1
|
Olascoaga S, Castañeda-Sánchez JI, Königsberg M, Gutierrez H, López-Diazguerrero NE. Oxidative stress-induced gene expression changes in prostate epithelial cells in vitro reveal a robust signature of normal prostatic senescence and aging. Biogerontology 2024; 25:1145-1169. [PMID: 39162979 PMCID: PMC11486819 DOI: 10.1007/s10522-024-10126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
Oxidative stress has long been postulated to play an essential role in aging mechanisms, and numerous forms of molecular damage associated with oxidative stress have been well documented. However, the extent to which changes in gene expression in direct response to oxidative stress are related to actual cellular aging, senescence, and age-related functional decline remains unclear. Here, we ask whether H2O2-induced oxidative stress and resulting gene expression alterations in prostate epithelial cells in vitro reveal gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease. While a broad range of significant changes observed in the expression of non-coding transcripts implicated in senescence-related responses, we also note an overrepresentation of gene-splicing events among differentially expressed protein-coding genes induced by H2O2. Additionally, the collective expression of these H2O2-induced DEGs is linked to age-related pathological dysfunction, with their protein products exhibiting a dense network of protein-protein interactions. In contrast, co-expression analysis of available gene expression data reveals a naturally occurring highly coordinated expression of H2O2-induced DEGs in normally aging prostate tissue. Furthermore, we find that oxidative stress-induced DEGs statistically overrepresent well-known senescence-related signatures. Our results show that oxidative stress-induced gene expression in prostate epithelial cells in vitro reveals gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease.
Collapse
Affiliation(s)
- Samael Olascoaga
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Jorge I Castañeda-Sánchez
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Mexico City, Mexico
| | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | | | - Norma Edith López-Diazguerrero
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico.
| |
Collapse
|
2
|
Silver SV, Tucker KJ, Vickman RE, Lanman NA, Semmes OJ, Alvarez NS, Popovics P. Characterization of prostate macrophage heterogeneity, foam cell markers, and CXCL17 upregulation in a mouse model of steroid hormone imbalance. Sci Rep 2024; 14:21029. [PMID: 39251671 PMCID: PMC11383972 DOI: 10.1038/s41598-024-71137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrated and accumulated in the prostate lumen where they differentiated into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T + E2) or sham surgery was performed and the ventral prostates were harvested two weeks later for scRNA-seq analysis. We identified Ear2 + and Cd72 + macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1 + resident macrophage population did not change. In addition, an Spp1 + foam cell cluster was almost exclusively found in T + E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelia-derived Cxcl17, a known monocyte attractant, in T + E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that responded to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a potential pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.
Collapse
Affiliation(s)
- Samara V Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kayah J Tucker
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Renee E Vickman
- Department of Surgery, Endeavor Health, An Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Nadia A Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nehemiah S Alvarez
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
3
|
Wang X, He W, Chen H, Yang R, Su H, DiSanto ME, Zhang X. Alteration of the Expression and Functional Activities of Myosin II Isoforms in Enlarged Hyperplastic Prostates. J Pers Med 2024; 14:381. [PMID: 38673008 PMCID: PMC11051519 DOI: 10.3390/jpm14040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH) is a common pathologic process in aging men, and the contraction of the prostatic smooth muscles (SMs) in the stroma plays a vital role in this pathogenesis, leading to lower urinary tract symptoms (LUTSs). The isoforms of both the SM myosin (SMM) and non-muscle myosin (NMM) are associated with the contraction type of the prostatic SMs, but the mechanism has not been fully elucidated. METHODS We collected prostate tissues from 30 BPH patients receiving surgical treatments, and normal human prostate samples were obtained from 12 brain-dead men. A testosterone-induced (T-induced) rat model was built, and the epithelial hyperplastic prostates were harvested. Competitive RT-PCR was used to detect the expression of SMM isoforms. We investigated the contractility of human prostate strips in vitro in an organ bath. RESULTS The results regarding the comparisons of SMM isoforms varied between rat models and human samples. In comparison with T-induced rats and controls, competitive RT-PCR failed to show any statistically significant difference regarding the compositions of SMM isoforms. For human prostates samples, BPH patients expressed more SM-1 isoforms (66.8% vs. 60.0%, p < 0.001) and myosin light chain-17b (MLC17b) (35.9% vs. 28.5%, p < 0.05) when compared to young donors. There was a significant decrease in prostate myosin heavy chain (MHC) expression in BPH patients, with a 66.4% decrease in MHC at the mRNA level and a 51.2% decrease at the protein level. The upregulated expression of non-muscle myosin heavy chain-B (NMMHC-B) was 1.6-fold at the mRNA level and 2.1-fold at the protein level. The organ bath study showed that isolated prostate strips from BPH patients produced slower tonic contraction compared to normal humans. CONCLUSION In this study, we claim that in the enlarged prostates of patients undergoing surgeries, MHC expression significantly decreased compared to normal tissues, with elevated levels of SM-1, MLC17b, and NMMHC-B isoforms. Modifications in SMM and NMM might play a role in the tonic contractile properties of prostatic SMs and the development of LUTS/BPH. Understanding this mechanism might provide insights into the origins of LUTS/BPH and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Weixiang He
- Department of Urology, Xijing Hospital of the Fourth Military Medical University, Xi’an 710000, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Rui Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Hongmei Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Feng D, Wang J, Li D, Wu R, Wei W, Zhang C. Senescence-associated secretory phenotype constructed detrimental and beneficial subtypes and prognostic index for prostate cancer patients undergoing radical prostatectomy. Discov Oncol 2023; 14:155. [PMID: 37624511 PMCID: PMC10457268 DOI: 10.1007/s12672-023-00777-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Cellular senescence is growing in popularity in cancer. A dual function is played by the senescence-associated secretory phenotype (SASP) that senescent cells produce in the development of pro-inflammatory niches, tissue regeneration or destruction, senescence propagation, and malignant transformation. In this study, we conducted thorough bioinformatic analysis and meta-analysis to discover detrimental and beneficial subtypes and prognostic index for prostate cancer (PCa) patients using the experimentally confirmed SASP genes. METHODS We identified differentially expressed and prognosis-related SASP genes and used them to construct two molecular subtypes and risk score. Another two external cohorts were used to confirm the prognostic effect of the above subtypes and risk score and meta-analysis was further conducted. Additionally, functional analysis, tumor stemness and heterogeneity and tumor microenvironment were also evaluated. We completed analyses using software R 3.6.3 and its suitable packages. Meta-analysis was performed by software Stata 14.0. RESULTS Through multivariate Cox regression analysis and consensus clustering analysis, we used VGF, IGFBP3 and ANG to establish detrimental and beneficial subtypes in the TCGA cohort, which was validated through other two independent cohorts. Meta-analysis showed that detrimental SASP group had significantly higher risk of biochemical recurrence (BCR) than beneficial SASP group (HR: 2.48). Moreover, we also constructed and validated risk score based on these genes to better guide clinical practice. DNA repair, MYC target, oxidative phosphorylation, proteasome and ribosome were highly enriched in detrimental SASP group. Detrimental SASP group had significantly higher levels of B cells, CD8+ T cells, homologous recombination deficiency, loss of heterozygosity, microsatellite instability, purity, tumor mutation burden, mRNAsi, differentially methylated probes and epigenetically regulated RNA expression than beneficial SASP group. The top mutation genes between detrimental and beneficial SASP groups were SPOP, FOXA1, KMT2C, APC, BSN, DNAH17, MYH6, EPPK1, ZNF536 and ZC3H13 with statistical significance. CONCLUSIONS From perspective of SASP, we found detrimental and beneficial tumor subtypes which were closely associated with BCR-free survival for PCa patients, which might be important for the furture research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
5
|
Giroud J, Bouriez I, Paulus H, Pourtier A, Debacq-Chainiaux F, Pluquet O. Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment. Int J Mol Sci 2023; 24:10788. [PMID: 37445973 DOI: 10.3390/ijms241310788] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges. In this review, we first aim to update the definition of senescence and its associated biomarkers from its discovery to the present day. We detail the regulatory mechanisms involved in the expression of SASP at multiple levels and develop how SASP can orchestrate microenvironment modifications, by focusing on extracellular matrix modifications, neighboring cells' fate, and intercellular communications. We present hypotheses on how these microenvironmental events may affect dynamic changes in SASP composition in return. Finally, we discuss the various existing approaches to targeting SASP and clarify what is currently known about the biological effects of these modified SASPs on the cellular environment.
Collapse
Affiliation(s)
- Joëlle Giroud
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Inès Bouriez
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Hugo Paulus
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Albin Pourtier
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Florence Debacq-Chainiaux
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Olivier Pluquet
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
6
|
Blagosklonny MV. Are menopause, aging and prostate cancer diseases? Aging (Albany NY) 2023; 15:298-307. [PMID: 36707068 PMCID: PMC9925691 DOI: 10.18632/aging.204499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
There is no doubt that prostate cancer is a disease. Then, according to hyperfunction theory, menopause is also a disease. Like all age-related diseases, it is a natural process, but is also purely harmful, aimless and unintended by nature. But exactly because these diseases (menopause, prostate enlargement, obesity, atherosclerosis, hypertension, diabetes, presbyopia and thousands of others) are partially quasi-programmed, they can be delayed by slowing aging. Is aging a disease? Aging is a quasi-programmed disease that is partially treatable by rapamycin. On the other hand, aging is an abstraction, a sum of all quasi-programmed diseases and processes. In analogy, the zoo consists of animals and does not exist without animals, but the zoo is not an animal.
Collapse
|
7
|
Revisiting Epithelial Carcinogenesis. Int J Mol Sci 2022; 23:ijms23137437. [PMID: 35806442 PMCID: PMC9267463 DOI: 10.3390/ijms23137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The origin of cancer remains one of the most important enigmas in modern biology. This paper presents a hypothesis for the origin of carcinomas in which cellular aging and inflammation enable the recovery of cellular plasticity, which may ultimately result in cancer. The hypothesis describes carcinogenesis as the result of the dedifferentiation undergone by epithelial cells in hyperplasia due to replicative senescence towards a mesenchymal cell state with potentially cancerous behavior. In support of this hypothesis, the molecular, cellular, and histopathological evidence was critically reviewed and reinterpreted when necessary to postulate a plausible generic series of mechanisms for the origin and progression of carcinomas. In addition, the implications of this theoretical framework for the current strategies of cancer treatment are discussed considering recent evidence of the molecular events underlying the epigenetic switches involved in the resistance of breast carcinomas. The hypothesis also proposes an epigenetic landscape for their progression and a potential mechanism for restraining the degree of dedifferentiation and malignant behavior. In addition, the manuscript revisits the gradual degeneration of the nonalcoholic fatty liver disease to propose an integrative generalized mechanistic explanation for the involution and carcinogenesis of tissues associated with aging. The presented hypothesis might serve to understand and structure new findings into a more encompassing view of the genesis of degenerative diseases and may inspire novel approaches for their study and therapy.
Collapse
|
8
|
Feng D, Li D, Shi X, Xiong Q, Zhang F, Wei Q, Yang L. A gene prognostic index from cellular senescence predicting metastasis and radioresistance for prostate cancer. J Transl Med 2022; 20:252. [PMID: 35658892 PMCID: PMC9164540 DOI: 10.1186/s12967-022-03459-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 02/08/2023] Open
Abstract
Background Senescent cells have been identified in the aging prostate, and the senescence-associated secretory phenotype might be linked to prostate cancer (PCa). Thus, we established a cellular senescence-related gene prognostic index (CSGPI) to predict metastasis and radioresistance in PCa. Methods We used Lasso and Cox regression analysis to establish the CSGPI. Clinical correlation, external validation, functional enrichment analysis, drug and cell line analysis, and tumor immune environment analysis were conducted. All analyses were conducted with R version 3.6.3 and its suitable packages. Results We used ALCAM and ALDH2 to establish the CSGPI risk score. High-risk patients experienced a higher risk of metastasis than their counterparts (HR: 10.37, 95% CI 4.50–23.93, p < 0.001), consistent with the results in the TCGA database (HR: 1.60, 95% CI 1.03–2.47, p = 0.038). Furthermore, CSGPI had high diagnostic accuracy distinguishing radioresistance from no radioresistance (AUC: 0.938, 95% CI 0.834–1.000). GSEA showed that high-risk patients were highly associated with apoptosis, cell cycle, ribosome, base excision repair, aminoacyl-tRNA biosynthesis, and mismatch repair. For immune checkpoint analysis, we found that PDCD1LG2 and CD226 were expressed at significantly higher levels in patients with metastasis than in those without metastasis. In addition, higher expression of CD226 significantly increased the risk of metastasis (HR: 3.65, 95% CI 1.58–8.42, p = 0.006). We observed that AZD7762, PHA-793887, PI-103, and SNX-2112 might be sensitive to ALDH2 and ALCAM, and PC3 could be the potential cell line used to investigate the interaction among ALDH2, ALCAM, and the above drugs. Conclusions We found that CSGPI might serve as an effective biomarker predicting metastasis probability and radioresistance for PCa and proposed that immune evasion was involved in the process of PCa metastasis.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. Int J Mol Sci 2022; 23:ijms23073652. [PMID: 35409012 PMCID: PMC8998297 DOI: 10.3390/ijms23073652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP–AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
Collapse
|
10
|
Georgakopoulou E, Evangelou K, Gorgoulis VG. Premalignant lesions and cellular senescence. CELLULAR SENESCENCE IN DISEASE 2022:29-60. [DOI: 10.1016/b978-0-12-822514-1.00001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Fiard G, Stavrinides V, Chambers ES, Heavey S, Freeman A, Ball R, Akbar AN, Emberton M. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat Rev Urol 2021; 18:597-610. [PMID: 34294916 DOI: 10.1038/s41585-021-00496-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.
Collapse
Affiliation(s)
- Gaelle Fiard
- UCL Division of Surgery & Interventional Science, University College London, London, UK.
- Department of Urology, Grenoble Alpes University Hospital, Grenoble, France.
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.
| | - Vasilis Stavrinides
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Emma S Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Susan Heavey
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Alex Freeman
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rhys Ball
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Arne N Akbar
- Division of Medicine, The Rayne Building, University College London, London, UK
| | - Mark Emberton
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
12
|
Zhu H, Zhao M, Chang C, Chan V, Lu Q, Wu H. The complex role of AIM2 in autoimmune diseases and cancers. Immun Inflamm Dis 2021; 9:649-665. [PMID: 34014039 PMCID: PMC8342223 DOI: 10.1002/iid3.443] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Absent in melanoma 2 (AIM2) is a novel member of interferon (IFN)-inducible PYHIN proteins. In innate immune cells, AIM2 servers as a cytoplasmic double-stranded DNA sensor, playing a crucial role in the initiation of the innate immune response as a component of the inflammasome. AIM2 expression is increased in patients with systemic lupus erythematosus (SLE), psoriasis, and primary Sjogren's syndrome, indicating that AIM2 might be involved in the pathogenesis of autoimmune diseases. Meanwhile, AIM2 also plays an antitumorigenesis role in an inflammasome independent-manner. In melanoma, AIM2 is initially identified as a tumor suppressor factor. However, AIM2 is also found to contribute to lung tumorigenesis via the inflammasome-dependent release of interleukin 1β and regulation of mitochondrial dynamics. Additionally, AIM2 reciprocally dampening the cGAS-STING pathway causes immunosuppression of macrophages and evasion of antitumor immunity during antibody treatment. To summarize the complicated effect and role of AIM2 in autoimmune diseases and cancers, herein, we provide an overview of the emerging research progress on the function and regulatory pathway of AIM2 in innate and adaptive immune cells, as well as tumor cells, and discuss its pathogenic role in autoimmune diseases, such as SLE, psoriasis, primary Sjogren's syndrome, and cancers, such as melanomas, non-small-cell lung cancer, colon cancer, hepatocellular carcinoma, renal carcinoma, and so on, hopefully providing potential therapeutic and diagnostic strategies for clinical use.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California at Davis School of MedicineDavisCaliforniaUSA
| | - Vera Chan
- Division of Rheumatology and Clinical Immunology, Department of MedicineThe University of Hong KongHong KongChina
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
13
|
Human Prostate Epithelial Cells Activate the AIM2 Inflammasome upon Cellular Senescence: Role of POP3 Protein in Aging-Related Prostatic Inflammation. Life (Basel) 2021; 11:life11040366. [PMID: 33923931 PMCID: PMC8073538 DOI: 10.3390/life11040366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Increased levels of type I (T1) interferon (IFN)-inducible POP3 protein in myeloid cells inhibit activation of the AIM2 inflammasome and production of IL-1β and IL-18 proinflammatory cytokines. The AIM2 mRNA levels were significantly higher in benign prostate hyperplasia (BPH) than the normal prostate. Further, human normal prostate epithelial cells (PrECs), upon becoming senescent, activated an inflammasome. Because in aging related BPH senescent PrECs accumulate, we investigated the role of POP3 and AIM2 proteins in pre-senescent and senescent PrECs. Here we report that the basal levels of the POP3 mRNA and protein were lower in senescent (versus young or old) PrECs that exhibited activation of the T1 IFN response. Further, treatment of PrECs and a BPH cell line (BPH-1) that expresses the androgen receptor (AR) with the male sex hormone dihydrotestosterone (DHT) increased the basal levels of POP3 mRNA and protein, but not AIM2, and inhibited activation of the AIM2 inflammasome. Of interest, a stable knockdown of POP3 protein expression in the BPH-1 cell line increased cytosolic DNA-induced activation of AIM2 inflammasome. These observations suggest a potential role of POP3 protein in aging-related prostatic inflammation.
Collapse
|
14
|
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev 2021; 66:101251. [PMID: 33385543 DOI: 10.1016/j.arr.2020.101251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
As the world's population progressively ages, the burden on the socio-economic and health systems is escalating, demanding sustainable and lasting solutions. Cellular senescence, one of the hallmarks of ageing, is a state of irreversible cell cycle arrest that occurs in response to various genotoxic stressors and is considered an important factor in the development of many age-related diseases and therefore a potential therapeutic target. Here, the role of senescent cells in age-related diseases is discussed, focusing on their formation and main characteristics. The mechanisms leading to senescent cells are presented, including replicative and premature senescence as well as senescence that occurs in various physiological processes, such as wound healing. The second part comprises a comprehensive description of various biomarkers currently used for the detection of senescent cells along with the investigated therapeutic approaches, namely senolytics, senomorphics and the clearance of senescent cells by the immune system. Potential delivery systems suitable for such therapies and model organisms to study senescence are also briefly examined. This in-depth overview of cellular senescence contributes to a deeper understanding of a rapidly evolving area aimed to tackle the age-related diseases in a more mechanistic way, as well as highlights future research opportunities.
Collapse
|
15
|
Lloyd GL, Wiesen B, Atwell M, Malykhina A. Marijuana, Alcohol, and ED: Correlations with LUTS/BPH. Curr Urol Rep 2021; 22:21. [PMID: 33554319 PMCID: PMC8054558 DOI: 10.1007/s11934-020-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW Benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS) is a disease complex with enormous societal burden and yet the pathogenesis of LUTS/BPH is poorly understood. We set out to review the literature on the relationship between depression, marijuana usage, and erectile dysfunction (ED) to LUTS/BPH. RECENT FINDINGS LUTS/BPH has independent associations with depression as well as with ED. In each case, the causality and mechanistic relationship is unknown. The impact of marijuana, as it increasingly pervades the general population, on the disease complex of LUTS/BPH is not well studied but recent results support short-term benefit and long-term caution. Depression, a form of central nervous dysfunction, and ED, which is likely mediated via endothelial dysfunction, are independently associated with LUTS/BPH. The presence of cannabinoid receptors in urologic organs, coupled with recent population studies, supports a modulatory effect of marijuana on voiding although an enormous knowledge gap remains.
Collapse
Affiliation(s)
- Granville L Lloyd
- Rocky Mountain Regional Veterans Hospital, Aurora, CO, USA.
- Department of Surgery/Urology, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA.
| | - Brett Wiesen
- University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Mike Atwell
- Division of Urology, Department of Surgery, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Anna Malykhina
- Department of Surgery, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
16
|
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288:518-536. [PMID: 32686219 PMCID: PMC7405395 DOI: 10.1111/joim.13141] [Citation(s) in RCA: 577] [Impact Index Per Article: 115.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.
Collapse
Affiliation(s)
- J L Kirkland
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - T Tchkonia
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
17
|
Carpenter VJ, Patel BB, Autorino R, Smith SC, Gewirtz DA, Saleh T. Senescence and castration resistance in prostate cancer: A review of experimental evidence and clinical implications. Biochim Biophys Acta Rev Cancer 2020; 1874:188424. [PMID: 32956765 DOI: 10.1016/j.bbcan.2020.188424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/10/2023]
Abstract
The development of Castration-Resistant Prostate Cancer (CRPC) remains a major challenge in the treatment of this disease. While Androgen Deprivation Therapy (ADT) can result in tumor shrinkage, a primary response of Prostate Cancer (PCa) cells to ADT is a senescent growth arrest. As a response to cancer therapies, senescence has often been considered as a beneficial outcome due to its association with stable growth abrogation, as well as the potential for immune system activation via the Senescence-Associated Secretory Phenotype (SASP). However, there is increasing evidence that not only can senescent cells regain proliferative capacity, but that senescence contributes to deleterious effects of cancer chemotherapy, including disease recurrence. Notably, the preponderance of work investigating the consequences of therapy-induced senescence on tumor progression has been performed in non-PCa models. Here, we summarize the evidence that ADT promotes a senescent response in PCa and postulate mechanisms by which senescence may contribute to the development of castration-resistance. Primarily, we suggest that ADT-induced senescence may support CRPC development via escape from senescence, by cell autonomous-reprogramming, and by the formation of a pro-tumorigenic SASP. However, due to the scarcity of direct evidence from PCa models, the consequences of ADT-induced senescence outlined here remain speculative until the relationship between senescence and CRPC can be experimentally defined.
Collapse
Affiliation(s)
- Valerie J Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Bhaumik B Patel
- Department of Internal Medicine, Division of Hematology, Oncology & Palliative Care, VCU Health, Richmond, VA, USA
| | - Riccardo Autorino
- Department of Surgery, Division of Urology, VCU Health, Richmond, VA, USA
| | | | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tareq Saleh
- The Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
18
|
Wu J, Crowe DL. Telomere DNA Damage Signaling Regulates Prostate Cancer Tumorigenesis. Mol Cancer Res 2020; 18:1326-1339. [PMID: 32467172 DOI: 10.1158/1541-7786.mcr-19-1129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/30/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
Telomere shortening has been demonstrated in benign prostatic hypertrophy (BPH), which is associated with prostate epithelial cell senescence. Telomere shortening is the most frequently observed genetic alteration in prostatic intraepithelial neoplasia, and is associated with poor clinical outcomes in prostate cancer. Gene expression database analysis revealed decreased TRF2 expression during malignant progression of the prostate gland. We reasoned that reduced TRF2 expression in prostate epithelium, by activating the telomere DNA damage response, would allow us to model both benign and malignant prostate disease. Prostate glands with reduced epithelial TRF2 expression developed age- and p53-dependent hypertrophy, senescence, ductal dilation, and smooth muscle hyperplasia similar to human BPH. Prostate tumors with reduced TRF2 expression were classified as high-grade androgen receptor-negative adenocarcinomas, which exhibited decreased latency, increased proliferation, and distant metastases. Prostate cancer stem cells with reduced TRF2 expression were highly tumorigenic and maintained telomeres both by telomerase and alternative lengthening (ALT). Telomerase inhibition in prostate glands with reduced TRF2 expression produced significant reduction in prostate tumor incidence by halting progression at intraepithelial neoplasia (PIN). These lesions were highly differentiated, exhibited low proliferation index, and high apoptotic cell fraction. Prostate tumors with reduced TRF2 expression and telomerase inhibition failed to metastasize and did not exhibit ALT. IMPLICATIONS: Our results demonstrate that the telomere DNA damage response regulates BPH, PIN, and prostate cancer and may be therapeutically manipulated to prevent prostate cancer progression.
Collapse
Affiliation(s)
- Jianchun Wu
- University of Illinois Cancer Center, Chicago, Illinois
| | - David L Crowe
- University of Illinois Cancer Center, Chicago, Illinois.
| |
Collapse
|
19
|
Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A, Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 2020; 77:213-229. [PMID: 31414165 PMCID: PMC6970957 DOI: 10.1007/s00018-019-03261-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
Abstract
In contrast to the well-recognized replicative and stress-induced premature senescence of normal somatic cells, mechanisms and clinical implications of senescence of cancer cells are still elusive and uncertain from patient-oriented perspective. Moreover, recent years provided multiple pieces of evidence that cancer cells may undergo senescence not only in response to chemotherapy or ionizing radiation (the so-called therapy-induced senescence) but also spontaneously, without any external insults. Since the molecular nature of the latter process is poorly recognized, the significance of spontaneously senescent cancer cells for tumor progression, therapy effectiveness, and patient survival is purely speculative. In this review, we summarize the most up-to-date research regarding therapy-induced and spontaneous senescence of cancer cells, by delineating the most important discoveries regarding the occurrence of these phenomena in vivo and in vitro. This review provides data collected from studies on various cancer cell models, and the narration is presented from the broader perspective of the most critical findings regarding the senescence of normal somatic cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland.
| |
Collapse
|
20
|
Igelmann S, Neubauer HA, Ferbeyre G. STAT3 and STAT5 Activation in Solid Cancers. Cancers (Basel) 2019; 11:cancers11101428. [PMID: 31557897 PMCID: PMC6826753 DOI: 10.3390/cancers11101428] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)3 and 5 proteins are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context-dependent as they can both act as oncogenes and tumor suppressors. We review here the role of STAT3/5 activation in solid cancers and summarize their association with survival in cancer patients. The molecular mechanisms that underpin the oncogenic activity of STAT3/5 signaling include the regulation of genes that control cell cycle and cell death. However, recent advances also highlight the critical role of STAT3/5 target genes mediating inflammation and stemness. In addition, STAT3 mitochondrial functions are required for transformation. On the other hand, several tumor suppressor pathways act on or are activated by STAT3/5 signaling, including tyrosine phosphatases, the sumo ligase Protein Inhibitor of Activated STAT3 (PIAS3), the E3 ubiquitin ligase TATA Element Modulatory Factor/Androgen Receptor-Coactivator of 160 kDa (TMF/ARA160), the miRNAs miR-124 and miR-1181, the Protein of alternative reading frame 19 (p19ARF)/p53 pathway and the Suppressor of Cytokine Signaling 1 and 3 (SOCS1/3) proteins. Cancer mutations and epigenetic alterations may alter the balance between pro-oncogenic and tumor suppressor activities associated with STAT3/5 signaling, explaining their context-dependent association with tumor progression both in human cancers and animal models.
Collapse
Affiliation(s)
- Sebastian Igelmann
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
21
|
Jiang S, Song CS, Chatterjee B. Stimulation of Prostate Cells by the Senescence Phenotype of Epithelial and Stromal Cells: Implication for Benign Prostate Hyperplasia. FASEB Bioadv 2019; 1:353-363. [PMID: 31844843 PMCID: PMC6914307 DOI: 10.1096/fba.2018-00084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperproliferation of prostate transition‐zone epithelial and stromal cells leads to benign prostate hyperplasia (BPH), a prevalent pathology in elderly men. Senescent cells in BPH tissue induce a senescence‐associated secretory phenotype (SASP) which, by generating inflamed microenvironment and reactive stroma, promotes leukocyte infiltration, cellular hyperproliferation, and nodular prostate growth. We examined human prostate epithelial (BPH‐1, PNT‐1α) and stromal (HPS‐19I) cells for SASP induction by ionizing radiation and assessed SASP's impacts on cell proliferation and on signal transducers that promote cellular growth, proliferation, and survival. Radiation‐induced DNA damage led to cellular senescence, evident from elevated expression of senescence‐associated β‐galactosidase and the cell‐cycle inhibitor p16/INK4a. Clinical BPH tissue showed p16 accumulation. SASP induced mRNA expression for inflammatory cytokines (IL‐1α, IL‐6, IL‐8, TNF‐α); chemokines (GM‐CSF, CXCL12); metalloproteases (MMP‐1, MMP‐3, MMP‐10); growth factor binding IGFBP‐3. Media from irradiated epithelial or stromal cells enhanced BPH‐1 proliferation. ERK1/2 and AKT, which enhance cell growth/survival and STAT5, which facilitates cell cycle progression and leukocyte recruitment to epithelial microenvironment, were activated by SASP components. The radiation‐induced cellular senescence model can be a platform for identification of individual SASP components and pathways that drive BPH etiology/progression in vivo and targeting them may form the basis for novel BPH therapy.
Collapse
Affiliation(s)
- Shoulei Jiang
- Department of Molecular Medicine, University of Texas Health San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245.,South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, Texas 78229.,Current address: Department of Medicine, Univ. Texas Health San Antonio, TX 78229
| | - Chung Seog Song
- Department of Molecular Medicine, University of Texas Health San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245.,South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, Texas 78229
| | - Bandana Chatterjee
- Department of Molecular Medicine, University of Texas Health San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245.,South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, Texas 78229
| |
Collapse
|
22
|
Benign prostatic hyperplasia in a 23 year old man with progeroid syndrome. AFRICAN JOURNAL OF UROLOGY 2018. [DOI: 10.1016/j.afju.2018.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology 2018; 19:447-459. [PMID: 30054761 PMCID: PMC6223730 DOI: 10.1007/s10522-018-9763-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022]
Abstract
Cellular senescence is now considered as a major mechanism in the development and progression of various diseases and this may include metabolic diseases such as obesity and type-2 diabetes. The presence of obesity and diabetes is a major risk factor in the development of additional health conditions, such as cardiovascular disease, kidney disease and cancer. Since senescent cells can drive disease development, obesity and diabetes can potentially create an environment that accelerates cell senescence within other tissues of the body. This can consequently manifest as age-related biological impairments and secondary diseases. Cell senescence in cell types linked with obesity and diabetes, namely adipocytes and pancreatic beta cells will be explored, followed by a discussion on the role of obesity and diabetes in accelerating ageing through induction of premature cell senescence mediated by high glucose levels and oxidised low-density lipoproteins. Particular emphasis will be placed on accelerated cell senescence in endothelial progenitor cells, endothelial cells and vascular smooth muscle cells with relation to cardiovascular disease and proximal tubular cells with relation to kidney disease. A summary of the potential strategies for therapeutically targeting senescent cells for improving health is also presented.
Collapse
|
24
|
Rivera Del Alamo MM, Díaz-Lobo M, Busquets S, Rodríguez-Gil JE, Fernández-Novell JM. Specific expression pattern of tissue cytokines analyzed through the Surface Acoustic Wave technique is associated with age-related spontaneous benign prostatic hyperplasia in rats. Biochem Biophys Rep 2018; 14:26-34. [PMID: 29872731 PMCID: PMC5986627 DOI: 10.1016/j.bbrep.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/06/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of the study reported herein was to evaluate the suitability of the Surface Acoustic Wave (SAW) technique as a possible diagnostic tool in benign prostatic hyperplasia (BPH). Moreover, for the first time, the BPH model was a totally physiological using naturally aged rats with spontaneous, age-related BPH instead of the pharmacologically induced models usually used. Eighteen male Wistar rats were distributed according to their age: 6 weeks (young), 12 weeks (adult) and 12 months (old) old. Prostate gland was removed and analyzed by mini-arrays, Western blotting (WB) and SAW techniques. Mini-arrays indicated that there were significant differences in the expression of 29/34 inflammation-related cytokines. WB was carried out to confirm the results after selection of 4 cytokines from which one showed no changes, namely PDGF-AA, and the other three, which significantly increase in older animals, were CD86, β-NGF and VEGF. Notwithstanding, WB of old rats yielded confusing results due to an anomalous migration of proteins, dismissing this technique as an useful tool in these animals. Accurate results in old rats were uniquely obtained by using the SAW technique. Thus, SAW analysis showed that there were not differences among groups in the amount of PDGF-AA. On the contrary, SAW analysis showed that amounts of CD86, β-NGF and VEGF in old rats were 2.0, 1.9 and 5.7-fold higher than that from young ones, respectively. These results indicate that SAW is a highly accurate technique for determining changes in the cytokines expression in BPH. Diagnosis of prostate alterations can be improved by using the SAW technique. Study of prostate alterations can be optimized by using an age-related animal model. VEGF is a sensitive marker of bening prostatic hyperplasia.
Collapse
Affiliation(s)
- Maria M Rivera Del Alamo
- Dept. de Medicina i Cirurgia Animals, Facultat de veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra Spain
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic, E-08028 Barcelona, Spain
| | - Silvia Busquets
- Dept. Bioquímica i Biomedicina Molecular. Facultat de Biologia. Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Joan E Rodríguez-Gil
- Dept. de Medicina i Cirurgia Animals, Facultat de veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra Spain
| | - Josep M Fernández-Novell
- Dept. Bioquímica i Biomedicina Molecular. Facultat de Biologia. Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
25
|
Sultana Z, Maiti K, Dedman L, Smith R. Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction? Am J Obstet Gynecol 2018; 218:S762-S773. [PMID: 29275823 DOI: 10.1016/j.ajog.2017.11.567] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
The placenta ages as pregnancy advances, yet its continued function is required for a successful pregnancy outcome. Placental aging is a physiological phenomenon; however, there are some placentas that show signs of aging earlier than others. Premature placental senescence and aging are implicated in a number of adverse pregnancy outcomes, including fetal growth restriction, preeclampsia, spontaneous preterm birth, and intrauterine fetal death. Here we discuss cellular senescence, a state of terminal proliferation arrest, and how senescence is regulated. We also explore the role of physiological placental senescence and how aberrant placental senescence alters placental function, contributing to the pathophysiology of fetal growth restriction, preeclampsia, spontaneous preterm labor/birth, and unexplained fetal death.
Collapse
|
26
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
27
|
Dong Q, Gao H, Shi Y, Zhang F, Gu X, Wu A, Wang D, Chen Y, Bandyopadhyay A, Yeh IT, Daniel BJ, Chen Y, Zou Y, Rebel VL, Walter CA, Lu J, Huang C, Sun LZ. Aging is associated with an expansion of CD49f hi mammary stem cells that show a decline in function and increased transformation potential. Aging (Albany NY) 2017; 8:2754-2776. [PMID: 27852980 PMCID: PMC5191868 DOI: 10.18632/aging.101082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022]
Abstract
Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49fhi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49fhi basal-like cells in aged glands.
Collapse
Affiliation(s)
- Qiaoxiang Dong
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Hui Gao
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Yuanshuo Shi
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA.,Institute of Environmental Safety and Human Health, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Fuchuang Zhang
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA.,Institute of Environmental Safety and Human Health, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Xiang Gu
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA
| | - Anqi Wu
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Danhan Wang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Yuanhong Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Abhik Bandyopadhyay
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA
| | - I-Tien Yeh
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78299, USA
| | - Benjamin J Daniel
- Flow Cytometry Facility, University of Texas Health Science Center, San Antonio, TX 78299, USA
| | - Yidong Chen
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX 78299, USA.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78299, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78299, USA
| | - Vivienne L Rebel
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA.,Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX 78299, USA.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78299, USA
| | - Christi A Walter
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA
| | - Jianxin Lu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Lu-Zhe Sun
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA.,Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX 78299, USA
| |
Collapse
|
28
|
Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediators Inflamm 2017; 2017:4049098. [PMID: 28769537 PMCID: PMC5523273 DOI: 10.1155/2017/4049098] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022] Open
Abstract
Complex interactions between tumor and host cells regulate systemic tumor dissemination, a process that begins early at the primary tumor site and goes on until tumor cells detach themselves from the tumor mass and start migrating into the blood or lymphatic vessels. Metastatic cells colonize the target organs and are capable of surviving and growing at distant sites. In this context, osteopontin (OPN) appears to be a key determinant of the crosstalk between cancer cells and the host microenvironment, which in turn modulates immune evasion. OPN is overexpressed in several human carcinomas and has been implicated in inflammation, tumor progression, and metastasis. Thus, it represents one of the most attracting targets for cancer therapy. Within the tumor mass, OPN is secreted in various forms either by the tumor itself or by stroma cells, and it can exert either pro- or antitumorigenic effects according to the cell type and tumor microenvironment. Thus, targeting OPN for therapeutic purposes needs to take into account the heterogeneous functions of the multiple OPN forms with regard to cancer formation and progression. In this review, we will describe the role of systemic, tumor-derived, and stroma-derived OPN, highlighting its pivotal role at the crossroads of inflammation and tumor progression.
Collapse
|
29
|
Parental High-Fat Diet Promotes Inflammatory and Senescence-Related Changes in Prostate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4962950. [PMID: 28261375 PMCID: PMC5316447 DOI: 10.1155/2017/4962950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/24/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023]
Abstract
Background. Obesity and dietary habits are associated with increased incidences of aging-related prostatic diseases. The present study was aimed to investigate transgenerational effects of chronic high-fat diet (HFD) feeding on inflammation and senescence-related changes in prostate. Methods. Sprague-Dawley rats were kept on either normal or HFD one. Senescence-associated β-galactosidase (SA β-gal) activity, inflammation, and cellular proliferation were determined in the prostate. Results. Increased SA β-gal activity, expression of p53, and cell proliferation marker PCNA were observed in ventral prostate of HFD-fed rats. Immunostaining for p53 and PCNA revealed that the p53 immunopositive cells were primarily in stroma while PCNA immunopositive cells were epithelial cells. An increase in expression of cycloxygenase-2 (COX-2) and phosphorylation of nuclear factor-kappa B (NF-kB) was observed in prostate of weaning pups HFD-fed parents. However, in adult pups, irrespective of dietary habit, a significant increase in the expression of COX-2, PCNA, phosphorylation of NF-kB, infiltration of inflammatory cells, and SA β-gal activity was observed. Conclusions. Present investigation reports that HFD feeding promotes accumulation of p53 expressing cells, proliferation of epithelial cells, and senescence-related changes in prostate. Further, parental HFD-feeding upholds inflammatory, proliferative, and senescence-related changes in prostate of pups.
Collapse
|
30
|
Rani S, Bhardwaj S, Srivastava N, Sharma VL, Parsad D, Kumar R. Senescence in the lesional fibroblasts of non-segmental vitiligo patients. Arch Dermatol Res 2017; 309:123-132. [PMID: 28078437 DOI: 10.1007/s00403-016-1713-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 01/04/2023]
Abstract
Dermal fibroblasts secrete various growth factors which are important for skin pigmentation. Imbalance in the synchronization of epidermal and dermal cells in the skin can play vital role in the pathogenesis of pigmentary disorder vitiligo. Therefore, our objective was to check the lesional fibroblasts for any abnormality and senescence in non-segmental vitiligo patients (NSV). Skin punch biopsies were taken from NSV patients and healthy controls. Explant culture of fibroblast from lesional dermis, non-lesional dermis, and control was analyzed. The senescence was confirmed by β-galactosidase staining in the cultured fibroblasts. Senescence was checked at mRNA level in lesional dermis, non-lesional dermis of NSV patients by senescence markers p16, p21, and hp1 by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence study was used for protein analysis. Morphological results showed number of fibroblasts with bigger perinuclear region and vacuoles were more in the lesional fibroblasts. Number of β-galactosidase positive fibroblasts in the lesional skin of NSV patients was higher as compared to the non-lesional and control fibroblasts. Results showed higher relative gene expression of senescence markers p16, p21, and hp1 in the lesional dermis of NSV patients at mRNA level and protein level as compared with control. Senescence in the dermal fibroblasts can decrease the secretion of growth factors and cytokines secreted by fibroblasts which may lead to the melanocyte death and progression of vitiligo. However, further studies on larger number of patients are needed to confirm the role of fibroblasts in the vitiligo pathogenesis.
Collapse
Affiliation(s)
- Seema Rani
- Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Supriya Bhardwaj
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Niharika Srivastava
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Davinder Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ravinder Kumar
- Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
31
|
Johmura Y, Nakanishi M. Multiple facets of p53 in senescence induction and maintenance. Cancer Sci 2016; 107:1550-1555. [PMID: 27560979 PMCID: PMC5132285 DOI: 10.1111/cas.13060] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022] Open
Abstract
Cellular senescence is a state of durable cell cycle arrest with metabolic activities distinct from those of the proliferative state. Since senescence was originally reported to be induced by various genotoxic stressors, such as telomere erosion and oncogenic signaling, it has been proposed to play a pivotal role in aging‐related changes and as an antitumorigenic barrier in vivo. However, the mechanisms underlying its induction and maintenance remain entirely elusive. We have recently found that abrupt activation of p53 at G2 results in a cell skipping mitosis and subsequently undergoing senescence. Surprisingly, we have also found that downregulation of p53 by SCFFbxo22 is crucial for the induction of a senescence‐associated phenotype. In this review, we provide an overview of recent advances in understanding the mechanisms underlying the timing and magnitude of activation of p53 during senescence.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Division of Cancer Cell Biology, Department of Cancer Biology, Instuite of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Celik ZE, Kaynar M, Dobur F, Karabagli P, Goktas S. Association of ring box-1 protein overexpression with clinicopathologic prognostic parameters in prostate carcinoma. Urol Oncol 2016; 34:336.e7-336.e12. [PMID: 27085489 DOI: 10.1016/j.urolonc.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 11/27/2022]
Abstract
AIM To determine the expression of Ring Box-1 (RBX-1) protein in prostate carcinoma (PCa) and the association between RBX-1 expression and clinicopathologic prognostic parameters. MATERIAL AND METHODS Relevant data such as age, preoperative serum PSA values, and tumor stage were obtained from 51 patients' with PCa record who underwent radical prostatectomy between January 2010 and March 2014. Hematoxylin-eosin stained pathology slides were evaluated by 2 pathologists blinded to patients' data in order to determine Gleason grade groups, tumor stage, tumor volume, capsule invasion, lymphovascular invasion, perineural invasion, and seminal vesicle invasion. Immunoreactivity scoring system (IRS) was used to determine RBX-1 expressions. RESULTS A statistically significant difference was determined in terms of RBX-1 expression between non tumoral prostate tissue, high grade prostatic intraepithelial neoplasia (H-PIN) and carcinoma foci (P = 0.001). RBX-1 expression in the Gleason pattern 4 was higher than the Gleason pattern 3 and H-PIN foci as well as non tumoral prostate tissue. Likewise, in cases with PSA levels of>10.1ng/ml, RBX-1 expression was higher than those≤10ng/ml. Moreover, RBX-1 expression of stage II cases was higher than stage I (P = 0.019), RBX-1 expression of stage III higher than stage I cases (P = 0.044). However, RBX-1 expression was not related with clinicopathologic parameters including patient age, tumor volume, lymphovascular invasion, perineural invasion, seminal vesicle invasion, or capsule invasion. CONCLUSIONS RBX-1 protein is overexpressed in PCa and associated with clinicopathologic prognostic parameters related with biological potential of the aggressive disease. Further studies of basic and molecular science are needed to reveal clinical and therapeutic implications of RBX-1 in PCa.
Collapse
Affiliation(s)
- Zeliha Esin Celik
- Pathology Department, Faculty of Medicine, Selcuk University Selcuklu, Konya, Turkey.
| | - Mehmet Kaynar
- Urology Department, Faculty of Medicine, Selcuk University, Selcuklu, Konya, Turkey
| | - Fatma Dobur
- Pathology Department, Faculty of Medicine, Selcuk University Selcuklu, Konya, Turkey
| | - Pınar Karabagli
- Pathology Department, Faculty of Medicine, Selcuk University Selcuklu, Konya, Turkey
| | - Serdar Goktas
- Urology Department, Faculty of Medicine, Selcuk University, Selcuklu, Konya, Turkey
| |
Collapse
|
33
|
Li XP, Jiao JU, Lu LI, Zou Q, Zhu S, Zhang Y. Overexpression of ribosomal L1 domain containing 1 is associated with an aggressive phenotype and a poor prognosis in patients with prostate cancer. Oncol Lett 2016; 11:2839-2844. [PMID: 27073561 DOI: 10.3892/ol.2016.4294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/08/2016] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the overexpression and significance of ribosomal L1 domain containing 1 (RSL1D1) in prostate cancer (PCA). The present study performed immunohistochemical analysis on the tissues of 138 patients with pathologically confirmed PCA. The patients were followed up for a median of 87 months. In addition, 50 patients with benign prostatic hyperplasia (BPH) were enrolled in the present study as a control group. Of the 138 PCA tissue samples, 124 (89.9%) expressed RSL1D1, while 4 out of the 50 (8.0%) BPH tissues expressed RSL1D1. The present study defined a high RSL1D1 expression level as the relative gene expression that was equal to or higher than the median, and low expression as the gene expression lower than the median. The pathological stage of patients with PCA (≥pT3a vs. pT2c) and the Gleason scores of patients (≥7 vs. <7) were associated with RSL1D1 expression (χ2=4.809 and 14.703; P=0.028 and P<0.0001, respectively) and a high expression of RSL1D1 (χ2=10.294 and 17.520; P=0.001 and P<0.0001, respectively). Kaplan-Meier curve analysis demonstrated that the biochemical recurrence (BCR)-free survival rate of the patients was increased in patients without RSL1D1 expression (P=0.0046), in those with low RSL1D1 expression (P<0.0001) and in those without RSL1D1 expression in the mesenchyme (P=0.006) compared with those patients with no expression, low expression and no mesenchymal expression, respectively. A high expression level of RSL1D1 was demonstrated to be an independent prognostic factor of BCR in patients with PCA using Cox regression analysis. Overall, the present study demonstrated that RSL1D1 expression was associated with PCA, and that it may aid in the improvement of diagnosis, prognosis and risk stratification of patients with PCA.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - J U Jiao
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - L I Lu
- Department of Urology, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Qiong Zou
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Shu Zhu
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yong Zhang
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
34
|
Buchsbaum RJ, Oh SY. Breast Cancer-Associated Fibroblasts: Where We Are and Where We Need to Go. Cancers (Basel) 2016; 8:cancers8020019. [PMID: 26828520 PMCID: PMC4773742 DOI: 10.3390/cancers8020019] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 02/04/2023] Open
Abstract
Cancers are heterogeneous tissues comprised of multiple components, including tumor cells and microenvironment cells. The tumor microenvironment has a critical role in tumor progression. The tumor microenvironment is comprised of various cell types, including fibroblasts, macrophages and immune cells, as well as extracellular matrix and various cytokines and growth factors. Fibroblasts are the predominant cell type in the tumor microenvironment. However, neither the derivation of tissue-specific cancer-associated fibroblasts nor markers of tissue-specific cancer-associated fibroblasts are well defined. Despite these uncertainties it is increasingly apparent that cancer-associated fibroblasts have a crucial role in tumor progression. In breast cancer, there is evolving evidence showing that breast cancer-associated fibroblasts are actively involved in breast cancer initiation, proliferation, invasion and metastasis. Breast cancer-associated fibroblasts also play a critical role in metabolic reprogramming of the tumor microenvironment and therapy resistance. This review summarizes the current understanding of breast cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Rachel J Buchsbaum
- Molecular Oncology Research Institute and Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center, Boston, MA 02111, USA.
| | - Sun Young Oh
- Department of Medicine, Division of Medical Oncology, Montefiore Medical Center, New York, NY 10467, USA.
| |
Collapse
|
35
|
Vital P, Castro P, Ittmann M. Oxidative stress promotes benign prostatic hyperplasia. Prostate 2016; 76:58-67. [PMID: 26417670 PMCID: PMC5469601 DOI: 10.1002/pros.23100] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/15/2015] [Indexed: 11/11/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is characterized by increased tissue mass in the transition zone of the prostate, which leads to obstruction of urine outflow and significant morbidity in the majority of older men. Plasma markers of oxidative stress are increased in men with BPH but it is unclear whether oxidative stress and/or oxidative DNA damage are causal in the pathogenesis of BPH. METHODS Levels of 8-OH deoxyguanosine (8-OH dG), a marker of oxidative stress, were measured in prostate tissues from normal transition zone and BPH by ELISA. 8-OH dG was also detected in tissues by immunohistochemistry and staining quantitated by image analysis. Nox4 promotes the formation of reactive oxygen species. We therefore created and characterized transgenic mice with prostate specific expression of Nox4 under the control of the prostate specific ARR2PB promoter. RESULTS Human BPH tissues contained significantly higher levels of 8-OH dG than control transition zone tissues and the levels of 8-OH dG were correlated with prostate weight. Cells with 8-OH dG staining were predominantly in the epithelium and were present in a patchy distribution. The total fraction of epithelial staining with 8-OH dG was significantly increased in BPH tissues by image analysis. The ARR2PB-Nox4 mice had increased oxidative DNA damage in the prostate, increased prostate weight, increased epithelial proliferation, and histological changes including epithelial proliferation, stromal thickening, and fibrosis when compared to wild type controls. CONCLUSIONS Oxidative stress and oxidative DNA damage are important in the pathogenesis of BPH.
Collapse
Affiliation(s)
| | | | - Michael Ittmann
- Correspondence to: Michael Ittmann, MD, PhD, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza Houston, TX 77030.
| |
Collapse
|
36
|
Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 2015; 17:1049-61. [PMID: 26147250 PMCID: PMC4691706 DOI: 10.1038/ncb3195] [Citation(s) in RCA: 784] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
The TOR (target of rapamycin) kinase limits longevity by poorly understood mechanisms. Rapamycin suppresses the mammalian TORC1 complex, which regulates translation, and extends lifespan in diverse species, including mice. We show that rapamycin selectively blunts the pro-inflammatory phenotype of senescent cells. Cellular senescence suppresses cancer by preventing cell proliferation. However, as senescent cells accumulate with age, the senescence-associated secretory phenotype (SASP) can disrupt tissues and contribute to age-related pathologies, including cancer. MTOR inhibition suppressed the secretion of inflammatory cytokines by senescent cells. Rapamycin reduced IL6 and other cytokine mRNA levels, but selectively suppressed translation of the membrane-bound cytokine IL1A. Reduced IL1A diminished NF-κB transcriptional activity, which controls much of the SASP; exogenous IL1A restored IL6 secretion to rapamycin-treated cells. Importantly, rapamycin suppressed the ability of senescent fibroblasts to stimulate prostate tumour growth in mice. Thus, rapamycin might ameliorate age-related pathologies, including late-life cancer, by suppressing senescence-associated inflammation.
Collapse
Affiliation(s)
| | - Yu Sun
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Arturo V. Orjalo
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | | | - Adam Freund
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Lili Zhou
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Samuel C. Curran
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | | | | | - Su Liu
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Chandani Limbad
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Marco Demaria
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Patrick Li
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Gene B. Hubbard
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Research Service, San Antonio, Texas 78229, USA
- GRECC, Audie Murphy VA Hospital (STVHCS), San Antonio, Texas 78229, USA
| | - Martin Javors
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, California 94945, USA
- California Pacific Medical Center, Research Institute, San Francisco, California 94107, USA
| | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Peter S. Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California 94945, USA
| |
Collapse
|
37
|
James EL, Michalek RD, Pitiyage GN, de Castro AM, Vignola KS, Jones J, Mohney RP, Karoly ED, Prime SS, Parkinson EK. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. J Proteome Res 2015; 14:1854-71. [PMID: 25690941 DOI: 10.1021/pr501221g] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular senescence can modulate various pathologies and is associated with irreparable DNA double-strand breaks (IrrDSBs). Extracellular senescence metabolomes (ESMs) were generated from fibroblasts rendered senescent by proliferative exhaustion (PEsen) or 20 Gy of γ rays (IrrDSBsen) and compared with those of young proliferating cells, confluent cells, quiescent cells, and cells exposed to repairable levels of DNA damage to identify novel noninvasive markers of senescent cells. ESMs of PEsen and IrrDSBsen overlapped and showed increased levels of citrate, molecules involved in oxidative stress, a sterol, monohydroxylipids, tryptophan metabolism, phospholipid, and nucleotide catabolism, as well as reduced levels of dipeptides containing branched chain amino acids. The ESM overlaps with the aging and disease body fluid metabolomes, supporting their utility in the noninvasive detection of human senescent cells in vivo and by implication the detection of a variety of human pathologies. Intracellular metabolites of senescent cells showed a relative increase in glycolysis, gluconeogenesis, the pentose-phosphate pathway, and, consistent with this, pyruvate dehydrogenase kinase transcripts. In contrast, tricarboxylic acid cycle enzyme transcript levels were unchanged and their metabolites were depleted. These results are surprising because glycolysis antagonizes senescence entry but are consistent with established senescent cells entering a state of low oxidative stress.
Collapse
Affiliation(s)
| | - Ryan D Michalek
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | | | | | - Katie S Vignola
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | - Janice Jones
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | - Robert P Mohney
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | - Edward D Karoly
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | | | | |
Collapse
|
38
|
Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, Newhouse L, Ogrodzinski M, Hecht V, Xu K, Acevedo PNM, Hollern DP, Bellinger G, Dayton TL, Christen S, Elia I, Dinh AT, Stephanopoulos G, Manalis SR, Yaffe MB, Andrechek ER, Fendt SM, Vander Heiden MG. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell 2015; 57:95-107. [PMID: 25482511 PMCID: PMC4289430 DOI: 10.1016/j.molcel.2014.10.027] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 08/19/2014] [Accepted: 10/28/2014] [Indexed: 01/15/2023]
Abstract
Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.
Collapse
Affiliation(s)
- Sophia Y Lunt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Vinayak Muralidhar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology Division, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron M Hosios
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William J Israelsen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Y Gui
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lauren Newhouse
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Martin Ogrodzinski
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Vivian Hecht
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kali Xu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paula N Marín Acevedo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel P Hollern
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Gary Bellinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Talya L Dayton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefan Christen
- Vesalius Research Center, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Ilaria Elia
- Vesalius Research Center, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Anh T Dinh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah-Maria Fendt
- Vesalius Research Center, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Kirkland JL, Tchkonia T. Clinical strategies and animal models for developing senolytic agents. Exp Gerontol 2014; 68:19-25. [PMID: 25446976 DOI: 10.1016/j.exger.2014.10.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/20/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
Abstract
Aging is associated with increasing predisposition to multiple chronic diseases. One fundamental aging process that is often operative at sites of the pathology underlying chronic age-related diseases is cellular senescence. Small molecule senolytic agents are being developed. For successful drug development: 1) appropriate animal models of human age-related diseases need to be devised. 2) Models have to be made in which it can be proven that beneficial phenotypic effects are actually caused through clearing senescent cells by putative senolytic agents, as opposed to "off-target" effects of these agents on non-senescent cells. 3) Models are needed to test efficacy of drugs and to uncover potential side effects of senolytic agents. Development of the optimal animal models and clinical trial paradigms for senolytic agents warrants an intensive effort, since senolytic agents, if successful in delaying, preventing, alleviating, or reversing age-related diseases as a group would be transformative.
Collapse
Affiliation(s)
- James L Kirkland
- Mayo Clinic Robert and Arlene Kogod Center on Aging, 200 First Street, S.W., Rochester, MN 55905, United States.
| | - Tamara Tchkonia
- Mayo Clinic Robert and Arlene Kogod Center on Aging, 200 First Street, S.W., Rochester, MN 55905, United States
| |
Collapse
|
40
|
Schlereth SL, Refaian N, Iden S, Cursiefen C, Heindl LM. Impact of the prolymphangiogenic crosstalk in the tumor microenvironment on lymphatic cancer metastasis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:639058. [PMID: 25254213 PMCID: PMC4165560 DOI: 10.1155/2014/639058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/14/2014] [Indexed: 02/08/2023]
Abstract
Lymphangiogenesis is a very early step in lymphatic metastasis. It is regulated and promoted not only by the tumor cells themselves, but also by cells of the tumor microenvironment, including cancer associated fibroblasts, mesenchymal stem cells, dendritic cells, or macrophages. Even the extracellular matrix as well as cytokines and growth factors are involved in the process of lymphangiogenesis and metastasis. The cellular and noncellular components influence each other and can be influenced by the tumor cells. The knowledge about mechanisms behind lymphangiogenesis in the tumor microenvironmental crosstalk is growing and offers starting points for new therapeutic approaches.
Collapse
Affiliation(s)
- Simona L. Schlereth
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Nasrin Refaian
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Ludwig M. Heindl
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| |
Collapse
|
41
|
Pati S, Jain S, Behera M, Acharya AP, Panda SK, Senapati S. X-gal staining of canine skin tissues: A technique with multiple possible applications. J Nat Sci Biol Med 2014; 5:245-9. [PMID: 25097391 PMCID: PMC4121891 DOI: 10.4103/0976-9668.136147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Estimation of β-galactosidase (βgal) activity in human cells and tissues indicate its possible use as a marker of senescence. Objectives: This study was done to detect senescence-associated βgal (SA-βgal) activity in canine skin tissue by using its substrate 5-bromo-4-chloro-3-indolyl β-D-galactosidase (X-gal). Materials and Methods: Skin samples were collected through rapid necropsy process. The X-gal staining was done by altering different factors of the staining procedure like pH of the reagents and incubation time. Further, effect of tissue preservation procedure was also evaluated. Results: Typical X-gal staining was detected in old dogs’ skin samples and it was detectable both at pH 6 and pH 7.3. The cells present in the inner lining of the hair follicles and sebaceous glands are the major cells that have high SA-βgal activity. The X-gal staining intensity was more prominent in tissues preserved in liquid nitrogen at -196°C than in -80°C freezer. Prolonged incubation period increased the intensity of staining. Conclusions: This study indicates possibility of X-gal staining in canine tissues and opens an avenue for further in-depth studies that might be useful for different research and clinical studies like determination of dog's approximate age.
Collapse
Affiliation(s)
- Soumyaranjan Pati
- Department of Veterinary Pathology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Sumeet Jain
- Institute of Life Sciences, Department of Translational Research and Technology Development, Nalco Square, Bhubaneswar, Orissa, India
| | - Monalisa Behera
- Department of Veterinary Pathology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Aditya Prasad Acharya
- Department of Veterinary Pathology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Susen K Panda
- Department of Veterinary Pathology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Shantibhusan Senapati
- Institute of Life Sciences, Department of Translational Research and Technology Development, Nalco Square, Bhubaneswar, Orissa, India
| |
Collapse
|
42
|
Irshad S, Bansal M, Castillo-Martin M, Zheng T, Aytes A, Wenske S, Le Magnen C, Guarnieri P, Sumazin P, Benson MC, Shen MM, Califano A, Abate-Shen C. A molecular signature predictive of indolent prostate cancer. Sci Transl Med 2014; 5:202ra122. [PMID: 24027026 DOI: 10.1126/scitranslmed.3006408] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many newly diagnosed prostate cancers present as low Gleason score tumors that require no treatment intervention. Distinguishing the many indolent tumors from the minority of lethal ones remains a major clinical challenge. We now show that low Gleason score prostate tumors can be distinguished as indolent and aggressive subgroups on the basis of their expression of genes associated with aging and senescence. Using gene set enrichment analysis, we identified a 19-gene signature enriched in indolent prostate tumors. We then further classified this signature with a decision tree learning model to identify three genes--FGFR1, PMP22, and CDKN1A--that together accurately predicted outcome of low Gleason score tumors. Validation of this three-gene panel on independent cohorts confirmed its independent prognostic value as well as its ability to improve prognosis with currently used clinical nomograms. Furthermore, protein expression of this three-gene panel in biopsy samples distinguished Gleason 6 patients who failed surveillance over a 10-year period. We propose that this signature may be incorporated into prognostic assays for monitoring patients on active surveillance to facilitate appropriate courses of treatment.
Collapse
Affiliation(s)
- Shazia Irshad
- Department of Urology, Columbia University Medical Center, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bardan R, Dumache R, Dema A, Cumpanas A, Bucuras V. The role of prostatic inflammation biomarkers in the diagnosis of prostate diseases. Clin Biochem 2014; 47:909-15. [PMID: 24560954 DOI: 10.1016/j.clinbiochem.2014.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 11/27/2022]
Abstract
Benign prostatic hyperplasia (BPH) and prostate cancer (PCa) are chronic conditions, which are hormone-dependent and epidemiologically associated with prostate inflammation. As a large number of studies have demonstrated, the stimulation of T-cells at the level of prostatic chronic inflammatory infiltrates is followed by stromal and epithelial cell proliferation. The aim of this review is to present the actual level of knowledge in the field of prostatic immune response and chronic inflammation, and to analyze the relationships between chronic inflammation and BPH/PCa. The most studied prostatic inflammation biomarkers detected in biological fluids are also presented, together with their potential roles in the diagnosis and prognosis of prostatic disease.
Collapse
Affiliation(s)
- Razvan Bardan
- Department of Urology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.
| | - Raluca Dumache
- Department of Biochemistry, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alis Dema
- Department of Pathology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alin Cumpanas
- Department of Urology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Viorel Bucuras
- Department of Urology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
44
|
Dvorakova M, Nenutil R, Bouchal P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev Proteomics 2014; 11:149-65. [PMID: 24476357 DOI: 10.1586/14789450.2014.860358] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transgelin is an abundant protein of smooth muscle cells, where its role has been primarily studied. As a protein affecting dynamics of the actin cytoskeleton via stabilization of actin filaments, transgelin is both directly and indirectly involved in many cancer-related processes such as migration, proliferation, differentiation or apoptosis. Transgelin was previously reviewed as a tumor suppressor; however, recent data based on a number of proteomics studies indicate its pro-tumorigenic role, for example, in colorectal or hepatocellular cancer. We summarize these contradictory observations in both clinical and functional proteomics projects and analyze the role of transgelin in tumors in detail. Generally, the expression and biological role of transgelin seem to differ among various types of tumor cells and stroma, and possibly change during tumor progression. We also overview the recent data on transgelin-2, a sequence homolog of transgelin, whose role in the tumor development might be contradictory to the role of transgelin.
Collapse
Affiliation(s)
- Monika Dvorakova
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | | | | |
Collapse
|
45
|
Abstract
Cellular senescence is a stress response that accompanies stable exit from the cell cycle. Classically, senescence, particularly in human cells, involves the p53 and p16/Rb pathways, and often both of these tumor suppressor pathways need to be abrogated to bypass senescence. In parallel, a number of effector mechanisms of senescence have been identified and characterized. These studies suggest that senescence is a collective phenotype of these multiple effectors, and their intensity and combination can be different depending on triggers and cell types, conferring a complex and diverse nature to senescence. Series of studies on senescence-associated secretory phenotype (SASP) in particular have revealed various layers of functionality of senescent cells in vivo. Here we discuss some key features of senescence effectors and attempt to functionally link them when it is possible.
Collapse
Affiliation(s)
- Rafik Salama
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Mahito Sadaie
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
46
|
The senescence-associated secretory phenotype promotes benign prostatic hyperplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:721-31. [PMID: 24434012 DOI: 10.1016/j.ajpath.2013.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/11/2013] [Accepted: 11/04/2013] [Indexed: 12/26/2022]
Abstract
Benign prostatic hyperplasia (BPH) is characterized by increased tissue mass in the transition zone of the prostate, which leads to obstruction of urine outflow and considerable morbidity in a majority of older men. Senescent cells accumulate in human tissues, including the prostate, with increasing age. Expression of proinflammatory cytokines is increased in these senescent cells, a manifestation of the senescence-associated secretory phenotype. Multiplex analysis revealed that multiple cytokines are increased in BPH, including GM-CSF, IL-1α, and IL-4, and that these are also increased in senescent prostatic epithelial cells in vitro. Tissue levels of these cytokines were correlated with a marker of senescence (cathepsin D), which was also strongly correlated with prostate weight. IHC analysis revealed the multifocal epithelial expression of cathepsin D and coexpression with IL-1α in BPH tissues. In tissue recombination studies in nude mice with immortalized prostatic epithelial cells expressing IL-1α and prostatic stromal cells, both epithelial and stromal cells exhibited increased growth. Expression of IL-1α in prostatic epithelial cells in a transgenic mouse model resulted in increased prostate size and bladder obstruction. In summary, both correlative and functional evidence support the hypothesis that the senescence-associated secretory phenotype can promote the development of BPH, which is the single most common age-related pathology in older men.
Collapse
|
47
|
Maund SL, Shi L, Cramer SD. A role for interleukin-1 alpha in the 1,25 dihydroxyvitamin D3 response in mammary epithelial cells. PLoS One 2013; 8:e81367. [PMID: 24244740 PMCID: PMC3820570 DOI: 10.1371/journal.pone.0081367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3.
Collapse
Affiliation(s)
- Sophia L. Maund
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
48
|
Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D, Bartek J, Serrano M, Gorgoulis VG. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 2013; 5:37-50. [PMID: 23449538 PMCID: PMC3616230 DOI: 10.18632/aging.100527] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is shortage of extensive clinicopathologic studies of cellular senescence because the most reliable senescence biomarker, the detection of Senescence-Associated-beta-galactosidase activity (SA-β-gal), is inapplicable in archival material and requires snap-frozen tissues. We validated the histochemical Sudan-Black-B (SBB) specific stain of lipofuscin, an aggregate of oxidized proteins, lipids and metals, known to accumulate in aged tissues, as an additional reliable approach to detect senescent cells independently of sample preparation. We analyzed cellular systems in which senescence was triggered by replicative exhaustion or stressful stimuli, conditional knock-in mice producing precancerous lesions exhibiting senescence, and human preneoplastic lesions known to contain senescent cells. In the above settings we demonstrated co-localization of lipofuscin and SA-β-gal in senescent cells in vitro and in vivo (cryo-preserved tissue), strongly supporting the candidacy of lipofuscin for a biomarker of cellular senescence. Furthermore, cryo-preserved tissues positive for SA-β-gal were formalin-fixed, paraffin-embedded, and stained with SBB. The corresponding SA-β-gal positive tissue areas stained specifically for lipofuscin by SBB, whereas tissues negative for SA-β-gal were lipofuscin negative, validating the sensitivity and specificity of the SBB staining to visualize senescent cells in archival material. The latter unique property of SBB could be exploited in research on widely available retrospective tissue material.
Collapse
Affiliation(s)
- E A Georgakopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim Y, Byun H, Jee BA, Cho H, Seo Y, Kim Y, Park MH, Chung H, Woo HG, Yoon G. Implications of time-series gene expression profiles of replicative senescence. Aging Cell 2013; 12:622-34. [PMID: 23590226 DOI: 10.1111/acel.12087] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2013] [Indexed: 12/21/2022] Open
Abstract
Although senescence has long been implicated in aging-associated pathologies, it is not clearly understood how senescent cells are linked to these diseases. To address this knowledge gap, we profiled cellular senescence phenotypes and mRNA expression patterns during replicative senescence in human diploid fibroblasts. We identified a sequential order of gain-of-senescence phenotypes: low levels of reactive oxygen species, cell mass/size increases with delayed cell growth, high levels of reactive oxygen species with increases in senescence-associated β-galactosidase activity (SA-β-gal), and high levels of SA-β-gal activity. Gene expression profiling revealed four distinct modules in which genes were prominently expressed at certain stages of senescence, allowing us to divide the process into four stages: early, middle, advanced, and very advanced. Interestingly, the gene expression modules governing each stage supported the development of the associated senescence phenotypes. Senescence-associated secretory phenotype-related genes also displayed a stage-specific expression pattern with three unique features during senescence: differential expression of interleukin isoforms, differential expression of interleukins and their receptors, and differential expression of matrix metalloproteinases and their inhibitory proteins. We validated these phenomena at the protein level using human diploid fibroblasts and aging Sprague-Dawley rat skin tissues. Finally, disease-association analysis of the modular genes also revealed stage-specific patterns. Taken together, our results reflect a detailed process of cellular senescence and provide diverse genome-wide information of cellular backgrounds for senescence.
Collapse
Affiliation(s)
- You‐Mie Kim
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine Suwon 443‐721 Korea
| | - Hae‐Ok Byun
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine Suwon 443‐721 Korea
| | | | | | - Yong‐Hak Seo
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine Suwon 443‐721 Korea
| | - You‐Sun Kim
- Institute for Medical Sciences Ajou University School of Medicine Suwon 443‐721Korea
| | - Min Hi Park
- College of Pharmacy Pusan National University Pusan 609‐735Korea
| | - Hae‐Young Chung
- College of Pharmacy Pusan National University Pusan 609‐735Korea
| | | | - Gyesoon Yoon
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine Suwon 443‐721 Korea
| |
Collapse
|
50
|
Ponomareva L, Liu H, Duan X, Dickerson E, Shen H, Panchanathan R, Choubey D. AIM2, an IFN-inducible cytosolic DNA sensor, in the development of benign prostate hyperplasia and prostate cancer. Mol Cancer Res 2013; 11:1193-202. [PMID: 23864729 DOI: 10.1158/1541-7786.mcr-13-0145] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Close links have been noted between chronic inflammation of the prostate and the development of human prostatic diseases such as benign prostate hyperplasia (BPH) and prostate cancer. However, the molecular mechanisms that contribute to prostatic inflammation remain largely unexplored. Recent studies have indicated that the IFN-inducible AIM2 protein is a cytosolic DNA sensor in macrophages and keratinocytes. Upon sensing DNA, AIM2 recruits the adaptor ASC and pro-CASP1 to assemble the AIM2 inflammasome. Activation of the AIM2 inflammasome cleaves pro-interleukin (IL)-1β and pro-IL-18 and promotes the secretion of IL-1β and IL-18 proinflammatory cytokines. Given that human prostatic infections are associated with chronic inflammation, the development of BPH is associated with an accumulation of senescent cells with a proinflammatory phenotype, and the development of prostate cancer is associated with the loss of IFN signaling, the role of AIM2 in mediating the formation of prostatic diseases was investigated. It was determined that IFNs (α, β, or γ) induced AIM2 expression in human prostate epithelial cells and cytosolic DNA activated the AIM2 inflammasome. Steady-state levels of the AIM2 mRNA were higher in BPH than in normal prostate tissue. However, the levels of AIM2 mRNA were significantly lower in clinical tumor specimens. Accordingly, constitutive levels of AIM2 mRNA and protein were lower in a subset of prostate cancer cells as compared with BPH cells. Further, the cytosolic DNA activated the AIM2 inflammasome in the androgen receptor-negative PC3 prostate cancer cell line, suggesting that AIM2-mediated events are independent of androgen receptor status. IMPLICATIONS The AIM2 inflammasome has a fundamental role in the generation of human prostatic diseases.
Collapse
Affiliation(s)
- Larissa Ponomareva
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, PO Box 670056, Cincinnati, OH 45267.
| | | | | | | | | | | | | |
Collapse
|