamics and the catalytic cycle of cyclophilin A and demonstrate how dynamic allostery may be engineered to tune enzyme function.
Collapse
Affiliation(s)
- Michael Joseph Holliday
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, MS 8101, Aurora, CO 80045, USA
| | - Carlo Camilloni
- Department of Chemistry, Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | | | | | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, MS 8101, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation. Proc Natl Acad Sci U S A 2016; 113:4735-40. [PMID: 27071107 DOI: 10.1073/pnas.1523573113] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue-residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general.
Collapse
|
14
|
Keedy DA, Kenner LR, Warkentin M, Woldeyes RA, Hopkins JB, Thompson MC, Brewster AS, Van Benschoten AH, Baxter EL, Uervirojnangkoorn M, McPhillips SE, Song J, Alonso-Mori R, Holton JM, Weis WI, Brunger AT, Soltis SM, Lemke H, Gonzalez A, Sauter NK, Cohen AE, van den Bedem H, Thorne RE, Fraser JS. Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. eLife 2015; 4. [PMID: 26422513 PMCID: PMC4721965 DOI: 10.7554/elife.07574] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022] Open
Abstract
Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function. DOI:http://dx.doi.org/10.7554/eLife.07574.001 Proteins are the workhorses of the cell. The shape that a protein molecule adopts enables it to carry out its role. However, a protein’s shape, or 'conformation', is not static. Instead, a protein can shift between different conformations. This is particularly true for enzymes – the proteins that catalyze chemical reactions. The region of an enzyme where the chemical reaction happens, known as the active site, often has to change its conformation to allow catalysis to proceed. Changes in temperature can also make a protein shift between alternative conformations. Understanding how a protein shifts between conformations gives insight into how it works. A common method for studying protein conformation is X-ray crystallography. This technique uses a beam of X-rays to figure out where the atoms of the protein are inside a crystal made of millions of copies of that protein. At room temperature or biological temperature, X-rays can rapidly damage the protein. Because of this, most crystal structures are determined at very low temperatures to minimize damage. But cooling to low temperatures changes the conformations that the protein adopts, and usually causes fewer conformations to be present. Keedy, Kenner, Warkentin, Woldeyes et al. have used X-ray crystallography from a very low temperature (-173°C or 100 K) to above room temperature (up to 27°C or 300 K) to explore the alternative conformations of an enzyme called cyclophilin A. These alternative conformations include those that have previously been linked to this enzyme’s activity. Starting at a low temperature, parts of the enzyme were seen to shift from having a single conformation to many conformations above a threshold temperature. Unexpectedly, different parts of the enzyme have different threshold temperatures, suggesting that there isn’t a single transition across the whole protein. Instead, it appears the way a protein’s conformation changes in response to temperature is more complex than was previously realized. This result suggests that conformations in different parts of a protein are coupled to each other in complex ways. Keedy, Kenner, Warkentin, Woldeyes et al. then performed X-ray crystallography at room temperature using an X-ray free-electron laser (XFEL). This technique can capture the protein’s structure before radiation damage occurs, and confirmed that the alternative conformations observed were not affected by radiation damage. The combination of X-ray crystallography at multiple temperatures, new analysis methods for identifying and measuring alternative conformations, and XFEL crystallography should help future studies to characterize conformational changes in other proteins. DOI:http://dx.doi.org/10.7554/eLife.07574.002
Collapse
Affiliation(s)
- Daniel A Keedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Lillian R Kenner
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | | | - Rahel A Woldeyes
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Jesse B Hopkins
- Department of Physics, Cornell University, Ithaca, United States
| | - Michael C Thompson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Aaron S Brewster
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Andrew H Van Benschoten
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Elizabeth L Baxter
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - Monarin Uervirojnangkoorn
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Scott E McPhillips
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - Jinhu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - James M Holton
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - William I Weis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - S Michael Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - Henrik Lemke
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - Ana Gonzalez
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - Nicholas K Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - Henry van den Bedem
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
| | - Robert E Thorne
- Department of Physics, Cornell University, Ithaca, United States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
15
|
Blackburn EA, Wear MA, Landré V, Narayan V, Ning J, Erman B, Ball KL, Walkinshaw MD. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90. Biosci Rep 2015; 35:e00258. [PMID: 26330616 PMCID: PMC4721547 DOI: 10.1042/bsr20150124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/19/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress.
Collapse
Affiliation(s)
- Elizabeth A Blackburn
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Martin A Wear
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Vivian Landré
- IGMM-Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, EH4 2XR, U.K
| | - Vikram Narayan
- IGMM-Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, EH4 2XR, U.K
| | - Jia Ning
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Burak Erman
- Chemical and Biological Engineering Department, Koc University, Istanbul 34415, Turkey
| | - Kathryn L Ball
- IGMM-Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, EH4 2XR, U.K
| | - Malcolm D Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K.
| |
Collapse
|
16
|
Holliday MJ, Camilloni C, Armstrong GS, Isern NG, Zhang F, Vendruscolo M, Eisenmesser EZ. Structure and Dynamics of GeoCyp: A Thermophilic Cyclophilin with a Novel Substrate Binding Mechanism That Functions Efficiently at Low Temperatures. Biochemistry 2015; 54:3207-17. [PMID: 25923019 DOI: 10.1021/acs.biochem.5b00263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermophilic proteins have found extensive use in research and industrial applications because of their high stability and functionality at elevated temperatures while simultaneously providing valuable insight into our understanding of protein folding, stability, dynamics, and function. Cyclophilins, constituting a ubiquitously expressed family of peptidyl-prolyl isomerases with a range of biological functions and disease associations, have been utilized both for conferring stress tolerances and in exploring the link between conformational dynamics and enzymatic function. To date, however, no active thermophilic cyclophilin has been fully biophysically characterized. Here, we determine the structure of a thermophilic cyclophilin (GeoCyp) from Geobacillus kaustophilus, characterize its dynamic motions over several time scales using an array of methodologies that include chemical shift-based methods and relaxation experiments over a range of temperatures, and measure catalytic activity over a range of temperatures to compare its structure, dynamics, and function to those of a mesophilic counterpart, human cyclophilin A (CypA). Unlike those of most thermophile/mesophile pairs, GeoCyp catalysis is not substantially impaired at low temperatures as compared to that of CypA, retaining ~70% of the activity of its mesophilic counterpart. Examination of substrate-bound ensembles reveals a mechanism by which the two cyclophilins may have adapted to their environments through altering dynamic loop motions and a critical residue that acts as a clamp to regulate substrate binding differentially in CypA and GeoCyp. Fast time scale (pico- to nanosecond) dynamics are largely conserved between the two proteins, in accordance with the high degree of structural similarity, although differences do exist in their temperature dependencies. Slower (microsecond) time scale motions are likewise localized to similar regions in the two proteins with some variability in their magnitudes yet do not exhibit significant temperature dependencies in either enzyme.
Collapse
Affiliation(s)
- Michael J Holliday
- †Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, Aurora, Colorado 80045, United States
| | - Carlo Camilloni
- ‡Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Geoffrey S Armstrong
- §Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Nancy G Isern
- ∥W. R. Wiley Environmental Molecular Sciences Laboratory, High Field NMR Facility, Richland, Washington 99354, United States
| | - Fengli Zhang
- ⊥National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | | | - Elan Z Eisenmesser
- †Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
17
|
Eisenmesser EZ, Capodagli GC, Armstrong GS, Holliday MJ, Isern NG, Zhang F, Pegan SD. Inherent dynamics within the Crimean-Congo Hemorrhagic fever virus protease are localized to the same region as substrate interactions. Protein Sci 2015; 24:651-60. [PMID: 25564798 DOI: 10.1002/pro.2637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/12/2022]
Abstract
Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove ubiquitin (Ub) and interferon stimulated gene product 15 (ISG15) from numerous proteins involved in cellular signaling. Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the structural plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHFV vOTU, both alone and in complex with Ub, discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHFV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.
Collapse
Affiliation(s)
- Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado, 80224
| | | | | | | | | | | | | |
Collapse
|
18
|
Holliday MJ, Zhang F, Isern NG, Armstrong GS, Eisenmesser EZ. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:23-27. [PMID: 23138858 PMCID: PMC4084936 DOI: 10.1007/s12104-012-9445-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins (Lee Archiv Pharm Res 33(2): 181-187, 2010), but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover (Eisenmesser et al. Science 295(5559): 1520-1523, 2002; Eisenmesser et al. Nature 438(7064): 117-121, 2005). Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment (Takami et al. Extremophiles 8(5): 351-356, 2004). This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.
Collapse
Affiliation(s)
- Michael J Holliday
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, 12801 E 17th Ave, Aurora, CO, 80045, USA,
| | | | | | | | | |
Collapse
|
19
|
Kendrick AA, Holliday MJ, Isern NG, Zhang F, Camilloni C, Huynh C, Vendruscolo M, Armstrong G, Eisenmesser EZ. The dynamics of interleukin-8 and its interaction with human CXC receptor I peptide. Protein Sci 2014; 23:464-80. [PMID: 24442768 PMCID: PMC3970897 DOI: 10.1002/pro.2430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 01/13/2023]
Abstract
Interleukin-8 (CXCL8, IL-8) is a proinflammatory chemokine important for the regulation of inflammatory and immune responses via its interaction with G-protein coupled receptors, including CXC receptor 1 (CXCR1). CXCL8 exists as both a monomer and as a dimer at physiological concentrations, yet the molecular basis of CXCL8 interaction with its receptor as well as the importance of CXCL8 dimer formation remain poorly characterized. Although several biological studies have indicated that both the CXCL8 monomer and dimer are active, biophysical studies have reported conflicting results regarding the binding of CXCL8 to CXCR1. To clarify this problem, we expressed and purified a peptide (hCXCR1pep) corresponding to the N-terminal region of human CXCR1 (hCXCR1) and utilized nuclear magnetic resonance (NMR) spectroscopy to interrogate the binding of wild-type CXCL8 and a previously reported mutant (CXCL8M) that stabilizes the monomeric form. Our data reveal that the CXCL8 monomer engages hCXCR1pep with a slightly higher affinity than the CXCL8 dimer, but that the CXCL8 dimer does not dissociate upon binding hCXCR1pep. These investigations also showed that CXCL8 is dynamic on multiple timescales, which may help explain the versatility in this interleukin for engaging its target receptors.
Collapse
Affiliation(s)
- Agnieszka A Kendrick
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado DenverAurora, Colorado, 80224
| | - Michael J Holliday
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado DenverAurora, Colorado, 80224
| | - Nancy G Isern
- WR Wiley Environmental Molecular Sciences Laboratory, High Filed NMR Facility, RichlandWashington, 99532
| | - Fengli Zhang
- National High Magnetics Field LaboratoryTallahassee, Florida, 32310
| | - Carlo Camilloni
- Department of Chemistry, University of CambridgeCambridge, CB2 1EW, United Kingdom
| | - Chi Huynh
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado DenverAurora, Colorado, 80224
| | - Michele Vendruscolo
- Department of Chemistry, University of CambridgeCambridge, CB2 1EW, United Kingdom
| | - Geoffrey Armstrong
- Department of Chemistry and Biochemistry, University of Colorado at BoulderBoulder, Colorado, 80309
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado DenverAurora, Colorado, 80224
| |
Collapse
|
20
|
Automated identification of functional dynamic contact networks from X-ray crystallography. Nat Methods 2013; 10:896-902. [PMID: 23913260 PMCID: PMC3760795 DOI: 10.1038/nmeth.2592] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/28/2013] [Indexed: 01/19/2023]
Abstract
Protein function often depends on the exchange between conformational substates. Allosteric ligand binding or distal mutations can stabilize specific active site conformations and consequently alter protein function. In addition to comparing independently determined X-ray crystal structures, alternative conformations observed at low levels of electron density have the potential to provide mechanistic insights into conformational dynamics. Here, we report a new multi-conformer contact network algorithm (CONTACT) that identifies networks of conformationally heterogeneous residues directly from high-resolution X-ray crystallography data. Contact networks in Escherichia coli dihydrofolate reductase (ecDHFR) predict the long-range pattern of NMR chemical shift perturbations of an allosteric mutation. A comparison of contact networks in wild type and mutant ecDHFR suggests how mutations that alter optimized networks of coordinated motions can impair catalytic function. Thus, CONTACT-guided mutagenesis will allow the structure-dynamics-function relationship to be exploited in protein engineering and design.
Collapse
|
21
|
Bahmed K, Henry C, Holliday M, Redzic J, Ciobanu M, Zhang F, Weekes C, Sclafani R, Degregori J, Eisenmesser E. Extracellular cyclophilin-A stimulates ERK1/2 phosphorylation in a cell-dependent manner but broadly stimulates nuclear factor kappa B. Cancer Cell Int 2012; 12:19. [PMID: 22631225 PMCID: PMC3390265 DOI: 10.1186/1475-2867-12-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023] Open
Abstract
Background Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure. Methods We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells. Results Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFκB) signaling induced in all cell lines tested. Conclusions We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific.
Collapse
Affiliation(s)
- Karim Bahmed
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Davulcu O, Skalicky JJ, Chapman MS. Rate-limiting domain and loop motions in arginine kinase. Biochemistry 2011; 50:4011-8. [PMID: 21425868 DOI: 10.1021/bi101664u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine kinase catalyzes the reversible transfer of a phosphoryl group between ATP and arginine. It is the arthropod homologue of creatine kinase, buffering cellular ATP levels. Crystal structures of arginine kinase, in substrate-free and substrate-bound forms, have revealed large conformational changes associated with the catalytic cycle. Recent nuclear magnetic resonance identified movements of the N-terminal domain and a loop comprising residues I182--G209 with conformational exchange rates in the substrate-free enzyme similar to the turnover rate. Here, to understand whether these motions might be rate-limiting, we determined activation barriers for both the intrinsic dynamics and enzyme turnover using measurements over a temperature range of 15-30 °C. (15)N transverse relaxation dispersion yields activation barriers of 46 ± 8 and 34 ± 12 kJ/mol for the N-terminal domain and I182--G209 loop, respectively. An activation barrier of 34 ± 13 kJ/mol was obtained for enzyme turnover from steady-state kinetics. The similarity between the activation barriers is indeed consistent with turnover being limited by backbone conformational dynamics and pinpoints the locations of potentially rate-limiting motions.
Collapse
Affiliation(s)
- Omar Davulcu
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, United States
| | | | | |
Collapse
|