1
|
Wei J, Wang J, Guan W, Li J, Pu T, Corey E, Lin TP, Gao AC, Wu BJ. PlexinD1 is a driver and a therapeutic target in advanced prostate cancer. EMBO Mol Med 2025:10.1038/s44321-024-00186-z. [PMID: 39748059 DOI: 10.1038/s44321-024-00186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Aggressive prostate cancer (PCa) variants associated with androgen receptor signaling inhibitor (ARSI) resistance and metastasis remain poorly understood. Here, we identify the axon guidance semaphorin receptor PlexinD1 as a crucial driver of cancer aggressiveness in metastatic castration-resistant prostate cancer (CRPC). High PlexinD1 expression in human PCa is correlated with adverse clinical outcomes. PlexinD1 critically maintains CRPC aggressive behaviors in vitro and in vivo, and confers stemness and cellular plasticity to promote multilineage differentiation including a neuroendocrine-like phenotype for ARSI resistance. Mechanistically, PlexinD1 is upregulated upon relief of AR-mediated transcriptional repression of PlexinD1 under ARSI treatment, and subsdquently transactivates ErbB3 and cMet via direct interaction, which triggers the ERK/AKT pathways to induce noncanonical Gli1-dictated Hedgehog signaling, facilitating the growth and plasticity of PCa cells. Blockade of PlexinD1 by the protein inhibitor D1SP restricted CRPC growth in multiple preclinical models. Collectively, these findings characterize PlexinD1's contribution to PCa progression and offer a potential PlexinD1-targeted therapy for advanced PCa.
Collapse
Affiliation(s)
- Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Wen Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, 11217, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, 11221, Republic of China
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, CA, 95817, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
2
|
Neuropilin-2 promotes lineage plasticity and progression to neuroendocrine prostate cancer. Oncogene 2022; 41:4307-4317. [PMID: 35986103 PMCID: PMC9464715 DOI: 10.1038/s41388-022-02437-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer, is characterized by loss of AR signaling and resulting resistance to AR-targeted therapy during neuroendocrine transdifferentiation, for which the molecular mechanisms remain unclear. Here, we report that neuropilin 2 (NRP2) is upregulated in both de novo and therapy-induced NEPC, which induces neuroendocrine markers, neuroendocrine cell morphology, and NEPC cell aggressive behavior. NRP2 silencing restricted NEPC tumor xenograft growth. Mechanistically, NRP2 engages in reciprocal crosstalk with AR, where NRP2 is transcriptionally inhibited by AR, and in turn suppresses AR signaling by downregulating the AR transcriptional program and confers resistance to enzalutamide. Moreover, NRP2 physically interacts with VEGFR2 through the intracellular SEA domain to activate STAT3 phosphorylation and subsequently SOX2, thus driving NEPC differentiation and growth. Collectively, these results characterize NRP2 as a driver of NEPC and suggest NRP2 as a potential therapeutic target in NEPC.
Collapse
|
3
|
Reduced NCOR2 expression accelerates androgen deprivation therapy failure in prostate cancer. Cell Rep 2021; 37:110109. [PMID: 34910907 PMCID: PMC8889623 DOI: 10.1016/j.celrep.2021.110109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 01/27/2023] Open
Abstract
This study addresses the roles of nuclear receptor corepressor 2 (NCOR2) in prostate cancer (PC) progression in response to androgen deprivation therapy (ADT). Reduced NCOR2 expression significantly associates with shorter disease-free survival in patients with PC receiving adjuvant ADT. Utilizing the CWR22 xenograft model, we demonstrate that stably reduced NCOR2 expression accelerates disease recurrence following ADT, associates with gene expression patterns that include neuroendocrine features, and induces DNA hypermethylation. Stably reduced NCOR2 expression in isogenic LNCaP (androgen-sensitive) and LNCaP-C4–2 (androgen-independent) cells revealed that NCOR2 reduction phenocopies the impact of androgen treatment and induces global DNA hypermethylation patterns. NCOR2 genomic binding is greatest in LNCaP-C4–2 cells and most clearly associates with forkhead box (FOX) transcription factor FOXA1 binding. NCOR2 binding significantly associates with transcriptional regulation most when in active enhancer regions. These studies reveal robust roles for NCOR2 in regulating the PC transcriptome and epigenome and underscore recent mutational studies linking NCOR2 loss of function to PC disease progression. Long et al. show that reduced levels of NCOR2 lead to accelerated prostate cancer recurrence during androgen withdrawal in a patient-derived xenograft model. NCOR2 reduction is characterized by incomplete response to androgen withdrawal, and recurrent tumors show increased neuroendocrine traits. These phenotypic changes are associated with hypermethylated enhancers.
Collapse
|
4
|
Bery F, Cancel M, Guéguinou M, Potier-Cartereau M, Vandier C, Chantôme A, Guibon R, Bruyère F, Fromont G, Mahéo K. Zeb1 and SK3 Channel Are Up-Regulated in Castration-Resistant Prostate Cancer and Promote Neuroendocrine Differentiation. Cancers (Basel) 2021; 13:cancers13122947. [PMID: 34204608 PMCID: PMC8231145 DOI: 10.3390/cancers13122947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Currently, neuroendocrine prostate cancers remain fatal, so it is crucial to better understand mechanisms of resistance to hormone therapy driving this phenotype. We have shown that Enza, a new generation hormone therapy, promotes prostate cancer cells neurodifferentiation by activating a positive feedback loop between the key transcription factor of epithelial to mesenchymal transition Zeb1 and the calcium-sensitive potassium channel SK3. These two actors are overexpressed in patients with neuroendocrine castration-resistant prostate cancer. Targeting SK3 channel by Ohmline, a synthetic ether lipid, inhibits neuroendocrine differentiation of prostate cancer cells, which opens new therapeutic prospects for neuroendocrine prostate cancers. Abstract Therapeutic strategies for metastatic castration-resistant prostate cancer aim to target androgen receptor signaling. Despite initial survival benefits, treatment resistance invariably occurs, leading to lethal disease. Therapies targeting the androgen receptor can induce the emergence of a neuroendocrine phenotype and reactivate embryonic programs associated with epithelial to mesenchymal transition. We recently reported that dysregulation of the calcium signal can induce the transcription factor Zeb1, a key determinant of cell plasticity during tumor progression. The aim of this study was to determine whether the androgen receptor-targeted treatment Enzalutamide could induce dysregulation of the calcium signal involved in the progression toward epithelial to mesenchymal transition and neuroendocrine differentiation, contributing to therapeutic escape. Our results show that Zeb1 and the SK3 potassium channel are overexpressed in vivo in neuroendocrine castration-resistant prostate cancer and in vitro in LNCaP cells neurodifferentiated after Enzalutamide treatment. Moreover, the neuroendocrine phenotype is associated with a deregulation of the expression of Orai calcium channels. We showed that Zeb1 and SK3 are critical drivers of neuroendocrine differentiation. Interestingly, Ohmline, an SK3 inhibitor, can prevent the expression of Zeb1 and neuroendocrine markers induced by Enzalutamide. This study offers new perspectives to increase hormone therapy efficacy and improve clinical outcomes.
Collapse
Affiliation(s)
- Fanny Bery
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Mathilde Cancel
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
- Department of Oncology, CHRU Bretonneau, CEDEX 9, F-37044 Tours, France
| | - Maxime Guéguinou
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Marie Potier-Cartereau
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Christophe Vandier
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Aurélie Chantôme
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
| | - Roseline Guibon
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
- CHRU of Tours, Department of Pathology, N2C UMR 1069, University of Tours, INSERM, CEDEX 9, F-37044 Tours, France
| | - Franck Bruyère
- CHRU of Tours, Department of Urology, CEDEX 9, F-37044 Tours, France;
| | - Gaëlle Fromont
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
- CHRU of Tours, Department of Pathology, N2C UMR 1069, University of Tours, INSERM, CEDEX 9, F-37044 Tours, France
| | - Karine Mahéo
- N2C UMR 1069, University of Tours, INSERM, F-37032 Tours, France; (F.B.); (M.C.); (M.G.); (M.P.-C.); (C.V.); (A.C.); (R.G.); (G.F.)
- Correspondence: ; Tel.: +33-(0)2-47-36-62-13
| |
Collapse
|
5
|
Xiao GQ, Ho G, Suen C, Hurth KM. Comparative study of neuroendocrine acquisition and biomarker expression between neuroendocrine and usual prostatic carcinoma. Prostate 2021; 81:469-477. [PMID: 33848377 DOI: 10.1002/pros.24127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neuroendocrine prostatic carcinoma (NEPC) is uncommon. The pathogenesis, clinical association, and clinical implications of this disease are still evolving. METHODS Clinicopathologic, immunohistochemical and genomic studies were used to investigate the incidence of NEPC in various clinicopathologic settings and the expression of various biomarkers in NEPC and non-NEPC as well as small cell NEPC. The study included 45 treatment-naïve Gleason pattern (GP) 3 and 94 GP 4/5, 43 post-radiation, 60 post-androgen deprivation therapy (ADT), 38 lymph node metastatic and 9 small cell prostatic adenocarcinomas (PCs). RESULTS NEPC was found in 7% GP3, 10% GP4/5, 9% post-radiation, 18% post-ADT, and 5% lymph node metastatic PCs, respectively. Compared with treatment-naïve PCs, post-ADT PCs showed significantly increased incidence of NEPC (p < .05) while no significant difference was noted between low- and high-grade PCs, post-radiation, and lymph node metastatic PCs. Serotonin was uniformly positive in NE cells of benign glands but negative in NEPC. Significant increase of Bcl-2 and Auro A and decrease of prostein were noted in NEPC (p < .05). No significant changes in the expression of other biomarkers were found. In addition, small cell NEPC was strongly associated with ADT (44%) and high Gleason score (≥8, 100%) and often presented with alterations of TP53/RB1 and ARID1A/B or other genes crucial to genomic fidelity. CONCLUSION Given that no specific treatment for NEPC is presently available, the findings in this study have significant implications in the better understanding of this often-deadly disease both clinically and pathogenetically as well as future patient management, including targeted therapy.
Collapse
Affiliation(s)
- Guang-Qian Xiao
- Department of Pathology, LAC+USC and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Grant Ho
- Department of Pathology, LAC+USC and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Catherine Suen
- Department of Pathology, Pomona Valley Hospital Medical Center, Pomona, California, USA
| | - Kyle M Hurth
- Department of Pathology, LAC+USC and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Balakrishna P, George S, Hatoum H, Mukherjee S. Serotonin Pathway in Cancer. Int J Mol Sci 2021; 22:1268. [PMID: 33525332 PMCID: PMC7865972 DOI: 10.3390/ijms22031268] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine produced from the essential amino acid tryptophan. Serotonin's role as a neurotransmitter in the central nervous system and a motility mediator in the gastrointestinal tract has been well defined, and its function in tumorigenesis in various cancers (gliomas, carcinoids, and carcinomas) is being studied. Many studies have shown a potential stimulatory effect of serotonin on cancer cell proliferation, invasion, dissemination, and tumor angiogenesis. Although the underlying mechanism is complex, it is proposed that serotonin levels in the tumor and its interaction with specific receptor subtypes are associated with disease progression. This review article describes serotonin's role in cancer pathogenesis and the utility of the serotonin pathway as a potential therapeutic target in cancer treatment. Octreotide, an inhibitor of serotonin release, is used in well-differentiated neuroendocrine cancers, and the tryptophan hydroxylase (TPH) inhibitor, telotristat, is currently being investigated in clinical trials to treat patients with metastatic neuroendocrine tumors and advanced cholangiocarcinoma. Several in vitro studies have shown the anticancer effect of 5-HT receptor antagonists in various cancers such as prostate cancer, breast cancer, urinary bladder, colorectal cancer, carcinoid, and small-cell lung cancer. More in vivo studies are needed to assess serotonin's role in cancer and its potential use as an anticancer therapeutic target. Serotonin is also being evaluated for its immunoregulatory properties, and studies have shown its potential anti-inflammatory effect. Therefore, it would be of interest to explore the combination of serotonin antagonists with immunotherapy in the future.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/therapeutic use
- Carcinoma, Neuroendocrine/blood supply
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cholangiocarcinoma/blood supply
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Molecular Targeted Therapy/methods
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Octreotide/therapeutic use
- Phenylalanine/analogs & derivatives
- Phenylalanine/therapeutic use
- Pyrimidines/therapeutic use
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Serotonin/metabolism
- Serotonin Antagonists/therapeutic use
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tryptophan Hydroxylase/genetics
- Tryptophan Hydroxylase/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Pragathi Balakrishna
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.B.); (S.G.)
| | - Sagila George
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.B.); (S.G.)
| | - Hassan Hatoum
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.B.); (S.G.)
| | | |
Collapse
|
7
|
Bland T, Wang J, Yin L, Pu T, Li J, Gao J, Lin TP, Gao AC, Wu BJ. WLS-Wnt signaling promotes neuroendocrine prostate cancer. iScience 2021; 24:101970. [PMID: 33437943 PMCID: PMC7788232 DOI: 10.1016/j.isci.2020.101970] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal prostate cancer subtype arising as a consequence of more potent androgen receptor (AR) targeting in castration-resistant prostate cancer (CRPC). Its molecular pathogenesis remains elusive. Here, we report that the Wnt secretion mediator Wntless (WLS) is a major driver of NEPC and aggressive tumor growth in vitro and in vivo. Mechanistic studies showed that WLS is a transcriptional target suppressed by AR that activates the ROR2/PKCδ/ERK signaling pathway to support the neuroendocrine (NE) traits and proliferative capacity of NEPC cells. Analysis of clinical samples and datasets revealed that WLS was highly expressed in CRPC and NEPC tumors. Finally, treatment with the Wnt secretion inhibitor LGK974 restricted NE prostate tumor xenograft growth in mice. These findings collectively characterize the contribution of WLS to NEPC pathogenesis and suggest that WLS is a potential therapeutic target in NEPC. WLS is highly expressed in neuroendocrine prostate cancer clinical samples WLS is a transcriptional target suppressed by androgen receptor WLS drives neuroendocrine prostate cancer through the ROR2/PKCδ/ERK pathway Wnt secretion inhibitor treatment limits neuroendocrine prostate tumor growth in mice
Collapse
Affiliation(s)
- Tyler Bland
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Lijuan Yin
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Tzu-Ping Lin
- Departmet of Urology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China.,Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang-Ming University, Taipei, Taiwan 11221, Republic of China
| | - Allen C Gao
- Department of Urologic Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
8
|
Blee AM, Huang H. Lineage plasticity-mediated therapy resistance in prostate cancer. Asian J Androl 2019; 21:241-248. [PMID: 29900883 PMCID: PMC6498731 DOI: 10.4103/aja.aja_41_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/08/2018] [Indexed: 12/21/2022] Open
Abstract
Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.
Collapse
Affiliation(s)
- Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Ramnarine VR, Alshalalfa M, Mo F, Nabavi N, Erho N, Takhar M, Shukin R, Brahmbhatt S, Gawronski A, Kobelev M, Nouri M, Lin D, Tsai H, Lotan TL, Karnes RJ, Rubin MA, Zoubeidi A, Gleave ME, Sahinalp C, Wyatt AW, Volik SV, Beltran H, Davicioni E, Wang Y, Collins CC. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. Gigascience 2018; 7:4994835. [PMID: 29757368 PMCID: PMC6007253 DOI: 10.1093/gigascience/giy050] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/01/2018] [Indexed: 01/29/2023] Open
Abstract
Background Treatment-induced neuroendocrine prostate cancer (tNEPC) is an aggressive variant of late-stage metastatic castrate-resistant prostate cancer that commonly arises through neuroendocrine transdifferentiation (NEtD). Treatment options are limited, ineffective, and, for most patients, result in death in less than a year. We previously developed a first-in-field patient-derived xenograft (PDX) model of NEtD. Longitudinal deep transcriptome profiling of this model enabled monitoring of dynamic transcriptional changes during NEtD and in the context of androgen deprivation. Long non-coding RNA (lncRNA) are implicated in cancer where they can control gene regulation. Until now, the expression of lncRNAs during NEtD and their clinical associations were unexplored. Results We implemented a next-generation sequence analysis pipeline that can detect transcripts at low expression levels and built a genome-wide catalogue (n = 37,749) of lncRNAs. We applied this pipeline to 927 clinical samples and our high-fidelity NEtD model LTL331 and identified 821 lncRNAs in NEPC. Among these are 122 lncRNAs that robustly distinguish NEPC from prostate adenocarcinoma (AD) patient tumours. The highest expressed lncRNAs within this signature are H19, LINC00617, and SSTR5-AS1. Another 742 are associated with the NEtD process and fall into four distinct patterns of expression (NEtD lncRNA Class I, II, III, and IV) in our PDX model and clinical samples. Each class has significant (z-scores >2) and unique enrichment for transcription factor binding site (TFBS) motifs in their sequences. Enriched TFBS include (1) TP53 and BRN1 in Class I, (2) ELF5, SPIC, and HOXD1 in Class II, (3) SPDEF in Class III, (4) HSF1 and FOXA1 in Class IV, and (5) TWIST1 when merging Class III with IV. Common TFBS in all NEtD lncRNA were also identified and include E2F, REST, PAX5, PAX9, and STAF. Interrogation of the top deregulated candidates (n = 100) in radical prostatectomy adenocarcinoma samples with long-term follow-up (median 18 years) revealed significant clinicopathological associations. Specifically, we identified 25 that are associated with rapid metastasis following androgen deprivation therapy (ADT). Two of these lncRNAs (SSTR5-AS1 and LINC00514) stratified patients undergoing ADT based on patient outcome. Discussion To date, a comprehensive characterization of the dynamic landscape of lncRNAs during the NEtD process has not been performed. A temporal analysis of the PDX-based NEtD model has for the first time provided this dynamic landscape. TFBS analysis identified NEPC-related TF motifs present within the NEtD lncRNA sequences, suggesting functional roles for these lncRNAs in NEPC pathogenesis. Furthermore, select NEtD lncRNAs appear to be associated with metastasis and patients receiving ADT. Treatment-related metastasis is a clinical consequence of NEPC tumours. Top candidate lncRNAs FENDRR, H19, LINC00514, LINC00617, and SSTR5-AS1 identified in this study are implicated in the development of NEPC. We present here for the first time a genome-wide catalogue of NEtD lncRNAs that characterize the transdifferentiation process and a robust NEPC lncRNA patient expression signature. To accomplish this, we carried out the largest integrative study that applied a PDX NEtD model to clinical samples. These NEtD and NEPC lncRNAs are strong candidates for clinical biomarkers and therapeutic targets and warrant further investigation.
Collapse
Affiliation(s)
- Varune Rohan Ramnarine
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Fan Mo
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Noushin Nabavi
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Robert Shukin
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sonal Brahmbhatt
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Gawronski
- Department of Computer Science, Simon Fraser University, Burnaby, BC, Canada
| | - Maxim Kobelev
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mannan Nouri
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dong Lin
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Harrison Tsai
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - R Jefferey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cenk Sahinalp
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - Alexander W Wyatt
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stanislav V Volik
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Weill Cornell Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | - Yuzhuo Wang
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Colin C Collins
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA. EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer 2018; 1870:229-238. [PMID: 29981816 DOI: 10.1016/j.bbcan.2018.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Neuroendocrine/Aggressive Variant Prostate Cancers are lethal variants of the disease, with an aggressive clinical course and very short responses to conventional therapy. The age-adjusted incidence rate for this tumor sub-type has steadily increased over the past 20 years in the United States, with no reduction in the associated mortality rate. The molecular networks fueling its emergence and sustenance are still obscure; however, many factors have been associated with the onset and progression of neuroendocrine differentiation in clinically typical adenocarcinomas including loss of androgen-receptor expression and/or signaling, conventional therapy, and dysregulated cytokine function. "Tumor-plasticity" and the ability to dedifferentiate into alternate cell lineages are central to this process. Epithelial-to-mesenchymal (EMT) signaling pathways are major promoters of stem-cell properties in prostate tumor cells. In this review, we examine the contributions of EMT-induced cellular-plasticity and stem-cell signaling pathways to the progression of Neuroendocrine/Aggressive Variant Prostate Cancers in the light of potential therapeutic opportunities.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anurag N Paranjape
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sankar Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Zhao J, Zhao Y, Wang L, Zhang J, Karnes RJ, Kohli M, Wang G, Huang H. Alterations of androgen receptor-regulated enhancer RNAs (eRNAs) contribute to enzalutamide resistance in castration-resistant prostate cancer. Oncotarget 2018; 7:38551-38565. [PMID: 27221037 PMCID: PMC5122410 DOI: 10.18632/oncotarget.9535] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022] Open
Abstract
Enzalutamide is a second-generation anti-androgen for treatment of castration-resistant prostate cancer (CPRC). It prolongs survival of CRPC patients, but its overall survival benefit is relatively modest (4.8 months) and by 24 months most patients progress on enzalutamide. To date, however, the molecular mechanisms underlying enzalutamide resistance remain elusive. Herein, we report enzalutamide treatment-induced alterations of androgen receptor (AR)-regulated enhancer RNAs (AR-eRNAs) and their roles in enzalutamide-resistant growth and survival of CRPC cells. AR chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) and RNA-seq analyses revealed that 188 and 227 AR-eRNAs were differentially expressed in enzalutamide-resistant LNCaP and C4-2 cells, respectively. The AR-eRNAs upregulated in C4-2 cells and downregulated in LNCaP cells were selected through meta-analysis. Expression of AR-eRNAs and related mRNAs in the loci of FTO, LUZP2, MARC1 and NCAM2 were further verified by real-time RT-PCR. Silencing of LUZP2 inhibited, but silencing of MARC1 increased the growth of enzalutamide-resistant C4-2 cells. Intriguingly, meta-analysis showed that expression of LUZP2 mRNA increased in primary tumors compared to normal prostate tissues, but decreased again in metastatic CRPC. Our findings suggest that eRNA alteration profiling is a viable new approach to identify functional gene loci that may not only contribute to enzalutamide-resistant growth of CRPC, but also serve as new targets for CRPC therapy.
Collapse
Affiliation(s)
- Jingwen Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med 2017; 23:1-10. [PMID: 28586335 DOI: 10.1038/nm.4341] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Abstract
Neuroendocrine (NE) cancers are a diverse group of neoplasms typically diagnosed and treated on the basis of their site of origin. This Perspective focuses on advances in our understanding of the tumorigenesis and treatment of poorly differentiated neuroendocrine tumors. Recent evidence from sequencing indicates that, although neuroendocrine tumors can arise de novo, they can also develop as a result of lineage plasticity in response to pressure from targeted therapies. We discuss the shared genomic alterations of these tumors independently of their site of origin, and we explore potential therapeutic strategies on the basis of recent biological findings.
Collapse
|
13
|
Shourideh M, DePriest A, Mohler JL, Wilson EM, Koochekpour S. Characterization of fibroblast-free CWR-R1ca castration-recurrent prostate cancer cell line. Prostate 2016; 76:1067-77. [PMID: 27271795 DOI: 10.1002/pros.23190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/01/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND The previously established CWR-R1 cell line has been used as an in vitro model representing castration-recurrent prostate cancer. Microscopic observation of subconfluent cells demonstrated two distinct cellular morphologies: polygonal closely aggregated epithelial cells surrounded by bipolar fibroblastic cells with long processes. This study sought to establish and characterize a fibroblast-free derivative of the CWR-R1 cell line. METHODS The CWR-R1ca cell line was established from CWR-R1 cells by removing fibroblasts using multiple cycles of short-term trypsinization, cloning, and pooling single-cell colonies. Authentication of fibroblast-free CWR-R1ca cells was demonstrated by analyzing the expression of cytodifferentiation and prostate-associated markers, DNA and cytogenetic profiling, and growth pattern in the absence or presence of androgen. RESULTS CWR-R1ca is an androgen-sensitive cell line that expresses the androgen receptor (AR) and its splice variant 7 and the luminal epithelia markers, CK-8, CK-18, and c-Met. CWR-R1fb fibroblasts isolated from CWR-R1 cells express AR, hepatocyte growth factor-α, and mouse β-actin but not AR-V7 or epithelial markers. Cytogenetic analysis of CWR-R1ca cells revealed a hyperdiploid male with numerical gains in chromosomes 1, 7, 8, 10, 11, and 12, deletion of one chromosome 2 allele, structural abnormalities that include der(1)t(1:4), der(4)t(2:4), der(10)t(4:10), and an unbalanced reciprocal translocation between chromosome 6 and 14. DNA-profiling revealed that CWR-R1ca cells had significant short-tandem repeat marker homology with CWR22Pc and CWR22Rv1 cell lines, which indicated lineage derivation from CWR22 prostate cancer xenografts. CWR-R1ca cells were responsive to the growth stimulatory effects of dihydrotestosterone (DHT) in the femtomolar range. CONCLUSION This study establishes CWR-R1ca cells as a fibroblast-free derivative of the castration-recurrent CWR-R1 cell line. Prostate 76:1067-1077, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mojgan Shourideh
- Department of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, New York
| | - Adam DePriest
- Department of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, New York
| | - James L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
- Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Elizabeth M Wilson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, North Carolina
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Shahriar Koochekpour
- Department of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, New York
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
14
|
Sun F, Zhang ZW, Tan EM, Lim Z, Li Y, Wang XC, Chua SE, Li J, Cheung E, Yong EL. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis 2016; 37:701-711. [DOI: 10.1093/carcin/bgw044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/12/2016] [Indexed: 01/20/2023] Open
|
15
|
Moritz T, Venz S, Junker H, Kreuz S, Walther R, Zimmermann U. Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells. Tumour Biol 2016; 37:10435-46. [PMID: 26846108 DOI: 10.1007/s13277-016-4925-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/28/2016] [Indexed: 11/24/2022] Open
Abstract
The tumour protein D52 isoform 1 (PC-1), a member of the tumour protein D52 (TPD52) protein family, is androgen-regulated and prostate-specific expressed. Previous studies confirmed that PC-1 contributes to malignant progression in prostate cancer with an important role in castration-resistant stage. In the present work, we identified its impact in mechanisms leading to neuroendocrine (NE) transdifferentiation. We established for long-term PC-1 overexpression an inducible expression system derived from the prostate carcinoma cell line LNCaP. We observed that PC-1 overexpression itself initiates characteristics of neuroendocrine cells, but the effect was much more pronounced in the presence of the cytokine interleukin-6 (IL-6). Moreover, to our knowledge, this is the first report that treatment with IL-6 leads to a significant upregulation of PC-1 in LNCaP cells. Other TPD52 isoforms were not affected. Proceeding from this result, we conclude that PC-1 overexpression enhances the IL-6-mediated differentiation of LNCaP cells into a NE-like phenotype, noticeable by morphological changes and increased expression of typical NE markers, like chromogranin A, synaptophysin or beta-3 tubulin. Immunofluorescent staining of IL-6-treated PC-1-overexpressing LNCaP cells indicates a considerable PC-1 accumulation at the end of the long-branched neuron-like cell processes, which are typically formed by NE cells. Additionally, the experimentally initiated NE transdifferentiation correlates with the androgen receptor status, which was upregulated additively. In summary, our data provide evidence for an involvement of PC-1 in NE transdifferentiation, frequently associated with castration resistance, which is a major therapeutic challenge in the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Tom Moritz
- Department of Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Heike Junker
- Department of Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - Sarah Kreuz
- Department of Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.,Laboratory of Chromatin Biochemistry, BESE Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - Uwe Zimmermann
- Department of Urology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Caubet M, Dobi E, Pozet A, Almotlak H, Montcuquet P, Maurina T, Mouillet G, N'guyen T, Stein U, Thiery-Vuillemin A, Fiteni F. Carboplatin-etoposide combination chemotherapy in metastatic castration-resistant prostate cancer: A retrospective study. Mol Clin Oncol 2015; 3:1208-1212. [PMID: 26807222 PMCID: PMC4665308 DOI: 10.3892/mco.2015.628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022] Open
Abstract
The combination of cisplatin or carboplatin and etoposide is the standard treatment for certain poorly differentiated neuroendocrine cancers, such as small-cell lung cancer. The aim of this study was to assess the efficacy and tolerability of the carboplatin-etoposide regimen in metastatic castration-resistant prostate cancer (mCRPC). A total of 27 patients treated by carboplatin [area under the curve (AUC)=5] and etoposide (100 mg/m2 intravenous infusion on days 1–3 or 75 mg orally/day for 10 days) for mCRPC were included for analysis. The median progression-free survival was 3.3 months [95% confidence interval (CI): 1.9–4.2] and the median overall survival (OS) was 8.1 months (95% CI: 4.06–12.36). The main grade 3–4 toxicities were haematological, namely anemia (33.3%), neutropenia (25.9%) and thrombocytopenia (22.2%), whereas the most common non-hematological toxicity was asthenia (22.2%). The efficacy, compliance and safety profile were generally similar between the oral and intravenous etoposide groups. Pretreated patients with mCRPC may benefit from the carboplatin-etoposide regimen in terms of OS. The toxicities were acceptable, without reported treatment-related mortality. Therefore, the oral etoposide regimen may be an viable alternative for improving the quality of life of the patients. However, this regimen requires further prospective investigation to confirm its efficacy.
Collapse
Affiliation(s)
- Matthieu Caubet
- Department of Radiotherapy, University Hospital of Besançon, 25030 Besançon, France
| | - Erion Dobi
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France; Department of Medical Oncology, Hospital of Montbéliard, 25200 Montbéliard, France
| | - Astrid Pozet
- Methodology and Quality of Life in Oncology Unit, University Hospital of Besançon, 25030 Besançon, France
| | - Hamadi Almotlak
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France; Department of Medical Oncology, Hospital of Lons-le-Saunier, 39000 Lons-le-Saunier, France
| | - Philippe Montcuquet
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France; Department of Medical Oncology, Vesoul Hospital, 70000 Vesoul, France
| | - Tristan Maurina
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France; Department of Medical Oncology, Hospital of Montbéliard, 25200 Montbéliard, France
| | - Guillaume Mouillet
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France; Department of Medical Oncology, Hospital of Montbéliard, 25200 Montbéliard, France
| | - Thierry N'guyen
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France
| | - Ulrich Stein
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France; Department of Medical Oncology, Vesoul Hospital, 70000 Vesoul, France
| | | | - Frederic Fiteni
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France; Methodology and Quality of Life in Oncology Unit, University Hospital of Besançon, 25030 Besançon, France
| |
Collapse
|
17
|
Hu CD, Choo R, Huang J. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol 2015; 5:90. [PMID: 25927031 PMCID: PMC4396194 DOI: 10.3389/fonc.2015.00090] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroendocrine differentiation (NED) in prostate cancer is a well-recognized phenotypic change by which prostate cancer cells transdifferentiate into neuroendocrine-like (NE-like) cells. NE-like cells lack the expression of androgen receptor and prostate specific antigen, and are resistant to treatments. In addition, NE-like cells secrete peptide hormones and growth factors to support the growth of surrounding tumor cells in a paracrine manner. Accumulated evidence has suggested that NED is associated with disease progression and poor prognosis. The importance of NED in prostate cancer progression and therapeutic response is further supported by the fact that therapeutic agents, including androgen-deprivation therapy, chemotherapeutic agents, and radiotherapy, also induce NED. We will review the work supporting the overall hypothesis that therapy-induced NED is a mechanism of resistance to treatments, as well as discuss the relationship between therapy-induced NED and therapy-induced senescence, epithelial-to-mesenchymal transition, and cancer stem cells. Furthermore, we will use radiation-induced NED as a model to explore several NED-based targeting strategies for development of novel therapeutics. Finally, we propose future studies that will specifically address therapy-induced NED in the hope that a better treatment regimen for prostate cancer can be developed.
Collapse
Affiliation(s)
- Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research, Purdue University , West Lafayette, IN , USA
| | - Richard Choo
- Department of Radiation Oncology, Mayo Clinic , Rochester, MN , USA
| | - Jiaoti Huang
- Department of Pathology, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| |
Collapse
|
18
|
Abstract
Prostate cancer remains the second leading cause of cancer death in men in the USA and most western countries. Prostatic acinar adenocarcinoma is the most commonly diagnosed form of prostate cancer. Small-cell neuroendocrine carcinoma is less frequently identified at the time of initial diagnosis, but this highly aggressive form of prostate cancer is increasingly observed in patients who have failed first- and second-line hormone therapy. Thus, developing and exploring models of neuroendocrine prostate cancer (NePC) are of increasing importance. This review examines the relevant xenograft tumor and genetically engineered mouse models of NePC, with the aim of addressing salient features and clinical relevance.
Collapse
Affiliation(s)
- Lisa D Berman-Booty
- Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA
| | - Karen E Knudsen
- Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
19
|
Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG, Williams ED. Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Front Oncol 2014; 4:370. [PMID: 25566507 PMCID: PMC4274903 DOI: 10.3389/fonc.2014.00370] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 01/22/2023] Open
Abstract
Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although targeting the androgen axis has clear therapeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive and grow. The removal of androgens (androgen deprivation) has been shown to activate both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation (NEtD) programs. EMT has established roles in promoting biological phenotypes associated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like properties, resistance to radiation and chemotherapy) in multiple human cancer types. NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and aggressive disease. Thus, activation of these programs via inhibition of the androgen axis provides a mechanism by which tumor cells can adapt to promote disease recurrence and progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these programs, and inhibitors are currently in clinical trials to determine therapeutic applications. Understanding tumor cell plasticity will be important in further defining the rational use of androgen-targeted therapies clinically and provides an opportunity for intervention to prolong survival of men with metastatic prostate cancer.
Collapse
Affiliation(s)
- Mannan Nouri
- Vancouver Prostate Centre , Vancouver, BC , Canada ; The University of British Columbia , Vancouver, BC , Canada
| | - Ellca Ratther
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia
| | - Nataly Stylianou
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia
| | - Brett G Hollier
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Department of Surgery, St Vincent's Hospital, The University of Melbourne , Melbourne, VIC , Australia ; Monash University , Melbourne, VIC , Australia
| |
Collapse
|
20
|
|
21
|
Ge D, Gao AC, Zhang Q, Liu S, Xue Y, You Z. LNCaP prostate cancer cells with autocrine interleukin-6 expression are resistant to IL-6-induced neuroendocrine differentiation due to increased expression of suppressors of cytokine signaling. Prostate 2012; 72:1306-16. [PMID: 22213096 PMCID: PMC3665156 DOI: 10.1002/pros.22479] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/02/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neuroendocrine differentiation (NED) is one of the mechanisms underlying development of castration-resistant prostate cancer (CRPC). In this study, we investigated IL-6-induced NED in two LNCaP sublines. METHODS LNCaP-S17, an LNCaP subline that secretes IL-6, and LNCaP-C3, a control subline that does not express IL-6, were analyzed for IL-6-induced NED, activation of JAK2 and STAT3 pathways, and expression of IL-6/IL-6R signaling proteins and downstream target genes. RESULTS IL-6 did not induce NED in LNCaP-S17 cells, even though IL-6 induced NED in LNCaP-C3 cells. IL-6 activated JAK2 and STAT3 pathways in LNCaP-C3 cells but not in LNCaP-S17 cells. IL-6 did not activate ERK1/2, AKT, or NF-κB pathways in either cell line. Both LNCaP-C3 and LNCaP-S17 cell lines expressed IL-6R, gp130, and TYK2 at almost the same levels and did not express JAK1 or JAK3. The basal level of JAK2 expression was slightly higher in LNCaP-C3 cells than in LNCaP-S17 cells. Two suppressors of cytokine signaling, SOCS7 and cytokine-inducible SH2 protein (CIS), were expressed constitutively at higher levels in LNCaP-S17 cells than in LNCaP-C3 cells, while SOCS1 to SOCS6 were expressed at approximately the same levels. Using siRNA to knockdown SOCS7 and CIS expression in LNCaP-S17 cells led to increased phosphorylation of STAT3 upon IL-6 stimulation. CONCLUSIONS LNCaP-S17 cells are resistant to exogenous IL-6-induced NED due to increased levels of CIS/SOCS7 that block activation of JAK2-STAT3 pathways.
Collapse
Affiliation(s)
- Dongxia Ge
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Allen C. Gao
- Department of Urology, University of California at Davis Medical Center, Sacramento, California 95817
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Sen Liu
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Yun Xue
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Zongbing You
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
- Correspondence to: Zongbing You, MD, PhD, Department of Structural & Cellular Biology, Tulane University School of Medicine, 1430 Tulane Ave SL 49, New Orleans, LA 70112. Fax: 504-988-1687; Tel: 504-988-0467;
| |
Collapse
|
22
|
Jeetle SS, Fisher G, Yang ZH, Stankiewicz E, Møller H, Cooper CS, Cuzick J, Berney DM. Neuroendocrine differentiation does not have independent prognostic value in conservatively treated prostate cancer. Virchows Arch 2012; 461:103-7. [PMID: 22767265 DOI: 10.1007/s00428-012-1259-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/10/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
Abstract
In vitro studies have implicated neuroendocrine differentiation in the development of hormone resistant prostate cancer following administration of androgen blockers. Studies on clinical material are equivocal. We wished to understand the significance of neuroendocrine differentiation in our large and well-characterised cohort of clinically localised prostate cancer, treated conservatively. Immunohistochemical expression of chromogranin-A was assessed semi-quantitatively on tissue samples of 806 patients in a tissue microarray approach. The correlation of expression with 10-year prostate cancer survival was examined. Multivariate analysis including contemporary Gleason score was performed and sub-group analysis of early hormone treated patients was also undertaken. Chromogranin-A expression correlated with high Gleason score (χ(2) = 28.35, p < 0.001) and early prostate cancer death (HR = 1.61, 95 %CI = 1.15-2.27, p < 0.001). In univariate analysis, NE differentiation correlated significantly with outcome (HR = 1.61, 95 % CI 1.15-2.27, p < 0.001) However in multivariate analysis including Gleason score, chromogranin-A expression was not an independent predictor of survival (HR = 0.97, 95 %CI = 0.89-1.37, p = 0.87). Although chromogranin-A expression was higher in patients with early hormone therapy (χ(2) = 7.25, p = 0.007), there was no association with prostate cancer survival in this sub-group (p = 0.083). Determination of neuroendocrine differentiation does not appear to have any bearing on the outcome of prostatic carcinoma and does not add to the established prognostic model.
Collapse
Affiliation(s)
- S S Jeetle
- Department of Molecular Oncology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mitsui Y, Shiina H, Hiraki M, Arichi N, Hiraoka T, Sumura M, Honda S, Yasumoto H, Igawa M. Tumor Suppressor Function of PGP9.5 Is Associated with Epigenetic Regulation in Prostate Cancer—Novel Predictor of Biochemical Recurrence after Radical Surgery. Cancer Epidemiol Biomarkers Prev 2012; 21:487-96. [DOI: 10.1158/1055-9965.epi-11-0970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Hong SK, Kim JH, Lin MF, Park JI. The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res 2011; 317:2671-82. [PMID: 21871886 DOI: 10.1016/j.yexcr.2011.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/18/2022]
Abstract
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16(INK4A) and p21(CIP1), but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.
Collapse
Affiliation(s)
- Seung-Keun Hong
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
25
|
Qi J, Pellecchia M, Ronai ZA. The Siah2-HIF-FoxA2 axis in prostate cancer – new markers and therapeutic opportunities. Oncotarget 2011; 1:379-85. [PMID: 21037926 PMCID: PMC2964873 DOI: 10.18632/oncotarget.171] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent studies indicate the importance of the ubiquitin ligase Siah2 in control of more aggressive prostate tumors – namely, neuroendocrine (NE) prostate tumors and prostate adenocarcinoma (PCa) harboring neuroendocrine lesions. Siah2-dependent expression and activity of HIF-1α regulate its availability to form a transcriptional complex with FoxA2, resulting in expression of specific target genes, including Hes6, Sox9 and Jmjd1a, whose co-expression is sufficient for formation of NE tumors and NE lesions in PCa. These studies provide novel markers to diagnose and monitor formation of NE lesions and NE tumors. Furthermore, defining the regulatory axis consisting of Siah2 and HIF-1α/FoxA2 cooperation suggests novel therapeutic modalities to treat these most aggressive forms of prostate cancer. Here we review current understanding of Siah role in control of hypoxia and prostate tumor development and highlight potential approaches for targeting components along Siah-regulated pathways.
Collapse
Affiliation(s)
- Jianfei Qi
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
26
|
Qi J, Nakayama K, Cardiff RD, Borowsky AD, Kaul K, Williams R, Krajewski S, Mercola D, Carpenter PM, Bowtell D, Ronai ZA. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 2010; 18:23-38. [PMID: 20609350 PMCID: PMC2919332 DOI: 10.1016/j.ccr.2010.05.024] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 03/25/2010] [Accepted: 05/14/2010] [Indexed: 11/24/2022]
Abstract
Neuroendocrine (NE) phenotype, seen in >30% of prostate adenocarcinomas (PCa), and NE prostate tumors are implicated in aggressive prostate cancer. Formation of NE prostate tumors in the TRAMP mouse model was suppressed in mice lacking the ubiquitin ligase Siah2, which regulates HIF-1alpha availability. Cooperation between HIF-1alpha and FoxA2, a transcription factor expressed in NE tissue, promotes recruitment of p300 to transactivate select HIF-regulated genes, Hes6, Sox9, and Jmjd1a. These HIF-regulated genes are highly expressed in metastatic PCa and required for hypoxia-mediated NE phenotype, metastasis in PCa, and the formation of NE tumors. Tissue-specific expression of FoxA2 combined with Siah2-dependent HIF-1alpha availability enables a transcriptional program required for NE prostate tumor development and NE phenotype in PCa.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 3-beta/genetics
- Hepatocyte Nuclear Factor 3-beta/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/secondary
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neuroendocrine Tumors/genetics
- Neuroendocrine Tumors/metabolism
- Neuroendocrine Tumors/pathology
- Neurosecretory Systems/metabolism
- Neurosecretory Systems/pathology
- Phenotype
- Prostate/metabolism
- Prostate/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Signal Transduction
- Transcriptional Activation
- Ubiquitin-Protein Ligases/physiology
Collapse
Affiliation(s)
- Jianfei Qi
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tang Y, Wang L, Goloubeva O, Khan MA, Lee D, Hussain A. The relationship of neuroendocrine carcinomas to anti-tumor therapies in TRAMP mice. Prostate 2009; 69:1763-73. [PMID: 19691128 DOI: 10.1002/pros.21026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neuroendocrine differentiation and neuroendocrine carcinoma (NEC) have been linked to androgen deprivation in prostate cancers. No previous study has directly connected neuroendocrine phenotypes to chemotherapy. The pathogenesis of prostatic NEC has not yet been determined. METHODS Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model, we studied tumor progression after hormone ablation (castration) and/or chemotherapy (docetaxel), and analyzed the incidence of NEC as a function of the anti-tumor therapies. Non-treated mice were used as controls. Protein expressions in tumor tissues were analyzed by Western blots and immunohistochemistry. RESULTS Although all animals developed prostate cancer, no NEC was found in control mice. However, over 30% of the mice that received an anti-tumor therapy developed NEC. A similar incidence of NEC was found in the castration-only and docetaxel-only treatment groups, while a higher incidence was observed in the combined treatment (castration and docetaxel) group. The NEC-bearing mice had smaller tumors in their prostates and lived longer than mice with adenocarcinoma (ADC-only). However, NEC tumors had a higher proliferative index and greater potential for metastasis and drug-resistance, as evidenced by significantly higher expression levels of PCNA, S100A4, and Pgp, but lower levels of E-cadherin. SV40 T-antigen was highly expressed in both NEC and ADC tumors. CONCLUSIONS Stress induced by anti-cancer treatments may play a role in NEC development. Although NEC and ADC differ in their expressions of many proteins, a high level of SV40 T-antigen in both tumor types suggest a common progenitor..
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/secondary
- Androgen Antagonists/administration & dosage
- Androgen Antagonists/adverse effects
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Carcinoma, Neuroendocrine/chemically induced
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/secondary
- Cell Proliferation
- Docetaxel
- Drug Therapy, Combination
- Incidence
- Male
- Mice
- Mice, Transgenic
- Neoplasm Proteins/metabolism
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Survival Analysis
- Taxoids/administration & dosage
- Taxoids/adverse effects
Collapse
Affiliation(s)
- Yao Tang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
28
|
Palapattu GS, Wu C, Silvers CR, Martin HB, Williams K, Salamone L, Bushnell T, Huang LS, Yang Q, Huang J. Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 2009; 69:787-98. [PMID: 19189306 DOI: 10.1002/pros.20928] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hormonal therapy is effective for advanced prostate cancer (PC) but the disease often recurs and becomes hormone-refractory. It is hypothesized that a subpopulation of cancer cells, that is, cancer stem cells (CSCs), survives hormonal therapy and leads to tumor recurrence. CD44 expression was shown to identify tumor cells with CSC features. PC contains secretory type epithelial cells and a minor population of neuroendocrine cells. Neuroendocrine cells do not express androgen receptor and are quiescent, features associated with CSCs. The purpose of the study was to determine the expression of CD44 in human PC and its relationship to neuroendocrine tumor cells. METHODS Immunohistochemistry and immunofluorescence were performed to study CD44 expression in PC cell lines, single cells from fresh PC tissue and archival tissue sections of PC. We then determined if CD44+ cells represent neuroendocrine tumor cells. RESULTS In human PC cell lines, expression of CD44 is associated with cells of NE phenotype. In human PC tissues, NE tumor cells are virtually all positive for CD44 and CD44+ cells, excluding lymphocytes, are all NE tumor cells. CONCLUSIONS Selective expression of the stem cell-associated marker CD44 in NE tumor cells of PC, in combination with their other known features, further supports the significance of such cells in therapy resistance and tumor recurrence.
Collapse
Affiliation(s)
- Ganesh S Palapattu
- Department of Pathology, University of Rochester School of Medicine, Rochester, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Loriot Y, Massard C, Gross-Goupil M, Di Palma M, Escudier B, Bossi A, Fizazi K. Combining carboplatin and etoposide in docetaxel-pretreated patients with castration-resistant prostate cancer: a prospective study evaluating also neuroendocrine features. Ann Oncol 2009; 20:703-8. [DOI: 10.1093/annonc/mdn694] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
Kung HJ, Evans CP. Oncogenic activation of androgen receptor. Urol Oncol 2009; 27:48-52. [PMID: 19111798 DOI: 10.1016/j.urolonc.2008.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/17/2008] [Accepted: 06/20/2008] [Indexed: 12/29/2022]
Abstract
BACKGROUND There is considerable evidence implicating the aberrant activation or "reactivation" of androgen receptor in the course of androgen-ablation therapy as a potential cause for the development of castration-resistant prostate cancer. Several non-mutually exclusive mechanisms including the inappropriate activation of androgen receptor (AR) by non-steroids have been postulated. The present work is aimed to understand the role of neuropeptides released by neuroendocrine transdifferentiated prostate cancer cells in the aberrant activation of AR. OBJECTIVES The study was designed to study how neuropeptides such as gastrin-releasing peptide activate AR and to define the crucial signal pathways involved, in the hope to identify therapeutic targets. METHODS AND MATERIALS Androgen-dependent LNCaP cell line was used to study the effects of bombesin/gastrin-releasing peptide on the growth of the cell line and the transactivation of AR. The neuropeptide was either added to the media or introduced as a transgene in LNCaP cells to study its paracrine or autocrine effect on LNCaP growth under androgen-deprived conditions. The activation of AR was monitored by reporter assay, chromatin immunoprecipitation (ChIP) of AR, translocation into the nucleus and cDNA microarray of the AR response genes. RESULTS Bombesin/gastrin releasing peptides induce androgen-independent growth of LNCaP in vitro and in vivo. It does so by activating AR, which is accompanied by the activation of Src tyrosine kinase and its target c-myc oncogene. The bombesin or Src-activated AR induces an overlapping set of AR response genes as androgen, but they also a unique set of genes. Intriguingly, the Src-activated and androgen-bound ARs differ in their binding specificity toward AR response elements, indicating the receptors activated by these 2 mechanisms are not conformationally identical. Finally, Src inhibitor was shown to effectively block the activation of AR and the growth effects induced by bombesin. CONCLUSION The results showed that AR can be activated by neuropeptide, a ligand for G-protein coupled receptor, in the absence of androgen. The activation goes through Src-tyrosine kinase pathway, and tyrosine kinase inhibitor is a potentially useful adjunctive therapy during androgen ablation.
Collapse
Affiliation(s)
- Hsing-Jien Kung
- Department of Basic Sciences, University of California, Davis Cancer Center, Sacramento, CA 95817, USA.
| | | |
Collapse
|
31
|
Abstract
BACKGROUND Cancer stem cells are defined by their self-renewal and multi-potential capabilities and are hypothesized to be the source of primary and recurrent cancers. The stem cell properties of self-renewal and pluripotency in embryonic stem cells and germ cells are regulated by Oct4A, a splice variant of the POU5F1 (Oct3/4) gene, while the function of the alternative splice variant, Oct4B, is unknown. Rare cells that express Oct4 were identified in several somatic cancers, however, the differential contributions of the Oct4A and Oct4B variants were not determined. METHODS Oct4A expression and co-localization with lineage markers was performed with PCR and immunohistochemistry. RESULTS Rare Oct4A expressing cells are present in human benign and malignant prostate glands and the number of Oct4A expressing cells increases in prostate cancers with high Gleason scores. Oct4A expressing cells were non-proliferative, and did not co-express markers of basal epithelial cell or luminal epithelial cell differentiation, or AMACR, a marker of prostate cancer epithelial cells. A subpopulation of the Oct4A expressing cells co-expressed Sox2, an embryonic stem cell marker, but did not express other putative stem cell markers, such as ABCG2, NANOG or CD133. The majority of Oct4A expressing cells co-expressed chromogranin A, and a subset of Oct4A expressing cells co-expressed synaptophysin, both markers of neuroendocrine differentiation. CONCLUSION The increased number of cells that expressed Oct4A in prostate cancer compared to benign prostate, and in cancers of increasing grade, suggests that Oct4A/Chromogranin A co-expressing cells represent neuroendocrine cells in prostate cancer.
Collapse
Affiliation(s)
- Paula Sotomayor
- Department of Urologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Alejandro Godoy
- Department of Urologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Gary J. Smith
- Department of Urologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Wendy J. Huss
- Department of Urologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
- Corresponding author: Wendy J. Huss, Roswell Park Cancer Institute, Department of Pharmacology and Therapeutics, Elm and Carlton Streets, Buffalo NY 14263. Phone: (716) 845 1213. Fax: (716) 845 4165.
| |
Collapse
|
32
|
Cindolo L, Cantile M, Vacherot F, Terry S, de la Taille A. Neuroendocrine differentiation in prostate cancer: from lab to bedside. Urol Int 2008; 79:287-96. [PMID: 18025844 DOI: 10.1159/000109711] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To discuss the current knowledge on induction, production, sustenance and promotion of neuroendocrine differentiation in human prostate cancer. METHODS Review of the literature using PubMed search and scientific journal publications. RESULTS Morphological evidence explains some functional relationship between neuroendocrine and neoplastic surrounding cells. Transdifferentiation phenomenon and new biochemical pathways could be included in the development of androgen independence and prostate cancer progression. CONCLUSION Multiple evidence seems to confirm that a synergistic functional network between epithelial PSA secretory cells and neuroendocrine intraprostatic system is the main trigger for the induction and sustenance of neuroendocrine differentiation. The development of new antineoplastic molecules should consider the multiple interference of the intercellular network.
Collapse
Affiliation(s)
- Luca Cindolo
- Urology Unit, G. Rummo Hospital, Benevento, Italy.
| | | | | | | | | |
Collapse
|
33
|
Liu S, Vinall RL, Tepper C, Shi XB, Xue LR, Ma AH, Wang LY, Fitzgerald LD, Wu Z, Gandour-Edwards R, deVere White RW, Kung HJ. Inappropriate activation of androgen receptor by relaxin via β-catenin pathway. Oncogene 2007; 27:499-505. [PMID: 17653089 DOI: 10.1038/sj.onc.1210671] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously demonstrated that human H2-relaxin can mediate androgen-independent growth of LNCaP through a mechanism that involves the activation of the androgen receptor (AR) signaling pathway. The goal of the current study is to elucidate the mechanism(s) by which H2-relaxin causes activation of the AR pathway. Our data indicate that there is cross-talk between AR and components of the Wnt signaling pathway. Addition of H2-relaxin to LNCaP cells resulted in increased phosphorylation of protein kinase B (Akt) and inhibitory phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) with subsequent cytoplasmic accumulation of beta-catenin. Immunoprecipitation and immunocytochemical studies demonstrated that the stabilized beta-catenin formed a complex with AR, which was then translocated into the nucleus. Chromatin immunoprecipitation analysis determined that the AR/beta-catenin complex binds to the proximal region of the prostate-specific antigen promoter. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, using LY294002, prevented both H2-relaxin-mediated phosphorylation of Akt and GSK-3beta and translocation of beta-catenin/AR into the nucleus. Knockdown of beta-catenin levels using a beta-catenin-specific small interfering RNA inhibited H2-relaxin-induced AR activity. The combined data demonstrate that PI3K/Akt and components of the Wnt pathway can facilitate H2-relaxin-mediated activation of the AR pathway.
Collapse
Affiliation(s)
- S Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Cancer Center, University of California, Sacramento, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oh WK, Tay MH, Huang J. Is there a role for platinum chemotherapy in the treatment of patients with hormone-refractory prostate cancer? Cancer 2007; 109:477-86. [PMID: 17186531 DOI: 10.1002/cncr.22439] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Docetaxel chemotherapy is the current standard of care for metastatic hormone-refractory prostate cancer (HRPC). Platinum chemotherapy drugs, such as cisplatin and carboplatin, have moderate single-agent activity in HRPC. Next-generation platinum drugs, including satraplatin and oxaliplatin, may have additional activity in the management of HRPC. Furthermore, neuroendocrine differentiation may play a role in disease progression, providing a rationale for platinum-based chemotherapy in the management of HRPC. The authors reviewed the MEDLINE database for reports related to platinum-based chemotherapy in patients with advanced prostate cancer and evaluated studies that reviewed the role of neuroendocrine differentiation in the progression of HRPC. Older studies from the 1970s and 1980s suggested a lack of activity of cisplatin and carboplatin; however, those studies were flawed at least in part by their methods of response assessment. More recent Phase II studies of carboplatin suggested a moderate level of clinical and palliative activity when it was used as a single agent. However, when carboplatin was combined with a taxane and estramustine, high response rates were observed in several recent clinical trials. In addition, a randomized trial suggested that satraplatin plus prednisone improved progression-free survival compared with prednisone alone. For patients who progressed after docetaxel, no standard options existed in the literature that was reviewed. Several preliminary reports suggested that carboplatin and oxaliplatin may have activity as second-line chemotherapy. Platinum chemotherapy drugs historically have been considered inactive in HRPC, although a review of the data suggested otherwise. Carboplatin, in particular, induced very high response rates when it was combined with estramustine and a taxane, but it also appeared to have activity in patients who progressed after docetaxel. Satraplatin plus prednisone is being investigated in a large Phase III trial as second-line chemotherapy for HRPC. Targeting neuroendocrine cells may provide a new therapeutic approach to HRPC.
Collapse
Affiliation(s)
- William K Oh
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
35
|
Wu C, Huang J. Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. J Biol Chem 2006; 282:3571-83. [PMID: 17148458 DOI: 10.1074/jbc.m608487200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hormonal therapy of prostate cancer, by inhibiting androgen production and/or androgen function, is the treatment of choice for advanced prostate cancer. Although most patients respond initially, the effect is only temporary, and the tumor cells will resume proliferation in an androgen-deprived environment. The mechanism for androgen-independent proliferation of cancer cells is unclear. Hormonal therapy induces neuroendocrine differentiation of prostate cancer cells, which is hypothesized to contribute to tumor recurrence by a paracrine mechanism. We studied signal transduction pathways of neuroendocrine differentiation in LNCaP cells after androgen withdrawal, and we showed that both the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway and ERK are activated, but only the former is required for neuroendocrine differentiation. A constitutively active AKT promotes neuroendocrine differentiation and a dominant negative AKT inhibits it. Activation of AKT by IGF-1 leads to neuroendocrine differentiation, and neuroendocrine differentiation induced by epinephrine requires AKT activation. We also show that the AKT pathway is likely responsible for neuroendocrine differentiation in DU145, an androgen-independent prostate cancer cell line. Therefore, our study demonstrated a novel function of the AKT pathway in prostate cancer progression and identified potential targets that may be explored for the treatment of androgen-independent cancer.
Collapse
Affiliation(s)
- Chengyu Wu
- Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
36
|
Nelson EC, Cambio AJ, Yang JC, Ok JH, Lara PN, Evans CP. Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis 2006; 10:6-14. [PMID: 17075603 DOI: 10.1038/sj.pcan.4500922] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cellular signaling pathways of the prostate play a central role in the induction, maintenance, and progression of prostate cancer (CaP). Neuroendocrine (NE) cells demonstrate attributes that suggest they are an integral part of these signaling cascades. We summarize what is known regarding NE cells in CaP focusing on NE cellular transdifferentiation. This significant event in CaP progression appears to be accelerated by androgen deprivation (AD) treatment. We examine biochemical pathways that may impact NE differentiation in a chronological manner focusing on AD therapy (ADT) as a central event in inducing androgen-independent CaP. Our analysis is limited to the common adenocarcinoma pattern of CaP and excludes small-cell and carcinoid prostatic variants. In conclusion, we speculate on the future of treatment and research in this area.
Collapse
Affiliation(s)
- E C Nelson
- Department of Urology, Davis Medical Center, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
37
|
Huang J, Yao JL, di Sant'Agnese PA, Yang Q, Bourne PA, Na Y. Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate 2006; 66:1399-406. [PMID: 16865726 DOI: 10.1002/pros.20434] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neuroendocrine (NE) cells increase in high grade/stage prostate cancer (PC) and may contribute to androgen-independent cancer. Their immunohistochemical phenotype has not been studied in detail and conflicting results have been reported. METHODS PC tissue was stained immunohistochemically for luminal secretory cell-associated cytokeratin, basal cell markers, ki-67, androgen receptor (AR), PSA, prostate acid phosphatase (PAP), and alpha-methylacyl coenzyme A racemase (AMACR). RESULTS The NE cells are positive for AE1/AE3, Cam 5.2, and negative for basal cell markers. They are negative for AR, PSA, and Ki-67 but positive for PAP. The benign NE cells are negative for AMACR while the malignant NE cells are positive for AMACR. CONCLUSIONS NE cells of PC constitute a unique subset of cancer cells, which have a unique immunohistochemical profile. They do not express AR, consistent with their resistance to hormonal therapy. They are post-mitotic cells but are malignant and part of the tumor.
Collapse
Affiliation(s)
- Jiaoti Huang
- Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Pinski J, Wang Q, Quek ML, Cole A, Cooc J, Danenberg K, Danenberg PV. Genistein-induced neuroendocrine differentiation of prostate cancer cells. Prostate 2006; 66:1136-43. [PMID: 16652383 DOI: 10.1002/pros.20440] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Neuroendocrine (NE) cells are present in normal prostate and their number appears to be increased in advanced prostate cancer (PCA). In this study, we studied the effect of the phytoestrogen, genistein, on NE differentiation of LNCaP cells in vitro. METHODS Neuroendocrine marker expression of LNCaP cells exposed to genistein was measured by immunohistochemistry, Western blot, and real-time PCR methods. Western blot analysis was used to study cell cycle and signaling pathways induced by genistein treatment. RESULTS Six days after continuous genistein treatment, the majority of genistein-surviving cancer cells underwent transdifferentiation into a NE-like phenotype overexpressing the NE markers chromogranin A, synaptophysin, serotonin, and beta-III tubulin. This NE differentiation process was associated with upregulation of the cell cycle modulators p21, p27, and p53, and activation of the MAPK and STAT3 pathways. CONCLUSION Our data indicate that genistein evokes not only apoptosis but also NE transdifferentiation of PCA cells.
Collapse
Affiliation(s)
- Jacek Pinski
- Division of Medical Oncology, University of Southern California Keck School of Medicine, USC/Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wu C, Zhang L, Bourne PA, Reeder JE, di Sant'Agnese PA, Yao JL, Na Y, Huang J. Protein tyrosine phosphatase PTP1B is involved in neuroendocrine differentiation of prostate cancer. Prostate 2006; 66:1125-35. [PMID: 16652382 DOI: 10.1002/pros.20412] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prostate cancer (PC) contains a minor component of neuroendocrine (NE) cells that may stimulate androgen-independent growth of the tumor. The mechanism of neuroendocrine differentiation remains unknown. METHODS The expression of PTP1B, a protein tyrosine phosphatase, was studied in LNCaP cells induced to show neuroendocrine phenotype by androgen withdrawal. Wild-type PTP1B and its dominant-negative mutant were transfected into LNCaP cells to study their effects on neuroendocrine differentiation. In vivo expression of PTP1B in human prostate cancer was studied by immunohistochemistry. RESULTS Androgen withdrawal of LNCaP cells led to increased expression of PTP1B with a corresponding increase in its tyrosine phosphatase activity. Overexpression of PTP1B in LNCaP cells led to neuroendocrine differentiation while expression of its dominant-negative mutant inhibited neuroendocrine differentiation. Immunohistochemical study showed that PTP1B was exclusively expressed in neuroendocrine cells of human prostate cancer tissue. CONCLUSION Our findings suggest that PTP1B plays an important role in neuroendocrine differentiation, and therefore, may possibly be involved in the progression of prostate cancer.
Collapse
Affiliation(s)
- Chengyu Wu
- Department of Pathology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Terry S, Queires L, Gil-Diez-de-Medina S, Chen MW, Taille ADL, Allory Y, Tran PL, Abbou CC, Buttyan R, Vacherot F. Protocadherin-PC promotes androgen-independent prostate cancer cell growth. Prostate 2006; 66:1100-13. [PMID: 16637074 PMCID: PMC2660890 DOI: 10.1002/pros.20446] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Protocadherin-PC (PCDH-PC) expression is upregulated in apoptosis-resistant sublines of the LNCaP human prostate cancer (CaP) cell line. Here, we assess the role of PCDH-PC in CaP cells and its mRNA expression in human prostate tissues. METHODS LNCaP cells transfected with PCDH-PC were tested for their ability to grow in vitro and in vivo in androgen-deprived conditions. PCDH-PC mRNA expression was evaluated by semi-quantitative RT-PCR and by in situ hybridization. RESULTS PCDH-PC expression induced Wnt signaling in CaP cells and permitted androgen-independent growth of hormone-sensitive CaP cells. Expression of PCDH-PC-homologous transcripts was low and restricted to some epithelial cells in normal tissue and to CaP cells in tumors. However, hormone-resistant CaP cells expressed significantly higher levels of PCDH-PC-related mRNA. CONCLUSIONS Our findings suggest a novel mechanism for the progression of CaP involving expression of PCDH-PC. This novel protocadherin induces Wnt signaling, promotes malignant behavior and hormone-resistance of CaP cells.
Collapse
Affiliation(s)
- Stephane Terry
- Department of Urology and Pathology of CHU Henri Mondor, INSERM E 03-37, Université Paris XII, Centre de Recherches Chirurgicales, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Luis Queires
- Department of Urology and Pathology of CHU Henri Mondor, INSERM E 03-37, Université Paris XII, Centre de Recherches Chirurgicales, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Department of Sciences, State University of Bahia, Salvador Bahia, Brazil
| | - Sixtina Gil-Diez-de-Medina
- Department of Urology and Pathology of CHU Henri Mondor, INSERM E 03-37, Université Paris XII, Centre de Recherches Chirurgicales, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Min-Wei Chen
- Departments of Urology and Pathology of the College of Physicians and Surgeons of Columbia University, New York, New York
| | - Alexandre de la Taille
- Department of Urology and Pathology of CHU Henri Mondor, INSERM E 03-37, Université Paris XII, Centre de Recherches Chirurgicales, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Yves Allory
- Department of Urology and Pathology of CHU Henri Mondor, INSERM E 03-37, Université Paris XII, Centre de Recherches Chirurgicales, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Phuong-Lan Tran
- SATIE, UMR 8029, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Claude C. Abbou
- Department of Urology and Pathology of CHU Henri Mondor, INSERM E 03-37, Université Paris XII, Centre de Recherches Chirurgicales, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Ralph Buttyan
- Departments of Urology and Pathology of the College of Physicians and Surgeons of Columbia University, New York, New York
| | - Francis Vacherot
- Department of Urology and Pathology of CHU Henri Mondor, INSERM E 03-37, Université Paris XII, Centre de Recherches Chirurgicales, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Correspondence to: Dr. Francis Vacherot, INSERM E 03 37, Faculté de Médecine, 8 rue du Général Sarrail, 94010 Créteil, France. E-mail:
| |
Collapse
|
41
|
Quek ML, Daneshmand S, Rodrigo S, Cai J, Dorff TB, Groshen S, Skinner DG, Lieskovsky G, Pinski J. Prognostic significance of neuroendocrine expression in lymph node-positive prostate cancer. Urology 2006; 67:1247-52. [PMID: 16697447 DOI: 10.1016/j.urology.2005.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 11/01/2005] [Accepted: 12/02/2005] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To evaluate the expression of chromogranin A, a marker for neuroendocrine (NE) differentiation, in patients with lymph node-positive prostate cancer to determine its prognostic significance. NE cells are involved in cellular growth and differentiation in both normal and pathologic conditions of the prostate. METHODS We reviewed the data of 140 patients with lymph node-positive prostate adenocarcinoma treated with radical prostatectomy and pelvic lymphadenectomy. The median follow-up was 10.9 years (range 0.8 to 19.7). Immunohistochemical staining for chromogranin A was evaluated in areas of benign epithelium, primary prostate cancer, and lymph node metastasis. The association between chromogranin A expression and the clinical and pathologic factors (preoperative serum prostate-specific antigen and prostatectomy Gleason score and stage) and clinical outcomes, including overall and recurrence-free survival, was evaluated. RESULTS Staining was positive in 86% of benign areas, 61% of primary cancer specimens, and 12% of lymph node deposits. The preoperative serum prostate-specific antigen level and pathologic stage and grade of the primary tumor did not show any statistically significant correlation with NE staining in any of the areas. Only NE expression in the primary tumor was associated with clinical recurrence, with a 10-year recurrence-free survival rate for those with less than 5% staining of 67% compared with 35% for those with 5% staining or greater (P = 0.03). Furthermore, after adjusting for age, greater NE expression in the primary tumor (relative risk 2.15, P = 0.02) and lymph node deposit (relative risk 2.03, P = 0.03) was associated with poorer overall survival. CONCLUSIONS NE expression in the primary tumor and lymph node metastasis of patients with node-positive prostate cancer may provide additional prognostic stratification.
Collapse
Affiliation(s)
- Marcus L Quek
- Department of Urology, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Untergasser G, Plas E, Pfister G, Heinrich E, Berger P. Interferon-gamma induces neuroendocrine-like differentiation of human prostate basal-epithelial cells. Prostate 2005; 64:419-29. [PMID: 15800938 DOI: 10.1002/pros.20261] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostatic neuroendocrine (NE) cells are intraglandular hybrid epithelial-neural-endocrine cells that express and secrete numerous hormones and neuropeptides, which presumably regulate growth, differentiation, and secretory activity of the prostatic epithelium. This specialized cell type appears to differentiate from a common basal/precursor/stem cell that also gives rise to the secretory epithelium. In order to elucidate mechanisms of NE-differentiation the effects of type 1 (alpha, beta) and type 2 (gamma) interferons (IFNs) on human prostate basal cells (PrECs) were evaluated. METHODS AND RESULTS Application of alpha/beta IFN increased the expression of the cell-cycle inhibitor p21(CIP1) and inhibited DNA synthesis, while only IFN-gamma led to increased apoptosis, cell-cycle inhibitor p27(KIP1) upregulation, and differentiation of PrECs into NE-like cells. In vitro differentiated NE-like cells expressed the glycolytic enzyme neuron-specific enolase (NSE) and chromogranin A (CgA), known markers of NE-cells in vivo in the prostate. These NE-like cells also changed cytokeratin (CK) expression patterns by upregulating CK 8/18, predominantly found in terminally-differentiated secretory luminal/NE epithelial cells. CONCLUSIONS IFN-gamma produced locally in the prostate by basal cells and, under proinflammatory conditions, by infiltrating lymphocytes could support NE cell differentiation and play a role in NE differentiation processes of tumor cells in hormone-refractory prostate cancer.
Collapse
Affiliation(s)
- Gerold Untergasser
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
43
|
Glasscock LN, Réhault SM, Gregory CW, Cooper ST, Jackson TP, Hoffman M, Church FC. Protein C inhibitor (plasminogen activator inhibitor-3) expression in the CWR22 prostate cancer xenograft. Exp Mol Pathol 2005; 79:23-32. [PMID: 15878512 DOI: 10.1016/j.yexmp.2005.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
The serine protease inhibitor (serpin) protein C inhibitor (PCI) has been found in the prostate and possibly is a marker to distinguish normal prostate, benign prostatic hyperplasia, and prostate cancer. In this study, we assessed PCI expression in normal, hyperplastic, and malignant prostatic tissues, prostate cancer cell lines, and the CWR22 prostate cancer xenograft model that allowed us to study PCI expression and its regulation in response to androgens. By Northern blot, immunohistochemistry, and in situ hybridization, we found that PCI was expressed in both benign and malignant prostate tissues. Protein C inhibitor was expressed in both androgen-independent (PC-3) and androgen-dependent (LNCaP) prostate cancer cell lines. Furthermore, PCI was detected in all CWR22 tumor samples (androgen dependent, 6 days post-castration, 12 days post-castration followed by 72 h of testosterone treatment, and recurrent CWR22 tumor), although expression of the mature forms of both prostate-specific antigen (PSA) and its homolog, kallikrein 2 (hK2), was clearly androgen-dependent. These results suggest that PCI expression is not regulated by androgens and that PCI is unlikely to be a tumor suppressor gene, but also that PCI may be involved in regulating key serine proteases involved in metastatic prostate disease.
Collapse
Affiliation(s)
- Laura N Glasscock
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7035, USA
| | | | | | | | | | | | | |
Collapse
|