1
|
Jiang Y, Meyers TJ, Emeka AA, Cooley LF, Cooper PR, Lancki N, Helenowski I, Kachuri L, Lin DW, Stanford JL, Newcomb LF, Kolb S, Finelli A, Fleshner NE, Komisarenko M, Eastham JA, Ehdaie B, Benfante N, Logothetis CJ, Gregg JR, Perez CA, Garza S, Kim J, Marks LS, Delfin M, Barsa D, Vesprini D, Klotz LH, Loblaw A, Mamedov A, Goldenberg SL, Higano CS, Spillane M, Wu E, Carter HB, Pavlovich CP, Mamawala M, Landis T, Carroll PR, Chan JM, Cooperberg MR, Cowan JE, Morgan TM, Siddiqui J, Martin R, Klein EA, Brittain K, Gotwald P, Barocas DA, Dallmer JR, Gordetsky JB, Steele P, Kundu SD, Stockdale J, Roobol MJ, Venderbos LD, Sanda MG, Arnold R, Patil D, Evans CP, Dall’Era MA, Vij A, Costello AJ, Chow K, Corcoran NM, Rais-Bahrami S, Phares C, Scherr DS, Flynn T, Karnes RJ, Koch M, Dhondt CR, Nelson JB, McBride D, Cookson MS, Stratton KL, Farriester S, Hemken E, Stadler WM, Pera T, Banionyte D, Bianco FJ, Lopez IH, Loeb S, Taneja SS, Byrne N, Amling CL, Martinez A, Boileau L, Gaylis FD, Petkewicz J, Kirwen N, Helfand BT, Xu J, Scholtens DM, Catalona WJ, Witte JS. Genetic Factors Associated with Prostate Cancer Conversion from Active Surveillance to Treatment. HGG ADVANCES 2022; 3:100070. [PMID: 34993496 PMCID: PMC8725988 DOI: 10.1016/j.xhgg.2021.100070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Men diagnosed with low-risk prostate cancer (PC) are increasingly electing active surveillance (AS) as their initial management strategy. While this may reduce the side effects of treatment for prostate cancer, many men on AS eventually convert to active treatment. PC is one of the most heritable cancers, and genetic factors that predispose to aggressive tumors may help distinguish men who are more likely to discontinue AS. To investigate this, we undertook a multi-institutional genome-wide association study (GWAS) of 5,222 PC patients and 1,139 other patients from replication cohorts, all of whom initially elected AS and were followed over time for the potential outcome of conversion from AS to active treatment. In the GWAS we detected 18 variants associated with conversion, 15 of which were not previously associated with PC risk. With a transcriptome-wide association study (TWAS), we found two genes associated with conversion (MAST3, p = 6.9×10-7 and GAB2, p = 2.0×10-6). Moreover, increasing values of a previously validated 269-variant genetic risk score (GRS) for PC was positively associated with conversion (e.g., comparing the highest to the two middle deciles gave a hazard ratio [HR] = 1.13; 95% Confidence Interval [CI]= 0.94-1.36); whereas, decreasing values of a 36-variant GRS for prostate-specific antigen (PSA) levels were positively associated with conversion (e.g., comparing the lowest to the two middle deciles gave a HR = 1.25; 95% CI, 1.04-1.50). These results suggest that germline genetics may help inform and individualize the decision of AS-or the intensity of monitoring on AS-versus treatment for the initial management of patients with low-risk PC.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Travis J. Meyers
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adaeze A. Emeka
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lauren Folgosa Cooley
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Phillip R. Cooper
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicola Lancki
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Irene Helenowski
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel W. Lin
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Public Health Sciences, Seattle, WA 98109, USA
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Janet L. Stanford
- Fred Hutchinson Cancer Research Center, Cancer Epidemiology Program, Public Health Sciences, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, School of Public Health, Seattle, WA 98195, USA
| | - Lisa F. Newcomb
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Public Health Sciences, Seattle, WA 98109, USA
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Suzanne Kolb
- Fred Hutchinson Cancer Research Center, Cancer Epidemiology Program, Public Health Sciences, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, School of Public Health, Seattle, WA 98195, USA
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil E. Fleshner
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Maria Komisarenko
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - James A. Eastham
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Behfar Ehdaie
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Benfante
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher J. Logothetis
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin R. Gregg
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cherie A. Perez
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergio Garza
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeri Kim
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leonard S. Marks
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Merdie Delfin
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Danielle Barsa
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Danny Vesprini
- Odette Cancer Centre, Sunnybrook Health and Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Laurence H. Klotz
- Odette Cancer Centre, Sunnybrook Health and Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Andrew Loblaw
- Odette Cancer Centre, Sunnybrook Health and Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Alexandre Mamedov
- Odette Cancer Centre, Sunnybrook Health and Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - S. Larry Goldenberg
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Celestia S. Higano
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Maria Spillane
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eugenia Wu
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - H. Ballentine Carter
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian P. Pavlovich
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mufaddal Mamawala
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tricia Landis
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter R. Carroll
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - June M. Chan
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew R. Cooperberg
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Janet E. Cowan
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Todd M. Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rabia Martin
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Karen Brittain
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Paige Gotwald
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel A. Barocas
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremiah R. Dallmer
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer B. Gordetsky
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pam Steele
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilajit D. Kundu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jazmine Stockdale
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Monique J. Roobol
- Department of Urology, Erasmus Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lionne D.F. Venderbos
- Department of Urology, Erasmus Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin G. Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca Arnold
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dattatraya Patil
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher P. Evans
- Department of Urologic Surgery, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Marc A. Dall’Era
- Department of Urologic Surgery, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Anjali Vij
- Department of Urologic Surgery, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Anthony J. Costello
- Department of Urology, Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Ken Chow
- Department of Urology, Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Niall M. Corcoran
- Department of Urology, Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney Phares
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Douglas S. Scherr
- Department of Urology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Thomas Flynn
- Department of Urology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | | | - Michael Koch
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Courtney Rose Dhondt
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel B. Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dawn McBride
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael S. Cookson
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kelly L. Stratton
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stephen Farriester
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Erin Hemken
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Tuula Pera
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | | | | | | | - Stacy Loeb
- Departments of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs Medical Center, New York, NY, USA
| | - Samir S. Taneja
- Departments of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs Medical Center, New York, NY, USA
| | - Nataliya Byrne
- Departments of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs Medical Center, New York, NY, USA
| | | | - Ann Martinez
- Department of Urology, Oregon Health and Science University, Portland, OR, USA
| | - Luc Boileau
- Department of Urology, Oregon Health and Science University, Portland, OR, USA
| | - Franklin D. Gaylis
- Genesis Healthcare Partners, Department of Urology, University of California, San Diego, CA, USA
| | | | - Nicholas Kirwen
- Division of Urology, NorthShore University Health System, Evanston, IL, USA
| | - Brian T. Helfand
- Division of Urology, NorthShore University Health System, Evanston, IL, USA
| | - Jianfeng Xu
- Division of Urology, NorthShore University Health System, Evanston, IL, USA
| | - Denise M. Scholtens
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - William J. Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Epidemiology and Population Health, Biomedical Data Science, and Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
3
|
Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12092593. [PMID: 32932846 PMCID: PMC7565426 DOI: 10.3390/cancers12092593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.
Collapse
|
4
|
Tong Y, Tang Y, Li S, Zhao F, Ying J, Qu Y, Niu X, Mu D. Cumulative evidence of relationships between multiple variants in 8q24 region and cancer incidence. Medicine (Baltimore) 2020; 99:e20716. [PMID: 32590746 PMCID: PMC7328976 DOI: 10.1097/md.0000000000020716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple independent cancer susceptibility loci at chromosome 8q24. We aimed to evaluate the associations between variants in the 8q24 region and cancer susceptibility. A comprehensive research synopsis and meta-analysis was performed to evaluate associations between 28 variants in 8q24 and risk of 7 cancers using data from 103 eligible articles totaling 146,932 cancer cases and 219,724 controls. Results: 20 variants were significantly associated with risk of prostate cancer, colorectal cancer, thyroid cancer, breast cancer, bladder cancer, stomach cancer, and glioma, including 1 variant associated with prostate cancer, colorectal cancer, and thyroid cancer. Cumulative epidemiological evidence of an association was graded as strong for DG8S737 -8 allele, rs10090154, rs7000448 in prostate cancer, rs10808556 in colorectal cancer, rs55705857 in gliomas, rs9642880 in bladder cancer, moderate for rs16901979, rs1447295, rs6983267, rs7017300, rs7837688, rs1016343, rs620861, rs10086908 associated in prostate cancer, rs10505477, rs6983267 in colorectal cancer, rs6983267 in thyroid cancer, rs13281615 in breast cancer, and rs1447295 in stomach cancer, weak for rs6983561, rs13254738, rs7008482, rs4242384 in prostate cancer. Data from ENCODE suggested that these variants with strong evidence and other correlated variants might fall within putative functional regions. Our study provides summary evidence that common variants in the 8q24 are associated with risk of multiple cancers in this large-scale research synopsis and meta-analysis. Further studies are needed to explore the mechanisms underlying variants in the 8q24 involved in various human cancers.
Collapse
Affiliation(s)
- Yu Tong
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Ying Tang
- Department of Pediatrics
- Department of Diagnostic Ultrasound
| | - Shiping Li
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Fengyan Zhao
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Junjie Ying
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Yi Qu
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Xiaoyu Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dezhi Mu
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| |
Collapse
|
5
|
Liu J, Yan J, Mao R, Ren G, Liu X, Zhang Y, Wang J, Wang Y, Li M, Qiu Q, Wang L, Liu G, Jin S, Ma L, Ma Y, Zhao N, Zhang H, Lin B. Exome sequencing identified six copy number variations as a prediction model for recurrence of primary prostate cancers with distinctive prognosis. Transl Cancer Res 2020; 9:2231-2242. [PMID: 35117583 PMCID: PMC8798897 DOI: 10.21037/tcr.2020.03.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/05/2020] [Indexed: 01/12/2023]
Abstract
Background Prostate cancer (PCa) is a common type of malignancy, which represents one of the leading causes of death among men worldwide. Copy number variations (CNVs) and gene fusions play important roles in PCa and may serve as markers for the prognosis of this condition. Methods We have presently conducted an analysis of CNVs and gene fusions in PCa, using whole exome sequencing (WES) data of primary tumors. For this, a cohort of 74 PCa patients, including 30 recurrent and 44 non-recurrent cases, were assessed during 5 years of follow-up. Results We have identified 66 CNVs that were specific to the primary tumor tissues from the recurrent PCa group. Most of duplicated genomic regions were located in 8q2, suggesting that this chromosomal region could be important for the prognosis of PCa. Meanwhile, we have developed a random forest model, using six selected CNVs, with an accuracy near 90% for predicting PCa recurrence according to a 10-fold cross validation. In addition, we have detected 16 recurrent oncogenic gene fusions in PCa. Among these, ALK (ALK receptor tyrosine kinase)-involved fusions were the most common type of gene fusion (n=7). Four of these fusions (i.e., EML4-ALK, STRN-ALK, CLTC-ALK, ETV6-ALK) were previously identified in other cancer types, while the remaining three gene fusions (FRYL-ALK, ABL1-ALK, and BCR-ALK) were here identified. Conclusions Our findings expand the current understanding in regard to prostate carcinogenesis. Current data might be further used for assay development as well as to predict PCa recurrence, using primary tissues.
Collapse
Affiliation(s)
- Jie Liu
- College of Life Science, Zhejiang University, Hangzhou 310027, China.,Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Jiajun Yan
- Department of Urology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, China
| | - Ruifang Mao
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China
| | - Xiaoyan Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China
| | - Yanling Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China.,Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Zhejiang University Medical College, Hangzhou 310016, China
| | - Jili Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China
| | - Yan Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China
| | - Meiling Li
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Qingchong Qiu
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Lin Wang
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Guanfeng Liu
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Shanshan Jin
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Liang Ma
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Yingying Ma
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Na Zhao
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Biaoyang Lin
- College of Life Science, Zhejiang University, Hangzhou 310027, China.,Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China.,Department of Urology, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Lin HY, Callan CY, Fang Z, Tung HY, Park JY. Interactions of PVT1 and CASC11 on Prostate Cancer Risk in African Americans. Cancer Epidemiol Biomarkers Prev 2019; 28:1067-1075. [PMID: 30914434 DOI: 10.1158/1055-9965.epi-18-1092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 03/21/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND African American (AA) men have a higher risk of developing prostate cancer than white men. SNPs are known to play an important role in developing prostate cancer. The impact of PVT1 and its neighborhood genes (CASC11 and MYC) on prostate cancer risk are getting more attention recently. The interactions among these three genes associated with prostate cancer risk are understudied, especially for AA men. The objective of this study is to investigate SNP-SNP interactions in the CASC11-MYC-PVT1 region associated with prostate cancer risk in AA men. METHODS We evaluated 205 SNPs using the 2,253 prostate cancer patients and 2,423 controls and applied multiphase (discovery-validation) design. In addition to SNP individual effects, SNP-SNP interactions were evaluated using the SNP Interaction Pattern Identifier, which assesses 45 patterns. RESULTS Three SNPs (rs9642880, rs16902359, and rs12680047) and 79 SNP-SNP pairs were significantly associated with prostate cancer risk. These two SNPs (rs16902359 and rs9642880) in CASC11 interacted frequently with other SNPs with 56 and 9 pairs, respectively. We identified the novel interaction of CASC11-PVT1, which is the most common gene interaction (70%) in the top 79 pairs. Several top SNP interactions have a moderate to large effect size (OR, 0.27-0.68) and have a higher prediction power to prostate cancer risk than SNP individual effects. CONCLUSIONS Novel SNP-SNP interactions in the CASC11-MYC-PVT1 region have a larger impact than SNP individual effects on prostate cancer risk in AA men. IMPACT This gene-gene interaction between CASC11 and PVT1 can provide valuable information to reveal potential biological mechanisms of prostate cancer development.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| | - Catherine Y Callan
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Heng-Yuan Tung
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
7
|
Zhang C, Zhang M, Song S. Cathepsin D enhances breast cancer invasion and metastasis through promoting hepsin ubiquitin-proteasome degradation. Cancer Lett 2018; 438:105-115. [PMID: 30227221 DOI: 10.1016/j.canlet.2018.09.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022]
Abstract
Hepsin is required for the growth and maintenance of normal morphology, as well as for cell motility and development, initiation of blood coagulation and pro-inflammatory immune response. Here we showed that Cathepsin D (CtsD) as a novel protein is involved in the regulation of hepsin. CtsD destabilizes hepsin by promoting its ubiquitylation and subsequent proteasomal degradation in breast cancer cells. Breast cancer tissue microarray also indicated that hepsin expression was negatively correlated with CtsD by immunohistochemistry. Overexpression of CtsD promoted breast cancer cell migration, invasion and metastasis by enhancing the expression of intercellular cell adhesion molecule-1 (ICAM-1) in vitro and in vivo. These effects were inhibited by ectopic hepsin expression. Taken together, our data reveal a critical CtsD-hepsin signaling axis in migration and metastasis, which may contribute to a better understanding of the function and molecular mechanism in breast cancer progression.
Collapse
Affiliation(s)
- Chunyi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Mingming Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shushu Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
8
|
Tong Y, Yu T, Li S, Zhao F, Ying J, Qu Y, Mu D. Cumulative Evidence for Relationships Between 8q24 Variants and Prostate Cancer. Front Physiol 2018; 9:915. [PMID: 30061842 PMCID: PMC6055007 DOI: 10.3389/fphys.2018.00915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/22/2018] [Indexed: 11/25/2022] Open
Abstract
Multiple independent cancer susceptibility loci at chromosome 8q24 have been identified by GWAS (Genome-wide association studies). Forty six articles including 60,293 cases and 62,971 controls were collected to conduct a meta-analysis to evaluate the associations between 21 variants in 8q24 and prostate cancer risk. Of the 21 variants located in 8q2\5 were significantly associated with the risk of prostate cancer. In particular, both homozygous AA and heterozygous CA genotypes of rs16901979, as well as the AA and CA genotypes of rs1447295, were associated with the risk of prostate cancer. Our study showed that variants in the 8q24 region are associated with prostate cancer risk in this large-scale research synopsis and meta-analysis. Further studies are needed to explore the role of the 8q24 variants involved in the etiology of prostate cancer.
Collapse
Affiliation(s)
- Yu Tong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Nowinski S, Santaolalla A, O'Leary B, Loda M, Mirchandani A, Emberton M, Van Hemelrijck M, Grigoriadis A. Systematic identification of functionally relevant risk alleles to stratify aggressive versus indolent prostate cancer. Oncotarget 2018; 9:12812-12824. [PMID: 29560112 PMCID: PMC5849176 DOI: 10.18632/oncotarget.24400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Novel approaches for classification, including molecular features, are needed to direct therapy for men with low-grade prostate cancer (PCa), especially men on active surveillance. Risk alleles identified from genome-wide association studies (GWAS) could improve prognostication. Those risk alleles that coincided with genes and somatic copy number aberrations associated with progression of PCa were selected as the most relevant for prognostication. In a systematic literature review, a total of 698 studies were collated. Fifty-three unique SNPs residing in 29 genomic regions, including 8q24, 10q11 and 19q13, were associated with PCa progression. Functional studies implicated 21 of these single nucleotide polymorphisms (SNPs) as modulating the expression of genes in the androgen receptor pathway and several other oncogenes. In particular, 8q24, encompassing MYC, harbours a high density of SNPs conferring unfavourable pathological characteristics in low-grade PCa, while a copy number gain of MYC in low-grade PCa was associated with prostate-specific antigen recurrence after radical prostatectomy. By combining GWAS data with gene expression and structural rearrangements, risk alleles were identified that could provide a new basis for developing a prognostication tool to guide therapy for men with early prostate cancer.
Collapse
Affiliation(s)
- Salpie Nowinski
- Cancer Bioinformatics, Innovation Hub, Guy's Cancer Centre, King's College London, London, UK
| | - Aida Santaolalla
- Translational Oncology & Urology Research, King's College London, London, UK
| | - Ben O'Leary
- Breast Cancer NOW Centre, The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayesha Mirchandani
- Cancer Bioinformatics, Innovation Hub, Guy's Cancer Centre, King's College London, London, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, London, UK
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, Innovation Hub, Guy's Cancer Centre, King's College London, London, UK
| |
Collapse
|
10
|
Hicks C, Ramani R, Sartor O, Bhalla R, Miele L, Dlamini Z, Gumede N. An Integrative Genomics Approach for Associating Genome-Wide Association Studies Information With Localized and Metastatic Prostate Cancer Phenotypes. Biomark Insights 2017; 12:1177271917695810. [PMID: 28469398 PMCID: PMC5391982 DOI: 10.1177/1177271917695810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/05/2017] [Indexed: 01/01/2023] Open
Abstract
High-throughput genotyping has enabled discovery of genetic variants associated with an increased risk of developing prostate cancer using genome-wide association studies (GWAS). The goal of this study was to associate GWAS information of patients with primary organ–confined and metastatic prostate cancer using gene expression data and to identify molecular networks and biological pathways enriched for genetic susceptibility variants involved in the 2 disease states. The analysis revealed gene signatures for the 2 disease states and a gene signature distinguishing the 2 patient groups. In addition, the analysis revealed molecular networks and biological pathways enriched for genetic susceptibility variants. The discovered pathways include the androgen, apoptosis, and insulinlike growth factor signaling pathways. This analysis established putative functional bridges between GWAS discoveries and the biological pathways involved in primary organ–confined and metastatic prostate cancer.
Collapse
Affiliation(s)
- Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Ritika Ramani
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Oliver Sartor
- Department of Medicine, Tulane University, New Orleans, LA, USA
| | - Ritu Bhalla
- Department of Pathology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Zodwa Dlamini
- Department of Biology, Mangosuthu University of Technology, Durban, South Africa
| | - Njabulo Gumede
- Department of Biology, Mangosuthu University of Technology, Durban, South Africa
| |
Collapse
|
11
|
Tanabe LM, List K. The role of type II transmembrane serine protease-mediated signaling in cancer. FEBS J 2016; 284:1421-1436. [PMID: 27870503 DOI: 10.1111/febs.13971] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/29/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
Pericellular proteases have long been implicated in carcinogenesis. Previous research focused on these proteins, primarily as extracellular matrix (ECM) protein-degrading enzymes which allowed cancer cells to breach the basement membrane and invade surrounding tissue. However, recently, there has been a shift in the view of cell surface proteases, including serine proteases, as proteolytic modifiers of particular targets, including growth factors and protease-activated receptors, which are critical for the activation of oncogenic signaling pathways. Of the 176 human serine proteases currently identified, a subset of 17, known as type II transmembrane serine proteases (TTSPs). Many have been shown to be relevant to cancer progression since they were first identified as a family around the turn of the century. To this end, altered expression of TTSPs appeared as a trademark of several tumor types. However, the substrates and underlying signaling pathways remained unclear. Localization of these proteins to the cell surface places them in the unique position to mediate signal transduction between the cell and its surrounding environment. Many of the TTSPs have already been shown to play key roles in processes such as postnatal development, tissue homeostasis, and tumor progression, which share overlapping molecular mechanisms. In this review, we summarize the current knowledge regarding the role of the TTSP family in pro-oncogenic signaling.
Collapse
Affiliation(s)
- Lauren M Tanabe
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Karin List
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
12
|
Bishop KS, Han DY, Karunasinghe N, Goudie M, Masters JG, Ferguson LR. An examination of clinical differences between carriers and non-carriers of chromosome 8q24 risk alleles in a New Zealand Caucasian population with prostate cancer. PeerJ 2016; 4:e1731. [PMID: 26966665 PMCID: PMC4782686 DOI: 10.7717/peerj.1731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Prostate cancer makes up approximately 15% of all cancers diagnosed in men in developed nations and approximately 4% of cases in developing nations. Although it is clear that prostate cancer has a genetic component and single nucleotide polymorphisms (SNPs) can contribute to prostate cancer risk, detecting associations is difficult in multi-factorial diseases, as environmental and lifestyle factors also play a role. In this study, specific clinical characteristics, environmental factors and genetic risk factors were assessed for interaction with prostate cancer. Methods. A total of 489 prostate cancer cases and 427 healthy controls were genotyped for SNPs found on chromosome 8q24 and a genetic risk score was calculated. In addition the SNPs were tested for an association with a number of clinical and environmental factors. Results. Age and tobacco use were positively associated, whilst alcohol consumption was negatively associated with prostate cancer risk. The following SNPs found on chromosome 8q24 were statistically significantly associated with prostate cancer: rs10086908, rs16901979; rs1447295and rs4242382. No association between Gleason score and smoking status, or between Gleason score and genotype were detected. Conclusion. A genetic risk score was calculated based on the 15 SNPs tested and found to be significantly associated with prostate cancer risk. Smoking significantly contributed to the risk of developing prostate cancer, and this risk was further increased by the presence of four SNPs in the 8q24 chromosomal region.
Collapse
Affiliation(s)
- Karen S Bishop
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand
| | - Dug Yeo Han
- Nutrigenomics New Zealand, University of Auckland, Auckland, New Zealand; Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nishi Karunasinghe
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand
| | - Megan Goudie
- Urology Department, Auckland District Health Board , Auckland , New Zealand
| | - Jonathan G Masters
- Urology Department, Auckland District Health Board , Auckland , New Zealand
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Nutrigenomics New Zealand, University of Auckland, Auckland, New Zealand; Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Chen X, McClelland M, Jia Z, Rahmatpanah FB, Sawyers A, Trent J, Duggan D, Mercola D. The identification of trans-associations between prostate cancer GWAS SNPs and RNA expression differences in tumor-adjacent stroma. Oncotarget 2015; 6:1865-73. [PMID: 25638161 PMCID: PMC4359337 DOI: 10.18632/oncotarget.2763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022] Open
Abstract
Here we tested the hypothesis that SNPs associated with prostate cancer risk, might differentially affect RNA expression in prostate cancer stroma. The most significant 35 SNP loci were selected from Genome Wide Association (GWA) studies of ~40,000 patients. We also selected 4030 transcripts previously associated with prostate cancer diagnosis and prognosis. eQTL analysis was carried out by a modified BAYES method to analyze the associations between the risk variants and expressed transcripts jointly in a single model. We observed 47 significant associations between eight risk variants and the expression patterns of 46 genes. This is the first study to identify associations between multiple SNPs and multiple in trans gene expression differences in cancer stroma. Potentially, a combination of SNPs and associated expression differences in prostate stroma may increase the power of risk assessment for individuals, and for cancer progression.
Collapse
Affiliation(s)
- Xin Chen
- Genomics Center, Loma Linda University, Loma Linda, California, 92354, United States of America
| | - Michael McClelland
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America.,Department of Microbiology and Molecular Genetics, University of California, Irvine, California, 92697, United States of America
| | - Zhenyu Jia
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America.,Department of Statistics, The University of Akron, Akron, Ohio, 44325, United States of America.,Department of Family & Community Medicine, Northeast Ohio Medical University, Rootstown, Ohio, 44272, United States of America
| | - Farah B Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America
| | - Anne Sawyers
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America
| | - Jeffrey Trent
- Genetic Basis of Human Disease Division, The Translational Genomics Research Institute, Phoenix, Arizona, 85004, United States of America
| | - David Duggan
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, 85004, United States of America
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America
| |
Collapse
|
14
|
Shen L, Du M, Wang C, Gu D, Wang M, Zhang Q, Zhao T, Zhang X, Tan Y, Huo X, Gong W, Xu Z, Chen J, Zhang Z. Clinical significance of POU5F1P1 rs10505477 polymorphism in Chinese gastric cancer patients receving cisplatin-based chemotherapy after surgical resection. Int J Mol Sci 2014; 15:12764-77. [PMID: 25046748 PMCID: PMC4139873 DOI: 10.3390/ijms150712764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 01/06/2023] Open
Abstract
This study aimed to investigate the association between POU class5 homeobox 1 pseudogene 1 gene (POU5F1P1) rs10505477 polymorphism and the prognosis of Chinese gastric cancer patients, who received cisplatin-based chemotherapy after surgical resection. POU5F1P1 rs10505477 was genotyped using the SNaPshot method in 944 gastric cancer patients who received gastrectomy. The association of rs10505477 G > A polymorphism with the progression and prognosis in gastric cancer patients was statistically analyzed using the SPSS version 18.0 for Windows. The results reveal that rs10505477 polymorphism has a negatively effect on the overall survival of gastric cancer patients in cisplatin-based chemotherapy subgroup (HR = 1.764, 95% CI = 1.069–2.911, p = 0.023). Our preliminary study indicates for the first time that POU5F1P1 rs10505477 is correlated with survival of gastric cancer patients who receving cisplatin-based chemotherapy after gastrectomy. Further studies are warranted to investigate the mechanism and to verify our results in different populations.
Collapse
Affiliation(s)
- Lili Shen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, 818 East Tianyuan Road, Nanjing 211166, China.
| | - Chun Wang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, 818 East Tianyuan Road, Nanjing 211166, China.
| | - Qi Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Tingting Zhao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Xunlei Zhang
- Department of Oncology, Nantong Tumor Hospital, Nantong 226000, 30 Tongyang North Road, China.
| | - Yongfei Tan
- Department of Surgery, Yixing People's Hospital, 75 Tongzhenguan Road, Yixing 214200, China.
| | - Xinying Huo
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Weida Gong
- Department of General Surgery, Yixing Tumor Hospital, 45 Dongshan East Road, Yixing 214200, China.
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, 818 East Tianyuan Road, Nanjing 211166, China.
| |
Collapse
|
15
|
Helfand BT, Catalona WJ. The Epidemiology and Clinical Implications of Genetic Variation in Prostate Cancer. Urol Clin North Am 2014; 41:277-97. [DOI: 10.1016/j.ucl.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Li L, Sun R, Liang Y, Pan X, Li Z, Bai P, Zeng X, Zhang D, Zhang L, Gao L. Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:104. [PMID: 24330491 PMCID: PMC4029281 DOI: 10.1186/1756-9966-32-104] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/05/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Genome-wide association studies have identified that genetic variants in 8q24 confer susceptibility to colorectal cancer (CRC). Recently, a novel lncRNA (PRNCR1) that located in the 8q24 was discovered. Single nucleotide polymorphisms (SNPs) in the lncRNAs may influence the process of splicing and stability of mRNA conformation, resulting in the modification of its interacting partners. We hypothesized that SNPs in the lncRNA PRNCR1 may be related to the risk of CRC. METHODS We conducted a case-control study and genotyped five tag SNPs in the lncRNA PRNCR1 in 908 subjects including 313 cases with CRC and 595 control subjects using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. RESULTS In overall analyses, we found that the rs13252298 and rs1456315 were associated with significantly decreased risks of CRC. In stratification analyses, we found that CRC patients carrying the rs1456315G were likely to have a tumor size of greater than 5 cm (G vs. A: adjusted OR = 1.56, 95% CI: 1.10-2.23). Additionally, patients with the rs7007694C and rs16901946G had decreased risks to develop poorly differentiated CRC, whereas patients with the rs1456315G had an increased risk to develop poorly differentiated CRC. CONCLUSION These findings suggest that SNPs in the lncRNA PRNCR1 may contribute to susceptibility to CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lin Zhang
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P,R, China.
| | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To explore several serum and genetic-based biomarkers that may prove useful in following men being managed with active surveillance for localized prostate cancer by predicting those that either have the potential to develop, or already harbor occult high grade disease. RECENT FINDINGS There is increasing evidence that serum biomarkers human Kallikrein 2, early prostate cancer antigen, urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor, transforming growth factor-β1 and interleukin-6/interleukin-6 receptor and genetic biomarkers BRCA1 and BRCA2, Phosphatase and tensin homolog, cellular myelocytomatosis oncogene and NKX3.1 may predict for aggressive high grade disease and are identifiable early in prostate carcinogenesis. SUMMARY One of the barriers of widespread adoption of active surveillance for low risk, localized prostate cancer is the concern that some patients may harbor occult high-risk disease at diagnosis, or develop more aggressive/noncurable disease not detected by our current well established prognostic factors. This review examines several serum and genetic-based biomarkers that appear to be of value in localized prostate cancer, unlike the vast majority of more established prostate cancer biomarkers that have been validated in far more advanced disease. Although the biomarkers discussed show exciting promise, their clinical utility is unknown, and their role in the active surveillance scenario needs further study.
Collapse
|
18
|
Van Roosbroeck K, Pollet J, Calin GA. miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn 2013; 13:183-204. [PMID: 23477558 DOI: 10.1586/erm.12.134] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) are transcripts that have no apparent protein-coding capacity; however, many ncRNAs have been found to play a major biological role in human physiology. Their deregulation is implicated in many human diseases, but their exact roles are only beginning to be elucidated. Nevertheless, ncRNAs are extensively studied as a novel source of biomarkers, and the fact that they can be detected in body fluids makes them extremely suitable for this purpose. The authors mainly focus on ncRNAs as biomarkers in cancer, but also touch on other human diseases such as cardiovascular diseases, autoimmune diseases, neurological disorders and infectious diseases. The authors discuss the established methods and provide a selection of emerging new techniques that can be used to detect and quantify ncRNAs. Finally, the authors discuss ncRNAs as a new strategy for therapeutic interventions.
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | | | | |
Collapse
|
19
|
Common variants at 8q24 are associated with prostate cancer risk in Serbian population. Pathol Oncol Res 2013; 19:559-69. [PMID: 23532531 DOI: 10.1007/s12253-013-9617-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/20/2013] [Indexed: 02/06/2023]
Abstract
Previous studies have shown correlation between single nucleotide polymorphisms (SNPs) at 8q24 and prostate cancer (PCa) risk. This study aimed to evaluate possible association between genotypes and alleles of 8q24 polymorphisms (rs1447295, rs4242382, rs6983267, rs7017300, and rs7837688) and PCa risk and progression. 150 patients with PCa, 150 patients with benign prostatic hyperplasia (BPH), and 100 healthy controls selected from the general population were recruited for this study. SNPs were genotyped by using PCR-RFLP analysis. There was a significant positive association between the A allele of the SNP rs4242382 and PCa risk [PCa vs. BPH comparison, P = 0.014 for the best-fitting dominant model; odds ratio (OR) =1.98; 95 % confidence interval (95%CI) 1.14-3.43]. We found evidence (P = 0.0064) of association between PCa risk and rs7017300 (heterozygote OR = 1.60; 95%CI 0.95-2.69) when comparing genotype distributions in PCa and BPH patients. The association between T allele rs7837688 and PCa risk was determined in PCa vs. BPH comparison with the best-fitting model of inheritance being log-additive (P = 0.0033; OR = 2.14, 95%CI 1.27-3.61). Odds ratio for carriers of rs6983267 TT genotype under recessive model of association with PCa was found to be 0.36 (PCa vs. control comparison, P = 0.0029; 95%CI 0.19-0.71). For rs1447295, deviation from Hardy-Weinberg equilibrium was observed in BPH patients and controls. We found no association between parameters of PCa progression and five 8q24 SNPs. Locus 8q24 harbors genetic variants associated with PCa risk in Serbian population.
Collapse
|
20
|
Cornu JN, Cancel-Tassin G, Egrot C, Gaffory C, Haab F, Cussenot O. Urine TMPRSS2:ERG fusion transcript integrated with PCA3 score, genotyping, and biological features are correlated to the results of prostatic biopsies in men at risk of prostate cancer. Prostate 2013; 73:242-9. [PMID: 22821767 DOI: 10.1002/pros.22563] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND Detection of fusion gene TMPRSS2:ERG transcripts in urine have been recently described in order to refine urine-based detection of prostate cancer (PCa), but data its clinical impact remain scarce. We aimed at investigating the correlation of TMPRSS2:ERG, prostate cancer antigen 3 (PCA3), prostate specific antigen (PSA) density, genetic variants, and androgenic status with outcome and pathological findings at prostatic biopsy. METHODS Between 2007 and 2011, 291 patients at risk of PCa because of PSA > 3.0 ng/ml (55%) or candidate to active surveillance protocol justifying restaging biopsy management (45%) were recruited. TMPRSS2:ERG was detected by urine assay (Progensa™). PCA3-score, PSA level, bioavailable testosterone level, prostate volume, rs1447295 and rs6983267 genotypes were prospectively assessed. Univariate and multivariate analysis by logistic regression model (logit) were conducted to study the correlation of TMPRSS2:ERG status, PCA3, and PSA density with biopsy results, and Gleason score. RESULTS Of 291 patients, 173 had PCa and 118 had negative biopsy. PCA3 score, PSA density and TMPRSS2:ERG-score were correlated with presence of PCa (P < 0.0001, P = 0.046, and P < 0.0001, respectively). This correlation remained strong on multivariable analysis model (area under curve 0.743). PCA3 score and PSA density were significantly associated with presence of Grade 4 through multivariable analysis. PCA3 score was also correlated to the percentage of positive cores at biopsy (P = 0.008). CONCLUSIONS Integration of levels TMPRSS2:ERG transcripts in urine, with PCA3-score, androgenic status, genetic status and traditional clinical variables could significantly increase detection of high risk localized PCa.
Collapse
Affiliation(s)
- Jean-Nicolas Cornu
- Department of Urology, Tenon Hospital, University Paris, Assistance Publique-Hopitaux de Paris, France.
| | | | | | | | | | | |
Collapse
|
21
|
Bensen JT, Xu Z, Smith GJ, Mohler JL, Fontham ET, Taylor JA. Genetic polymorphism and prostate cancer aggressiveness: a case-only study of 1,536 GWAS and candidate SNPs in African-Americans and European-Americans. Prostate 2013; 73:11-22. [PMID: 22549899 PMCID: PMC3480543 DOI: 10.1002/pros.22532] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/10/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Genome-wide association studies have established a number of replicated single nucleotide polymorphisms (SNPs) for susceptibility to prostate cancer (CaP), but it is unclear whether these susceptibility SNPs are also associated with disease aggressiveness. This study evaluates whether such replication SNPs or other candidate SNPs are associated with CaP aggressiveness in African-American (AA) and European-American (EA) men. METHODS A 1,536 SNP panel which included 34 genome-wide association study (GWAS) replication SNPs, 38 flanking SNPs, a set of ancestry informative markers, and SNPs in candidate genes and other areas was genotyped in 1,060 AA and 1,087 EA men with incident CaP from the North Carolina-Louisiana Prostate Cancer Project (PCaP). Tests for association were conducted using ordinal logistic regression with a log-additive genotype model and a 3-category CaP aggressiveness variable. RESULTS Four GWAS replication SNPs (rs2660753, rs13254738, rs10090154, rs2735839) and seven flanking SNPs were associated with CaP aggressiveness (P < 0.05) in three genomic regions: One at 3p12 (EA), seven at 8q24 (5 AA, 2 EA), and three at 19q13 at the kallilkrein-related peptidase 3 (KLK3) locus (two AA, one AA and EA). The KLK3 SNPs also were associated with serum prostate-specific antigen (PSA) levels in AA (P < 0.001) but not in EA. A number of the other SNPs showed some evidence of association but none met study-wide significance levels after adjusting for multiple comparisons. CONCLUSIONS Some replicated GWAS susceptibility SNPs may play a role in CaP aggressiveness. However, like susceptibility, these associations are not consistent between racial groups.
Collapse
Affiliation(s)
- Jeannette T. Bensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7435
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7435
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Gary J. Smith
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - James L. Mohler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7435
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York 14263
- Department of Urology, University of Buffalo School of Medicine and Biotechnology, Buffalo, New York, 14214
- Department of Surgery, Division of Urology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7435
| | - Elizabeth T.H. Fontham
- Louisiana State University Health Sciences Center School of Public Health, New Orleans, Louisiana 70112
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
22
|
Genetic heterogeneity in Finnish hereditary prostate cancer using ordered subset analysis. Eur J Hum Genet 2012; 21:437-43. [PMID: 22948022 DOI: 10.1038/ejhg.2012.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prostate cancer (PrCa) is the most common male cancer in developed countries and the second most common cause of cancer death after lung cancer. We recently reported a genome-wide linkage scan in 69 Finnish hereditary PrCa (HPC) families, which replicated the HPC9 locus on 17q21-q22 and identified a locus on 2q37. The aim of this study was to identify and to detect other loci linked to HPC. Here we used ordered subset analysis (OSA), conditioned on nonparametric linkage to these loci to detect other loci linked to HPC in subsets of families, but not the overall sample. We analyzed the families based on their evidence for linkage to chromosome 2, chromosome 17 and a maximum score using the strongest evidence of linkage from either of the two loci. Significant linkage to a 5-cM linkage interval with a peak OSA nonparametric allele-sharing LOD score of 4.876 on Xq26.3-q27 (ΔLOD=3.193, empirical P=0.009) was observed in a subset of 41 families weakly linked to 2q37, overlapping the HPCX1 locus. Two peaks that were novel to the analysis combining linkage evidence from both primary loci were identified; 18q12.1-q12.2 (OSA LOD=2.541, ΔLOD=1.651, P=0.03) and 22q11.1-q11.21 (OSA LOD=2.395, ΔLOD=2.36, P=0.006), which is close to HPC6. Using OSA allows us to find additional loci linked to HPC in subsets of families, and underlines the complex genetic heterogeneity of HPC even in highly aggregated families.
Collapse
|
23
|
Gaj P, Maryan N, Hennig EE, Ledwon JK, Paziewska A, Majewska A, Karczmarski J, Nesteruk M, Wolski J, Antoniewicz AA, Przytulski K, Rutkowski A, Teumer A, Homuth G, Starzyńska T, Regula J, Ostrowski J. Pooled sample-based GWAS: a cost-effective alternative for identifying colorectal and prostate cancer risk variants in the Polish population. PLoS One 2012; 7:e35307. [PMID: 22532847 PMCID: PMC3331859 DOI: 10.1371/journal.pone.0035307] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/13/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) and colorectal cancer (CRC) are the most commonly diagnosed cancers and cancer-related causes of death in Poland. To date, numerous single nucleotide polymorphisms (SNPs) associated with susceptibility to both cancer types have been identified, but their effect on disease risk may differ among populations. METHODS To identify new SNPs associated with PCa and CRC in the Polish population, a genome-wide association study (GWAS) was performed using DNA sample pools on Affymetrix Genome-Wide Human SNP 6.0 arrays. A total of 135 PCa patients and 270 healthy men (PCa sub-study) and 525 patients with adenoma (AD), 630 patients with CRC and 690 controls (AD/CRC sub-study) were included in the analysis. Allele frequency distributions were compared with t-tests and χ(2)-tests. Only those significantly associated SNPs with a proxy SNP (p<0.001; distance of 100 kb; r(2)>0.7) were selected. GWAS marker selection was conducted using PLINK. The study was replicated using extended cohorts of patients and controls. The association with previously reported PCa and CRC susceptibility variants was also examined. Individual patients were genotyped using TaqMan SNP Genotyping Assays. RESULTS The GWAS selected six and 24 new candidate SNPs associated with PCa and CRC susceptibility, respectively. In the replication study, 17 of these associations were confirmed as significant in additive model of inheritance. Seven of them remained significant after correction for multiple hypothesis testing. Additionally, 17 previously reported risk variants have been identified, five of which remained significant after correction. CONCLUSION Pooled-DNA GWAS enabled the identification of new susceptibility loci for CRC in the Polish population. Previously reported CRC and PCa predisposition variants were also identified, validating the global nature of their associations. Further independent replication studies are required to confirm significance of the newly uncovered candidate susceptibility loci.
Collapse
Affiliation(s)
- Pawel Gaj
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Natalia Maryan
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Joanna K. Ledwon
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Aneta Majewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Jakub Karczmarski
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Monika Nesteruk
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Jan Wolski
- Department of Urology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Artur A. Antoniewicz
- Department of Urology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Krzysztof Przytulski
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Andrzej Rutkowski
- Department of Colorectal Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Jaroslaw Regula
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland
- Department of Oncological Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
24
|
Os’kina NA, Boyarskikh UA, Lazarev AF, Petrova VD, Ganov DI, Tonacheva OG, Lifshits GI, Filipenko ML. Association of chromosome 8q24 variants with prostate cancer risk in the Siberian region of Russia and meta-analysis. Mol Biol 2012. [DOI: 10.1134/s0026893312020124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Troutman SM, Sissung TM, Cropp CD, Venzon DJ, Spencer SD, Adesunloye BA, Huang X, Karzai FH, Price DK, Figg WD. Racial disparities in the association between variants on 8q24 and prostate cancer: a systematic review and meta-analysis. Oncologist 2012; 17:312-20. [PMID: 22382457 DOI: 10.1634/theoncologist.2011-0315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent studies implicate single nucleotide polymorphisms (SNPs) within the 8q24 region as a risk factor for prostate cancer (PCa). New developments suggest that 8q24 encodes regulators of the nearby MYC gene, a known oncogene. In order to better understand the implications of SNPs in this region, we performed meta-analyses, stratified by race, of seven SNPs and one microsatellite marker previously identified as risk loci on the 8q24 region of the genome. In addition, we reviewed the literature examining the possible associations between these polymorphisms and clinicopathological features of PCa. The results of the meta-analyses indicate that rs6983267, rs1447295, rs6983561, rs7837688, rs16901979, and DG8S737 are significantly associated with a higher risk for PCa for at least one race, whereas the variants rs13254738 and rs7000448 are not. The degree of association and frequency of the causative allele varied among men of different races. Though several studies have demonstrated an association between certain 8q24 SNPs and clinicopathological features of the disease, review of this topic revealed conflicting results.
Collapse
Affiliation(s)
- Sarah M Troutman
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Papanikolopoulou A, Landt O, Ntoumas K, Bolomitis S, Tyritzis SI, Constantinides C, Drakoulis N. The multi-cancer marker, rs6983267, located at region 3 of chromosome 8q24, is associated with prostate cancer in Greek patients but does not contribute to the aggressiveness of the disease. Clin Chem Lab Med 2011; 50:379-85. [PMID: 22070222 DOI: 10.1515/cclm.2011.778] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 10/11/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recently, several polymorphisms located on human chromosome 8q24 were found to be associated with prostate cancer risk with different frequency and incidence among the investigated populations. The authors conducted a prostate cancer case-control study in the Greek population to evaluate the association of the single nucleotide polymorphism (SNP) rs6983267, located at region 3 of chromosome 8q24, with this type of cancer. METHODS Samples of total blood from 86 patients with histologically confirmed prostate cancer and 99 healthy individuals were genotyped using real time polymerase chain reaction (PCR). Tumor-node-metastasis (TNM) stage, Gleason score and levels of prostate-specific antigen (PSA) at diagnosis were included in the analysis. RESULTS A highly significant association (odds ratio=2.84 and p-value=0.002) was found between rs6983267 and prostate cancer in the Greek population. The sensitivity, specificity, negative and positive predictive values of the presence of G allele for the discrimination between patients and controls were 81.40%, 39.4%, 53.9% and 70.9%, respectively. A lower proportion of homozygotes was found in patients with PSA level <4 ng/mL compared to those with PSA level more than 4 ng/mL (p=0.019). None of the other clinical factors nor the aggressiveness of the disease were found to be significantly associated with rs6983267 genotype. CONCLUSIONS The SNP rs6983267 is an established marker for a range of cancers. In prostate cancer, it indicates an enhanced risk for carriers to develop the disease in general. In our study it showed no association with aggressive forms or familial and early-onset prostate cancer families.
Collapse
Affiliation(s)
- Amalia Papanikolopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
27
|
McGuire BB, Helfand BT, Kundu S, Hu Q, Banks JA, Cooper P, Catalona WJ. Association of prostate cancer risk alleles with unfavourable pathological characteristics in potential candidates for active surveillance. BJU Int 2011; 110:338-343. [PMID: 22077888 DOI: 10.1111/j.1464-410x.2011.10750.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE • To assess whether the carrier status of 35 risk alleles for prostate cancer (CaP) is associated with having unfavourable pathological features in the radical prostatectomy specimen in men with clinically low risk CaP who fulfil commonly accepted criteria as candidates for active surveillance. PATIENTS AND METHODS • We studied men of European ancestry with CaP who fulfilled the commonly accepted clinical criteria for active surveillance (T1c, prostate-specific antigen <10 ng/mL, biopsy Gleason ≤6, three or fewer positive cores, ≤50% tumour involvement/core) but instead underwent early radical prostatectomy. • We genotyped these men for 35 CaP risk alleles. We defined 'unfavourable' pathological characteristics to be Gleason ≥7 and/or ≥ pT2b in their radical prostatectomy specimen. RESULTS • In all, 263 men (median age 60 [46-72] years) fulfilled our selection criteria for active surveillance, and 58 of 263 (22.1%) were found to have 'unfavourable' pathological characteristics. • The frequencies of three CaP risk alleles (rs1447295 [8q24], P= 0.004; rs1571801 [9q33.2], P= 0.03; rs11228565 [11q13], P= 0.02) were significantly higher in men with 'unfavourable' pathological characteristics. • Two other risk alleles were proportionately more frequent (rs10934853 [3q21], P= 0.06; rs1859962 [17q24], P= 0.07) but did not achieve nominal statistical significance. • Carriers of any one of the significantly over-represented risk alleles had twice the likelihood of unfavourable tumour features (P= 0.03), and carriers of any two had a sevenfold increased likelihood (P= 0.001). • Receiver-operator curve analysis demonstrated an area under the curve of 0.66, suggesting that the number of single nucleotide polymorphisms carried provided discrimination between men with 'favourable' and 'unfavourable' tumour features in their prostatectomy specimen. CONCLUSION • In potential candidates for active surveillance, certain CaP risk alleles are more prevalent in patients with 'unfavourable' pathological characteristics in their radical prostatectomy specimen.
Collapse
Affiliation(s)
- Barry B McGuire
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian T Helfand
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shilajit Kundu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qiaoyan Hu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jessica A Banks
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Phillip Cooper
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William J Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
28
|
Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D, Lachman HM. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One 2011; 6:e23356. [PMID: 21915259 PMCID: PMC3168439 DOI: 10.1371/journal.pone.0023356] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 02/01/2023] Open
Abstract
Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs), pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ), bipolar disorder (BD) and autism spectrum disorders (ASD) that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Abhishek Shah
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shahina Maqbool
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Liu X, Cheng I, Plummer SJ, Suarez B, Casey G, Catalona WJ, Witte JS. Fine-mapping of prostate cancer aggressiveness loci on chromosome 7q22-35. Prostate 2011; 71:682-9. [PMID: 20945404 PMCID: PMC3027848 DOI: 10.1002/pros.21284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/31/2010] [Indexed: 01/10/2023]
Abstract
BACKGROUND Deciphering the genetic basis of prostate cancer aggressiveness could provide valuable information for the screening and treatment of this common but complex disease. We previously detected linkage between a broad region on chromosome 7q22-35 and Gleason score-a strong predictor of prostate cancer aggressiveness. To further clarify this finding and focus on the potentially causative gene, we undertook a fine-mapping study across the 7q22-35 region. METHODS Our study population encompassed 698 siblings diagnosed with prostate cancer. 3,072 single nucleotide polymorphisms (SNPs) spanning the chromosome 7q22-35 region were genotyped using the Illumina GoldenGate assay. The impact of SNPs on Gleason scores were evaluated using affected sibling pair linkage and family-based association tests. RESULTS We confirmed the previous linkage signal and narrowed the 7q22-35 prostate cancer aggressiveness locus to a 370 kb region. Centered under the linkage peak is the gene KLRG2 (killer cell lectin-like receptor subfamily G, member 2). Association tests indicated that the potentially functional non-synonymous SNP rs17160911 in KLRG2 was significantly associated with Gleason score (P = 0.0007). CONCLUSIONS These findings suggest that genetic variants in the gene KLRG2 may affect Gleason score at diagnosis and hence the aggressiveness of prostate cancer.
Collapse
Affiliation(s)
- Xin Liu
- Mary Ann and J. Milburn Smith Child Health Research Program, Department of Pediatrics, Northwestern University Feinberg School of Medicine and Children's Memorial Hospital and Children's Memorial Research Center, Chicago, IL, USA
| | - Iona Cheng
- Epidemiology Program, Cancer Research Center of Hawai`i, University of Hawai`i, Honolulu, HI 96813, USA
| | - Sarah J Plummer
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Brian Suarez
- Department of Genetics, Washington University, 660 South Euclid, St. Louis, Missouri 63110, USA
| | - Graham Casey
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - William J. Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John S. Witte
- Departments of Epidemiology & Biostatistics and Urology, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158-9001, USA
| |
Collapse
|
30
|
Helfand BT, Kan D, Modi P, Catalona WJ. Prostate cancer risk alleles significantly improve disease detection and are associated with aggressive features in patients with a "normal" prostate specific antigen and digital rectal examination. Prostate 2011; 71:394-402. [PMID: 20860009 PMCID: PMC3089434 DOI: 10.1002/pros.21253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/22/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND Several reports suggest that a combination of risk alleles may be associated with prostate cancer (CaP) risk and tumor features. However, their ability to detect CaP and tumor characteristics in patients with a "normal" PSA (<4 ng/ml) and non-suspicious digital rectal examination (DRE) remains to be determined. METHODS We examined 203 men of European ancestry with clinical stage T1c CaP diagnosed at a "normal" PSA and 611 healthy volunteer controls. The genotypes for 17 different risk alleles were compared between CaP cases and controls. Additional analyses were used to compare the pathologic features between carriers and non-carriers (defined using best-fit genetic model) of these variants. RESULTS All risk alleles were present at an increased frequency in cases with "normal" PSA values and DRE compared to controls. Amongst CaP patients, carriers of an increasing number of genetic risk factors (i.e., alleles and positive family history) were at a significantly increased risk of CaP (P-trend <0.001). Specifically, men with >10 genetic risk factors had an 11.2-fold risk (95% CI 4.3-29.2) of having the disease compared to men with ≤5 variants. There also was a higher frequency of many the variants amongst men with adverse pathologic features. CONCLUSIONS A substantial proportion of biopsy-detectable CaP occurs in men with "normal" PSA levels and negative DRE. In this population, CaP risk alleles and family history are significantly associated with CaP risk and may help predict aggressive disease. Future studies are warranted to determine the utility of incorporating these variants into CaP screening programs.
Collapse
Affiliation(s)
| | | | | | - William J. Catalona
- Corresponding Author: William J. Catalona, MD 675 N. Saint Clair Street, Suite 20-150 Chicago, IL 60611 Phone: (312) 695-4471 Fax: (312) 695-1144
| |
Collapse
|
31
|
Cornu JN, Drouin S, Cancel-Tassin G, Bigot P, Azzouzi AR, Koutlidis N, Cormier L, Gaffory C, Rouprêt M, Sèbe P, Bitker MO, Haab F, Cussenot O. Impact of genotyping on outcome of prostatic biopsies: a multicenter prospective study. Mol Med 2011; 17:473-7. [PMID: 21308149 DOI: 10.2119/molmed.2010.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/03/2011] [Indexed: 11/06/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) have been associated with prostate cancer (PCa) risk and tumor aggressiveness in retrospective studies. To assess the value of genotyping in a clinical setting, we evaluated the correlation between three genotypes (rs1447295 and rs6983267[8q24] and rs4054823[17p12]) and prostatic biopsy outcome prospectively in a French population of Caucasian men. Five hundred ninety-eight patients with prostatic-specific antigen (PSA) >4 ng/mL or abnormal digital rectal examination (DRE) participated in this prospective, multicenter study. Age, familial history of PCa, body mass index (BMI), data of DRE, International Prostate Symptom Score (I-PSS) score, PSA value and prostatic volume were collected prospectively before prostatic biopsy. Correlation between genotypes and biopsy outcome (positive or negative) and Gleason score (≤6 or >6) were studied by univariate and multivariable analysis. rs1447295 and rs6983267 risk variants were found to be associated with the presence of PCa in univariate analysis. rs6983267 genotype remained significantly linked to a positive biopsy (odds ratio [OR] = 1.66, 95% confidence interval [CI]: 1.06-2.59, P = 0.026) in multivariable analysis, but rs1447295 genotype did not (OR = 1.47, 95% CI: 0.89-2.43, P = 0.13).When biopsy outcome was stratified according to Gleason score, risk variants of rs1447295 were associated with aggressive disease (Gleason score ≥7) in univariate and multivariable analysis (OR = 2.05 95% CI: 1.10-3.79, P = 0.023). rs6983267 GG genotype was not related to aggressiveness. The results did not reach significance concerning rs4054823 for any analysis. This inaugural prospective evaluation thus confirmed potential usefulness of genotyping PCa assessment. Ongoing clinical evaluation of larger panels of SNPs will detail the actual impact of genetic markers on clinical practice.
Collapse
Affiliation(s)
- Jean-Nicolas Cornu
- Department of Urology, Tenon Hospital, University Paris 6, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
BACKGROUND Genome-wide and replication association studies (GWAs) have identified multiple loci at which common variants modestly influence the risk of developing prostate cancer (PCa). To enhance the power to identify loci associated with PCa, we constructed a meta-analysis of GWAs on PCa. METHODS Articles evaluating the effects of genome-wide SNPs on PCa were identified by searching the PubMed database. After extraction of relevant data, main and subgroup meta-analyses were performed to assess the effects of relevant SNPs on PCa. RESULTS 21 eligible articles containing 71 subgroups were included in this meta-analysis. Significant associations were found between 31 SNPs and PCa. They were rs445114, rs620861, rs983085, rs1016343, rs1447295, rs1859962, rs2660753, rs2710646, rs2735839, rs3760511, rs4242382, rs4430796, rs4962416, rs5945572, rs5945619, rs6470494, rs6501455, rs6983267, rs6983561, rs7000448, rs7214479, rs7501939, rs7920517, rs7931342, rs9364554, rs9623117, rs10090154, rs10486567, rs10896449, rs10993994, and rs16901979. The weighted odds ratios for above SNPs ranged between 0.64 and 1.88 (all P < 0.05). Subgroup analysis further indicated that the significant associations of some SNPs existed only in specific ancestry population (P < 10⁻⁵). CONCLUSIONS The current meta-analysis demonstrated the moderate effects of above 31 SNPs on PCa and 14 independent PCa risk loci were identified.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
33
|
Helfand BT, Loeb S, Kan D, Catalona WJ. Number of prostate cancer risk alleles may identify possibly 'insignificant' disease. BJU Int 2011; 106:1602-6. [PMID: 20590552 DOI: 10.1111/j.1464-410x.2010.09440.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether the cumulative effects of five prostate cancer risk alleles (three single-nucleotide polymorphisms [SNPs] on chromosome 8Q24 and two SNPs on chromosome 17a) could help to identify possibly 'insignificant' disease. MATERIALS AND METHODS We genotyped 629 men of European ancestry who underwent radical prostatectomy at our institution between 2002 and 2007. Possibly 'insignificant' CaP was defined using the Ohori criteria (organ-confined, tumour volume <0.5 mL, Gleason pattern ≤4). Statistical analysis was used to compare patients with 'insignificant' and all other 'significant' cancer based upon genotype. Carrier status for the 5 SNPs were compared between patients with 'insignificant' disease and a separate population of 801 controls without CaP. RESULTS Overall, 38 (6.0%) patients with CaP met the Ohori criteria for 'insignificant' disease. Men with 'significant' cancer had a greater frequency of any of the five risk alleles than either patients with 'insignificant' disease or controls. None of the individual alleles genotyped on chromosomes 8 or 17 distinguished between 'significant' and 'insignificant' CaP. However, carriers of two or more risk alleles were more likely to have 'significant' disease. CONCLUSIONS Although no single risk allele distinguished 'insignificant' CaP, 'insignificant' disease was nearly three times as likely among carriers of ≤ one risk allele. Future studies are needed to further elucidate the cumulative relationship between CaP risk alleles and CaP aggressiveness.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | |
Collapse
|
34
|
Wang X, Dai J. Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 2010; 28:885-93. [PMID: 20333750 PMCID: PMC2962909 DOI: 10.1002/stem.419] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human OCT4 gene can generate at least three transcripts (OCT4A, OCT4B, and OCT4B1) and four protein isoforms (OCT4A, OCT4B-190, OCT4B-265, and OCT4B-164) by alternative splicing and alternative translation initiation. OCT4A is a transcription factor responsible for the pluripotency properties of embryonic stem (ES) cells. While OCT4B cannot sustain ES cell self-renewal, it may respond to cell stresses. Yet, the function of OCT4B1 is still unclear. Lack of distinction of OCT4 isoforms could lead to confusions and controversies on OCT4 in various tissues and cells. One important issue we emphasize in this review article is that alternatively spliced transcripts and alternative translation products of OCT4 exhibit diverse expression patterns and functions. Furthermore, simple approaches and methods to detect and distinguish OCT4 isoforms are discussed. This article underscores the importance of identifying and discriminating the expression and functions of OCT4 isoforms in stem cell research.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
35
|
Helfand BT, Fought AJ, Loeb S, Meeks JJ, Kan D, Catalona WJ. Genetic prostate cancer risk assessment: common variants in 9 genomic regions are associated with cumulative risk. J Urol 2010; 184:501-5. [PMID: 20620408 DOI: 10.1016/j.juro.2010.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE Five genetic variants along chromosomes 8q24 and 17q have a cumulative association with prostate cancer risk. Our research group previously reported an association between these variants and clinicopathological characteristics. More recently 4 additional prostate cancer susceptibility variants were identified on chromosomes 2p15, 10q11, 11q13 and Xp11. We performed cumulative risk assessment incorporating all 9 genetic variants and determined the relationship of the new variants to clinicopathological tumor features. MATERIALS AND METHODS The genotype of 9 variants was determined in 687 men of European ancestry who underwent radical prostatectomy from 2002 to 2008 and in 777 healthy volunteer controls. We compared the incidence of these variants in prostate cancer cases and controls, and assessed their cumulative risk. We also determined the relationship of carrier status for the 4 new variants and clinicopathological tumor features. RESULTS Prostate cancer cases had an increased incidence of all 9 risk variants compared to controls. A cumulative model including the 9 single nucleotide polymorphisms provided greater prostate cancer risk stratification than a model restricted to the original 5 single nucleotide polymorphisms described. Specifically men with 6 or more variants were at greater than 6-fold increased risk for prostate cancer. Although 2p15 and 11q13 carriers were more likely to have aggressive features, other clinicopathological features were similar in carriers and noncarriers. CONCLUSIONS Genetic variants located in 9 regions have a cumulative association with prostate cancer risk. Identification of an increasing number of single nucleotide polymorphisms may provide greater understanding of their combined relationship with CaP risk and disease aggressiveness.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
36
|
Fiorentino M, Capizzi E, Loda M. Blood and tissue biomarkers in prostate cancer: state of the art. Urol Clin North Am 2010; 37:131-41, Table of Contents. [PMID: 20152526 DOI: 10.1016/j.ucl.2009.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The prevalence of prostate cancer (PCa) is high and increases with age. PCa is the most common cutaneous cancer in American men. Prostate-specific antigen (PSA) screening has impacted the detection of PCa and is directly responsible for a dramatic decrease in stage at diagnosis. Gleason score and stage at the time of diagnosis remain the mainstay to predict prognosis, in the absence of more accurate and reliable tissue or blood biomarkers. Despite extensive research efforts, very few biomarkers of PCa have been introduced to date in clinical practice. Even screening with PSA has recently been questioned. A thorough analysis of all tissue and serum biomarkers in prostate cancer research cannot be easily synthesized, and goes beyond the scope of the present article. Therefore the authors focus here on the most recently reported tissue and circulating biomarkers for PCa whose application in clinical practice is either current or expected in the near future.
Collapse
Affiliation(s)
- Michelangelo Fiorentino
- Department of Pathology and Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, D1536, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
37
|
Spitz MR, Bondy ML. The evolving discipline of molecular epidemiology of cancer. Carcinogenesis 2009; 31:127-34. [PMID: 20022891 DOI: 10.1093/carcin/bgp246] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Classical epidemiologic studies have made seminal contributions to identifying the etiology of most common cancers. Molecular epidemiology was conceived of as an extension of traditional epidemiology to incorporate biomarkers with questionnaire data to further our understanding of the mechanisms of carcinogenesis. Early molecular epidemiologic studies employed functional assays. These studies were hampered by the need for sequential and/or prediagnostic samples, viable lymphocytes and the uncertainty of how well these functional data (derived from surrogate lymphocytic tissue) reflected events in the target tissue. The completion of the Human Genome Project and Hapmap Project, together with the unparalleled advances in high-throughput genotyping revolutionized the practice of molecular epidemiology. Early studies had been constrained by existing technology to use the hypothesis-driven candidate gene approach, with disappointing results. Pathway analysis addressed some of the concerns, although the study of interacting and overlapping gene networks remained a challenge. Whole-genome scanning approaches were designed as agnostic studies using a dense set of markers to capture much of the common genome variation to study germ-line genetic variation as risk factors for common complex diseases. It should be possible to exploit the wealth of these data for pharmacogenetic studies to realize the promise of personalized therapy. Going forward, the temptation for epidemiologists to be lured by high-tech 'omics' will be immense. Systems Epidemiology, the observational prototype of systems biology, is an extension of classical epidemiology to include powerful new platforms such as the transcriptome, proteome and metabolome. However, there will always be the need for impeccably designed and well-powered epidemiologic studies with rigorous quality control of data, specimen acquisition and statistical analysis.
Collapse
Affiliation(s)
- Margaret R Spitz
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|