1
|
Hassan MS, Irfan HM, Alamgeer, Sarwar M, Jabbar Z, Nawaz S. Emerging therapeutic frontiers in prostate health: Novel molecular targets and classical pathways in comparison with BPH and prostate cancer. Crit Rev Oncol Hematol 2025; 206:104590. [PMID: 39647642 DOI: 10.1016/j.critrevonc.2024.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024] Open
Abstract
Current therapeutic strategies for benign prostatic hyperplasia (BPH) and prostate cancer focus mainly on androgen receptors (AR) and 5-alpha reductase inhibition to suppress androgen-driven prostate growth. However, these methods often result in side effects and resistance. Recent research identifies novel targets like integrin and cadherin inhibitors, gene regulation, microRNAs, cellular senescence, and metabolomics pathways to overcome these limitations. These innovations offer more personalized approaches with potentially fewer adverse effects and reduced resistance compared to traditional androgen-focused therapies. Novel target sites and pathways, either suppressed or overexpressed, offer control points for modulating signaling in prostate diseases, suggesting future potential for treatment through innovative exogenous substances. Data was compiled from Google Scholar, PubMed, and Google to highlight the comparative potential of these emerging methods in enhancing treatment efficacy for prostate health.
Collapse
Affiliation(s)
- Muhammad Sajjad Hassan
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Hafiz Muhammad Irfan
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab Lahore, Punjab, Pakistan
| | - Muavia Sarwar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Zeeshan Jabbar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Shoaib Nawaz
- Department of Pharmacy, The University of Lahore, Sargodha campus, Sargodha, Punjab, Pakistan.
| |
Collapse
|
2
|
Cooper PO, Yang J, Wang HH, Broman MM, Jayasundara SM, Sahoo SS, Yan B, Awdalkreem GD, Cresswell GM, Wang L, Goossens E, Lanman NA, Doerge RW, Zheng F, Cheng L, Alqahtani S, Crist SA, Braun RE, Kazemian M, Jerde TJ, Ratliff TL. Inflammation impacts androgen receptor signaling in basal prostate stem cells through interleukin 1 receptor antagonist. Commun Biol 2024; 7:1390. [PMID: 39455902 PMCID: PMC11511867 DOI: 10.1038/s42003-024-07071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic prostate inflammation in patients with benign prostate hyperplasia (BPH) correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms remain unclear. In this study, we utilize a unique transgenic mouse model that mimics chronic non-bacterial prostatitis in men and investigate the impact of inflammation on androgen receptor (AR) in basal prostate stem cells (bPSC) and their differentiation in vivo. We find that inflammation significantly enhances AR levels and activity in bPSC. More importantly, we identify interleukin 1 receptor antagonist (IL-1RA) as a crucial regulator of AR in bPSC during inflammation. IL-1RA is one of the top molecules upregulated by inflammation, and inhibiting IL-1RA reverses the enhanced AR activity in organoids derived from inflamed bPSC. Additionally, IL-1RA appears to activate AR by counteracting IL-1α's inhibitory effect. Furthermore, using a lineage tracing model, we observe that inflammation induces bPSC proliferation and differentiation into luminal cells even under castrate conditions, indicating that AR activation driven by inflammation is sufficient to promote bPSC proliferation and differentiation. Taken together, our study uncovers mechanisms through which inflammation modulates AR signaling in bPSC and induces bPSC luminal differentiation that may contribute to prostate hyperplasia.
Collapse
Affiliation(s)
- Paula O Cooper
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Jiang Yang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, West Lafayette, IN, USA.
| | - Hsing-Hui Wang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Immune Monitoring and Genomics Facility, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Meaghan M Broman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | | | | | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Gada D Awdalkreem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Gregory M Cresswell
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Flow Cytometry Core Facility, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Liang Wang
- Department of Pharmacology and Toxicology, Department of Urology, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emery Goossens
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN, USA
- Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Faye Zheng
- Department of Statistics, Purdue University, West Lafayette, IN, USA
- Sorcero, Inc., Washington, DC, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, the Legorreta Cancer Center at Brown University, and Brown University Health, Providence, RI, USA
| | - Saeed Alqahtani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Scott A Crist
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | | | - Majid Kazemian
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Travis J Jerde
- Department of Pharmacology and Toxicology, Department of Urology, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Hwang B, Kim J, Park S, Chung HJ, Kim H, Choi YH, Kim WJ, Myung SC, Jeong TB, Kim KM, Jung JC, Lee MW, Kim JW, Moon SK. Ethanol Extracts of Cornus alba Improve Benign Prostatic Hyperplasia by Inhibiting Prostate Cell Proliferation through Modulating 5 Alpha-Reductase/Androgen Receptor Axis-Mediated Signaling. World J Mens Health 2024; 42:830-841. [PMID: 38606866 PMCID: PMC11439794 DOI: 10.5534/wjmh.230200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE The aim of this study was to investigate the efficacy of ethanol extracts of Cornus alba (ECA) against benign prostatic hyperplasia (BPH) in vitro and in vivo. MATERIALS AND METHODS The prostate stromal cells (WPMY-1) and epithelial cells (RWPE-1) were used to examine the action mechanism of ECA in BPH in vitro. ECA efficacy was evaluated in vivo using a testosterone propionate (TP)-induced BPH rat model. RESULTS Treatment with ECA inhibited the proliferation of prostate cells by inducing G1-phase cell cycle arrest through the regulation of positive and negative proteins. Treatment of prostate cells with ECA resulted in alterations in the mitogen-activated protein kinases and protein kinase B signaling pathways. The transcriptional binding activity of the NF-κB motif was suppressed in both ECA-treated prostate cells. In addition, treatment with ECA altered the level of BPH-associated axis markers (5α-reductase, fibroblast growth factor-2, androgen receptor, epidermal growth factor, Bcl-2, and Bax) in both cell lines. Finally, the administration of ECA attenuated the enlargement of prostatic tissues in the TP-induced BPH rat model, accompanied by histology, immunoblot, and serum dihydrotestosterone levels. CONCLUSIONS These results demonstrated that ECA exerted beneficial effects on BPH both in vitro and in vivo and might provide valuable information in the development of preventive or therapeutic agents for improving BPH.
Collapse
Affiliation(s)
- Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Jongyeob Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Solbi Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Hyun Joo Chung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Molecular Biodesign Research Center, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, Korea
| | | | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Molecular Biodesign Research Center, Chung-Ang University College of Medicine, Seoul, Korea
| | - Tae-Bin Jeong
- Life Science Research Institute, Novarex Co., Ltd., Cheongju, Korea
| | - Kyung-Mi Kim
- Life Science Research Institute, Novarex Co., Ltd., Cheongju, Korea
| | - Jae-Chul Jung
- Life Science Research Institute, Novarex Co., Ltd., Cheongju, Korea
| | - Min-Won Lee
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Jin Wook Kim
- Department of Medical Informatics, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Urology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea.
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
- Molecular Biodesign Research Center, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
5
|
Jin R, Forbes CM, Miller NL, Lafin J, Strand DW, Case T, Cates JM, Liu Q, Ramirez-Solano M, Mohler JL, Matusik RJ. Transcriptomic analysis of benign prostatic hyperplasia identifies critical pathways in prostatic overgrowth and 5-alpha reductase inhibitor resistance. Prostate 2024; 84:441-459. [PMID: 38168866 DOI: 10.1002/pros.24661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The medical therapy of prostatic symptoms (MTOPS) trial randomized men with symptoms of benign prostatic hyperplasia (BPH) and followed response of treatment with a 5α-reductase inhibitor (5ARI), an alpha-adrenergic receptor antagonist (α-blocker), the combination of 5ARI and α-blocker or no medical therapy (none). Medical therapy reduced risk of clinical progression by 66% but the reasons for nonresponse or loss of therapeutic response in some patients remains unresolved. Our previous work showed that prostatic glucocorticoid levels are increased in 5ARI-treated patients and that glucocorticoids can increased branching of prostate epithelia in vitro. To understand the transcriptomic changes associated with 5ARI treatment, we performed bulk RNA sequencing of BPH and control samples from patients who received 5ARI versus those that did not. Deconvolution analysis was performed to estimate cellular composition. Bulk RNA sequencing was also performed on control versus glucocorticoid-treated prostate epithelia in 3D culture to determine underlying transcriptomic changes associated with branching morphogenesis. METHOD Surgical BPH (S-BPH) tissue was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy while control tissue termed Incidental BPH (I-BPH) was obtained from the TZ of men undergoing radical prostatectomy for low-volume/grade prostatic adenocarcinoma confined to the peripheral zone. S-BPH patients were divided into four subgroups: men on no medical therapy (none: n = 7), α-blocker alone (n = 10), 5ARI alone (n = 6) or combination therapy (α-blocker and 5ARI: n = 7). Control I-BPH tissue was from men on no medical therapy (none: n = 8) or on α-blocker (n = 6). A human prostatic cell line in 3D culture that buds and branches was used to identify genes involved in early prostatic growth. Snap-frozen prostatic tissue taken at the time of surgery and 3D organoids were used for RNA-seq analysis. Bulk RNAseq data were deconvoluted using CIBERSORTx. Differentially expressed genes (DEG) that were statistically significant among S-BPH, I-BPH, and during budding and branching of organoids were used for pathway analysis. RESULTS Transcriptomic analysis between S-BPH (n = 30) and I-BPH (n = 14) using a twofold cutoff (p < 0.05) identified 377 DEG (termed BPH377) and a cutoff < 0.05 identified 3377 DEG (termed BPH3377). Within the S-BPH, the subgroups none and α-blocker were compared to patients on 5ARI to reveal 361 DEG (termed 5ARI361) that were significantly changed. Deconvolution analysis of bulk RNA seq data with a human prostate single cell data set demonstrated increased levels of mast cells, NK cells, interstitial fibroblasts, and prostate luminal cells in S-BPH versus I-BPH. Glucocorticoid (GC)-induced budding and branching of benign prostatic cells in 3D culture was compared to control organoids to identify early events in prostatic morphogenesis. GC induced 369 DEG (termed GC359) in 3D culture. STRING analysis divided the large datasets into 20-80 genes centered around a hub. In general, biological processes induced in BPH supported growth and differentiation such as chromatin modification and DNA repair, transcription, cytoskeleton, mitochondrial electron transport, ubiquitination, protein folding, and cholesterol synthesis. Identified signaling pathways were pooled to create a list of DEG that fell into seven hubs/clusters. The hub gene centrality was used to name the network including AP-1, interleukin (IL)-6, NOTCH1 and NOTCH3, NEO1, IL-13, and HDAC/KDM. All hubs showed connections to inflammation, chromatin structure, and development. The same approach was applied to 5ARI361 giving multiple networks, but the EGF and sonic hedgehog (SHH) hub was of particular interest as a developmental pathway. The BPH3377, 5ARI363, and GC359 lists were compared and 67 significantly changed DEG were identified. Common genes to the 3D culture included an IL-6 hub that connected to genes identified in BPH hubs that defined AP1, IL-6, NOTCH, NEO1, IL-13, and HDAC/KDM. CONCLUSIONS Reduction analysis of BPH and 3D organoid culture uncovered networks previously identified in prostatic development as being reinitiated in BPH. Identification of these pathways provides insight into the failure of medical therapy for BPH and new therapeutic targets for BPH/LUTS.
Collapse
Affiliation(s)
- Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor M Forbes
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Urology Department, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole L Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Lafin
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Douglas W Strand
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M Cates
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marisol Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Lin Z, Liu Z, Niu Y. Exploring the Enigma of 5-ARIs Resistance in Benign Prostatic Hyperplasia: Paving the Path for Personalized Medicine. Curr Urol Rep 2023; 24:579-589. [PMID: 37987980 DOI: 10.1007/s11934-023-01188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE OF REVIEW Despite the widespread utilization of 5-alpha reductase inhibitors (5-ARIs) for managing benign prostatic hyperplasia (BPH), certain BPH patients exhibit unresponsiveness to 5-ARIs therapy. This paper provides a comprehensive overview of the current perspectives on the mechanisms of 5-ARIs resistance in BPH patients and integrates potential biomarkers and underlying therapeutic options for 5-ARIs resistance. These findings may facilitate the development of novel or optimize more effective treatment options, and promote personalized medicine for BPH. RECENT FINDINGS The pathways contributing to resistance against 5-ARIs in certain BPH patients encompass epigenetic modifications, shifts in hormone levels, autophagic processes, and variations in androgen receptor structures, and these pathways may ultimately be attributed to inflammation. Promisingly, novel biomarkers, including intravesical prostatic protrusion, inflammatory factors, and single nucleotide polymorphisms, may offer predictive insights into the responsiveness to 5-ARIs therapy, empowering physicians to fine-tune treatment strategies. Additionally, on the horizon, GV1001 and mTOR inhibitors have emerged as potential alternative therapeutic modalities for addressing BPH in the future. After extensive investigation into BPH's pathological processes and molecular landscape, it is now recognized that diverse pathophysiological mechanisms may contribute to different BPH subtypes among individuals. This insight necessitates the adoption of personalized treatment strategies, moving beyond the prevailing one-size-fits-all paradigm centered around 5-ARIs. The imperative for early identification of individuals prone to treatment resistance will drive physicians to proactively stratify risk and adapt treatment tactics in future practice. This personalized medicine approach marks a progression from the current standard treatment model, emerging as the future trajectory in BPH management.
Collapse
Affiliation(s)
- Zhemin Lin
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Zhanliang Liu
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yinong Niu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
7
|
Jin R, Forbes C, Miller NL, Strand D, Case T, Cates JM, Kim HYH, Wages P, Porter NA, Mantione KM, Burke S, Mohler JL, Matusik RJ. Glucocorticoids are induced while dihydrotestosterone levels are suppressed in 5-alpha reductase inhibitor treated human benign prostate hyperplasia patients. Prostate 2022; 82:1378-1388. [PMID: 35821619 PMCID: PMC9427722 DOI: 10.1002/pros.24410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The development of benign prostatic hyperplasia (BPH) and medication-refractory lower urinary tract symptoms (LUTS) remain poorly understood. This study attempted to characterize the pathways associated with failure of medical therapy for BPH/LUTS. METHODS Transitional zone tissue levels of cholesterol and steroids were measured in patients who failed medical therapy for BPH/LUTS and controls. Prostatic gene expression was measured using qPCR and BPH cells were used in organoid culture to study prostatic branching. RESULTS BPH patients on 5-α-reductase inhibitor (5ARI) showed low levels of tissue dihydrotestosterone (DHT), increased levels of steroid 5-α-reductase type II (SRD5A2), and diminished levels of androgen receptor (AR) target genes, prostate-specific antigen (PSA), and transmembrane serine protease 2 (TMPRSS2). 5ARI raised prostatic tissue levels of glucocorticoids (GC), whereas alpha-adrenergic receptor antagonists (α-blockers) did not. Nuclear localization of GR in prostatic epithelium and stroma appeared in all patient samples. Treatment of four BPH organoid cell lines with dexamethasone, a synthetic GC, resulted in budding and branching. CONCLUSIONS After failure of medical therapy for BPH/LUTS, 5ARI therapy continued to inhibit androgenesis but a 5ARI-induced pathway increased tissue levels of GC not seen in patients on α-blockers. GC stimulation of organoids indicated that the GC receptors are a trigger for controlling growth of prostate glands. A 5ARI-induced pathway revealed GC activation can serve as a master regulator of prostatic branching and growth.
Collapse
Affiliation(s)
- Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor Forbes
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicole L. Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas Strand
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
| | - Thomas Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M. Cates
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hye-Young H. Kim
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Phillip Wages
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Krystin M. Mantione
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sarah Burke
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - James L. Mohler
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Yang Y, Sheng J, Hu S, Cui Y, Xiao J, Yu W, Peng J, Han W, He Q, Fan Y, Niu Y, Lin J, Tian Y, Chang C, Yeh S, Jin J. Estrogen and G protein-coupled estrogen receptor accelerate the progression of benign prostatic hyperplasia by inducing prostatic fibrosis. Cell Death Dis 2022; 13:533. [PMID: 35672281 PMCID: PMC9174491 DOI: 10.1038/s41419-022-04979-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Benign prostatic hyperplasia (BPH) is the most common and progressive urological disease in elderly men worldwide. Epidemiological studies have suggested that the speed of disease progression varies among individuals, while the pathophysiological mechanisms of accelerated clinical progression in some BPH patients remain to be elucidated. In this study, we defined patients with BPH as belonging to the accelerated progressive group (transurethral resection of the prostate [TURP] surgery at ≤50 years old), normal-speed progressive group (TURP surgery at ≥70 years old), or non-progressive group (age ≤50 years old without BPH-related surgery). We enrolled prostate specimens from the three groups of patients and compared these tissues to determine the histopathological characteristics and molecular mechanisms underlying BPH patients with accelerated progression. We found that the main histopathological characteristics of accelerated progressive BPH tissues were increased stromal components and prostatic fibrosis, which were accompanied by higher myofibroblast accumulation and collagen deposition. Mechanism dissection demonstrated that these accelerated progressive BPH tissues have higher expression of the CYP19 and G protein-coupled estrogen receptor (GPER) with higher estrogen biosynthesis. Estrogen functions via GPER/Gαi signaling to modulate the EGFR/ERK and HIF-1α/TGF-β1 signaling to increase prostatic stromal cell proliferation and prostatic stromal fibrosis. The increased stromal components and prostatic fibrosis may accelerate the clinical progression of BPH. Targeting this newly identified CYP19/estrogen/GPER/Gαi signaling axis may facilitate the development of novel personalized therapeutics to better suppress the progression of BPH.
Collapse
Affiliation(s)
- Yang Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Jindong Sheng
- grid.411918.40000 0004 1798 6427Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Shuai Hu
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Yun Cui
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Jing Xiao
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Wei Yu
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Jing Peng
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Wenke Han
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Qun He
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Yu Fan
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Yuanjie Niu
- grid.265021.20000 0000 9792 1228Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211 Tianjin, China
| | - Jun Lin
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Ye Tian
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Chawnshang Chang
- grid.265021.20000 0000 9792 1228Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211 Tianjin, China ,grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Shuyuan Yeh
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Jie Jin
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| |
Collapse
|
9
|
Sachdeva R, Kaur N, Kapoor P, Singla P, Thakur N, Singhmar S. Computational analysis of protein-protein interaction network of differentially expressed genes in benign prostatic hyperplasia. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:85-96. [PMID: 36059933 PMCID: PMC9336786 DOI: 10.22099/mbrc.2022.43721.1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a commonly occurring disease in aging men. It involves cellular proliferation of stromal and glandular tissues leading to prostate enlargement. Current drug therapies show several adverse effects such as sexual dysfunctions and cardiovascular side effects. Therefore, there is a need to develop more effective medical treatment for BPH. In this regard, we aimed to identify genes which play a critical role in BPH. We have obtained the dataset of differentially expressed genes (DEGs) of BPH from NCBI GEO. DEGs were investigated in the context of their protein-protein interactions (PPI). Hub genes i.e. genes associated with BPH were scrutinized based on the topological parameters of the PPI network. These were analyzed for functional annotations, pathway enrichment analysis and transcriptional regulation. In total, 38 hub genes were identified. Hub genes such as transcription factor activator protein-1 and adiponectin were found to play key roles in cellular proliferation and inflammation. Another gene peroxisome proliferator activated receptor gamma was suggested to cause obesity, a common comorbidity of BPH. Moreover, our results indicated an important role of transforming growth factor-beta (TGF-β) signaling and smooth muscle cell proliferation which may be responsible for prostate overgrowth and associated lower urinary tract symptoms frequently encountered in BPH patients. Zinc finger protein Snai1 was the most prominent transcription factor regulating the expression of hub genes that participate in TGF-β signaling. Overall, our study has revealed significant hub genes that can be employed as drug targets to develop potential therapeutic interventions to treat BPH.
Collapse
Affiliation(s)
- Ruchi Sachdeva
- Corresponding Author: Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India. Tel: +91 9876481718; Fax: +91 172 2661077, E. mail: AND
| | | | | | | | | | | |
Collapse
|
10
|
Vickman RE, Aaron-Brooks L, Zhang R, Lanman NA, Lapin B, Gil V, Greenberg M, Sasaki T, Cresswell GM, Broman MM, Paez JS, Petkewicz J, Talaty P, Helfand BT, Glaser AP, Wang CH, Franco OE, Ratliff TL, Nastiuk KL, Crawford SE, Hayward SW. TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease. Nat Commun 2022; 13:2133. [PMID: 35440548 PMCID: PMC9018703 DOI: 10.1038/s41467-022-29719-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Autoimmune (AI) diseases can affect many organs; however, the prostate has not been considered to be a primary target of these systemic inflammatory processes. Here, we utilize medical record data, patient samples, and in vivo models to evaluate the impact of inflammation, as seen in AI diseases, on prostate tissue. Human and mouse tissues are used to examine whether systemic targeting of inflammation limits prostatic inflammation and hyperplasia. Evaluation of 112,152 medical records indicates that benign prostatic hyperplasia (BPH) prevalence is significantly higher among patients with AI diseases. Furthermore, treating these patients with tumor necrosis factor (TNF)-antagonists significantly decreases BPH incidence. Single-cell RNA-seq and in vitro assays suggest that macrophage-derived TNF stimulates BPH-derived fibroblast proliferation. TNF blockade significantly reduces epithelial hyperplasia, NFκB activation, and macrophage-mediated inflammation within prostate tissues. Together, these studies show that patients with AI diseases have a heightened susceptibility to BPH and that reducing inflammation with a therapeutic agent can suppress BPH.
Collapse
Affiliation(s)
- Renee E Vickman
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - LaTayia Aaron-Brooks
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
- Department of Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Renyuan Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Brittany Lapin
- Biostatistics and Research Informatics, NorthShore University HealthSystem, Evanston, IL, 60201, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Victoria Gil
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Max Greenberg
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Takeshi Sasaki
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Gregory M Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Meaghan M Broman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - J Sebastian Paez
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jacqueline Petkewicz
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Pooja Talaty
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Brian T Helfand
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Alexander P Glaser
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Chi-Hsiung Wang
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
- Biostatistics and Research Informatics, NorthShore University HealthSystem, Evanston, IL, 60201, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Kent L Nastiuk
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Susan E Crawford
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA.
| |
Collapse
|
11
|
Shen Z, Li H. Long non-coding RNA GAS5 knockdown facilitates proliferation and impedes apoptosis by regulating miR-128-3p/FBLN2 axis in ox-LDL-induced THP-1 cells. Clin Hemorheol Microcirc 2021; 77:153-164. [PMID: 33074219 DOI: 10.3233/ch-200897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are found to involve in modulating the development of atherosclerosis (AS). But the molecular mechanism of lncRNA growth-arrest specific transcript 5 (GAS5) in AS is not fully understood. METHODS QRT-PCR was performed to measure the abundances of GAS5, miR-128-3p and fibulin 2 (FBLN2). Oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells were employed as cell models of AS. The cell proliferation and apoptosis were analyzed using CCK-8 and Flow cytometry assays, respectively. Levels of all protein were examined by western blot. The interaction among GAS5, miR-128-3p and FBLN2 was confirmed via dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS GAS5 was elevated and miR-128-3p was decreased in the serum of patients with AS and ox-LDL-stimulated THP-1 cells. Ox-LDL stimulation inhibited proliferation and induced apoptosis of THP-1 cells. Meanwhile, GAS5 directly targeted miR-128-3p and inversely modulated its expression. Importantly, GAS5 depletion facilitated cell proliferation and impaired apoptosis in ox-LDL-induced THP-1 cells. Additionally, GAS5 augmented FBLN2 expression through sponging miR-128-3p, and miR-128-3p facilitated proliferation and retarded apoptosis of ox-LDL-induced THP-1 cells by targeting FBLN2. CONCLUSION GAS5 knockdown promoted the growth of ox-LDL-induced THP-1 cells through down-modulating FBLN2 and increasing miR-128-3p, suggesting the potential value of GAS5 for treatment of AS.
Collapse
Affiliation(s)
- Zijian Shen
- Deparment of Vasculocardiology, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow, Jiangsu, China
| | - Haigang Li
- Deparment of Vasculocardiology, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow, Jiangsu, China
| |
Collapse
|
12
|
Popovics P, Awadallah WN, Kohrt SE, Case TC, Miller NL, Ricke EA, Huang W, Ramirez-Solano M, Liu Q, Vezina CM, Matusik RJ, Ricke WA, Grabowska MM. Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia. Prostate 2020; 80:731-741. [PMID: 32356572 PMCID: PMC7485377 DOI: 10.1002/pros.23986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a proinflammatory and profibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to proinflammatory stimuli and identified downstream targets of OPN in prostate stromal cells. METHODS Immunohistochemistry was performed on prostate sections obtained from the transition zone of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS (surgical BPH, S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging System and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot analysis. The ability of prostate cells to secrete osteopontin in response to IL-1β and TGF-β1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by enzyme-linked immunosorbent assay. Quantitative polymerase chain reaction was used to measure gene expression changes in these cells in response to OPN. RESULTS OPN immunostaining and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with the highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-β1 stimulated OPN secretion by NHPrE-1 cells and both IL-1β and TGF-β1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1, CXCL2, CXCL8, PTGS2, and IL6 in BHPrS-1, but not in epithelial cell lines. CONCLUSIONS OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by proinflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of proinflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Address correspondence and reprint requests to: Petra Popovics, University of Wisconsin, Department of Urology, WIMR 7128, 1111 Highland Avenue, Madison, WI 53705, Tel: +1 786 474 1086,
| | - Wisam N. Awadallah
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Sarah E. Kohrt
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Thomas C. Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Nicole L. Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Emily A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | | | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Chad M. Vezina
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Comparative Biosciences, University of Wisconsin–Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin–Madison, WI
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Magdalena M. Grabowska
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
13
|
Vickman RE, Franco OE, Moline DC, Vander Griend DJ, Thumbikat P, Hayward SW. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J Urol 2020; 7:191-202. [PMID: 32742923 PMCID: PMC7385520 DOI: 10.1016/j.ajur.2019.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a benign enlargement of the prostate in which incidence increases linearly with age, beginning at about 50 years old. BPH is a significant source of morbidity in aging men by causing lower urinary tract symptoms and acute urinary retention. Unfortunately, the etiology of BPH incidence and progression is not clear. This review highlights the role of the androgen receptor (AR) in prostate development and the evidence for its involvement in BPH. The AR is essential for normal prostate development, and individuals with defective AR signaling, such as after castration, do not experience prostate enlargement with age. Furthermore, decreasing dihydrotestosterone availability through therapeutic targeting with 5α-reductase inhibitors diminishes AR activity and results in reduced prostate size and symptoms in some BPH patients. While there is some evidence that AR expression is elevated in certain cellular compartments, how exactly AR is involved in BPH progression has yet to be elucidated. It is possible that AR signaling within stromal cells alters intercellular signaling and a "reawakening" of the embryonic mesenchyme, loss of epithelial AR leads to changes in paracrine signaling interactions, and/or chronic inflammation aids in stromal or epithelial proliferation evident in BPH. Unfortunately, a subset of patients fails to respond to current medical approaches, forcing surgical treatment even though age or associated co-morbidities make surgery less attractive. Fundamentally, new therapeutic approaches to treat BPH are not currently forthcoming, so a more complete molecular understanding of BPH etiology is necessary to identify new treatment options.
Collapse
Affiliation(s)
- Renee E. Vickman
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Daniel C. Moline
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
14
|
Song JH, Hwang B, Chung HJ, Moon B, Kim JW, Ko K, Kim BW, Kim WR, Kim WJ, Myung SC, Moon SK. Peanut Sprout Extracts Cultivated with Fermented Sawdust Medium Inhibits Benign Prostatic Hyperplasia In Vitro and In Vivo. World J Mens Health 2020; 38:385-396. [PMID: 32202087 PMCID: PMC7308230 DOI: 10.5534/wjmh.190173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE In this study, we tested whether the resveratrol-enriched peanut sprout extracts cultivated with fermented sawdust medium (PSEFS) could suppress benign prostatic hyperplasia (BPH) in vitro and in vivo. MATERIALS AND METHODS The mode of action of PSEFS was estimated by employing high-performance liquid chromatography analysis, MTT assay, cell counting, cell cycle analysis, immunoblots, and immunoprecipitation and electrophoretic mobility shift assay. In vivo efficacy of PSEFS was analyzed in BPH animal model via immunostaining and enzyme-linked immunosorbent assay. RESULTS We selected the Yesan peanut sprout variety, which contains the highest level of resveratrol. The resveratrol levels in PSEFS were higher than those obtained with hydroponic technology. PSEFS treatment induced cell cycle arrest at the G1-phase by downregulating CDK4 and cyclin D1 via p21WAF1 induction in the RWPE-1 and WPMY prostate cells, thereby decreasing their proliferation. Treatment with PSEFS decreased ERK1/2 phosphorylation and increased JNK phosphorylation. The levels of DNA-bound transcription factors associated with proliferation (nuclear factor-κB, Sp-1, and AP-1) decreased upon PSEFS treatment in both prostate cells. Additionally, the levels of the molecular markers of BPH development (5α-reductase, androgen receptor, fibroblast growth factor, Bcl-2, and Bax) also changed by the addition of PSEFS. Finally, in a testosterone propionate-induced BPH model in rats, PSEFS administration attenuated the size, weight, and thickness of prostate tissues with no signs of death. CONCLUSIONS These results showed that PSEFS inhibited BPH both in vitro and in vivo and might be useful in the development of a potential BPH therapy.
Collapse
Affiliation(s)
- Jun Hui Song
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Korea
| | - Hyun Joo Chung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul, Korea
| | - BoKyung Moon
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Korea
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul, Korea
| | - Jin Wook Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kisung Ko
- Department of Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | | | | | - Wun Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul, Korea.
| | - Sung Kwon Moon
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Korea
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
15
|
Obesity-associated inflammation induces androgenic to estrogenic switch in the prostate gland. Prostate Cancer Prostatic Dis 2020; 23:465-474. [PMID: 32029929 DOI: 10.1038/s41391-020-0208-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Our patient cohort revealed that obesity is strongly associated with steroid-5α reductase type 2 (SRD5A2) promoter methylation and reduced protein expression. The underlying mechanism of prostatic growth in this population is poorly understood. Here we addressed the question of how obesity, inflammation, and steroid hormones affect the development of benign prostatic hyperplasia (BPH). MATERIAL AND METHODS We used preadipocytes, macrophages, primary human prostatic stromal cells, prostate tissues from high-fat diet-induced obese mice, and 35 prostate specimens that were collected from patients who underwent transurethral resection of the prostate (TURP). RNA was isolated and quantified with RT-PCR. Genome DNA was extracted and SRD5A2 promoter methylation was determined. Sex hormones were determined by high-performance liquid chromatography-tandem mass spectrometry. Protein was extracted and determined by ELISA test. RESULTS In prostatic tissues with obesity, the levels of inflammatory mediators were elevated. SRD5A2 promoter methylation was promoted, but SRD5A2 expression was inhibited. Inflammatory mediators and saturated fatty acid synergistically regulated aromatase activity. Obesity promoted an androgenic to estrogenic switch in the prostate. CONCLUSIONS Our findings suggest that obesity-associated inflammation induces androgenic to estrogenic switch in the prostate gland, which may serve as an effective strategy for alternative therapies for management of lower urinary tract symptoms associated with BPH in select individuals.
Collapse
|
16
|
Urinary Biomarkers and Benign Prostatic Hyperplasia. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Aaron-Brooks LM, Sasaki T, Vickman RE, Wei L, Franco OE, Ji Y, Crawford SE, Hayward SW. Hyperglycemia and T Cell infiltration are associated with stromal and epithelial prostatic hyperplasia in the nonobese diabetic mouse. Prostate 2019; 79:980-993. [PMID: 30999385 PMCID: PMC6591734 DOI: 10.1002/pros.23809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prostatic inflammation and various proinflammatory systemic comorbidities, such as diabetes and obesity are associated with human benign prostatic hyperplasia (BPH). There is a paucity of in vivo models reflecting specific aspects of BPH pathogenesis. Our aim was to investigate the nonobese diabetic (NOD) mouse as a potential model for subsequent intervention studies. MATERIALS AND METHODS We used the NOD mouse, a model of autoimmune inflammation leading to type 1 diabetes to examine the effects of systemic inflammation and diabetes on the prostate. We assessed changes in prostatic histology, infiltrating leukocytes, and gene expression associated with aging and diabetic status. RESULTS Both stromal expansion and epithelial hyperplasia were observed in the prostates. Regardless of diabetic status, the degree of prostatic hyperplasia varied. Local inflammation was associated with a more severe prostatic phenotype in both diabetic and nondiabetic mice. Testicular atrophy was noted in diabetic mice, but prostate glands showed persistent focal cell proliferation. In addition, a prostatic intraepithelial neoplasia (PIN)-like phenotype was seen in several diabetic animals with an associated increase in c-Myc and MMP-2 expression. To examine changes in gene and cytokine expression we performed microarray and cytokine array analysis comparing the prostates of diabetic and nondiabetic animals. Microarray analysis revealed several differentially expressed genes including CCL3, CCL12, and TNFS10. Cytokine array analysis revealed increased expression of cytokines and proteases such as LDLR, IL28 A/B, and MMP-2 in diabetic mice. CONCLUSION Overall, NOD mice provide a model to examine the effects of hyperglycemia and chronic inflammation on the prostate, demonstrating relevance to some of the mechanisms present underlying BPH and potentially the initiation of prostate cancer.
Collapse
Affiliation(s)
- LaTayia M. Aaron-Brooks
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Takeshi Sasaki
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Renee E. Vickman
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Lin Wei
- Program of Computational Genomics & Medicine, NorthShore University HealthSystem, Evanston, IL
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Yuan Ji
- Program of Computational Genomics & Medicine, NorthShore University HealthSystem, Evanston, IL
| | - Susan E. Crawford
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
18
|
Barros-Silva JD, Linn DE, Steiner I, Guo G, Ali A, Pakula H, Ashton G, Peset I, Brown M, Clarke NW, Bronson RT, Yuan GC, Orkin SH, Li Z, Baena E. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep 2018; 25:3504-3518.e6. [PMID: 30566873 PMCID: PMC6315111 DOI: 10.1016/j.celrep.2018.11.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
The exact identity of castrate-resistant (CR) cells and their relation to CR prostate cancer (CRPC) is unresolved. We use single-cell gene profiling to analyze the molecular heterogeneity in basal and luminal compartments. Within the luminal compartment, we identify a subset of cells intrinsically resistant to castration with a bi-lineage gene expression pattern. We discover LY6D as a marker of CR prostate progenitors with multipotent differentiation and enriched organoid-forming capacity. Lineage tracing further reveals that LY6D+ CR luminal cells can produce LY6D- luminal cells. In contrast, in luminal cells lacking PTEN, LY6D+ cells predominantly give rise to LY6D+ tumor cells, contributing to high-grade PIN lesions. Gene expression analyses in patients' biopsies indicate that LY6D expression correlates with early disease progression, including progression to CRPC. Our studies thus identify a subpopulation of luminal progenitors characterized by LY6D expression and intrinsic castration resistance. LY6D may serve as a prognostic maker for advanced prostate cancer.
Collapse
Affiliation(s)
- João D Barros-Silva
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Douglas E Linn
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ivana Steiner
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Guoji Guo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adnan Ali
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Hubert Pakula
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Garry Ashton
- Histology Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Isabel Peset
- Imaging Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Michael Brown
- Genito-Urinary Cancer Research, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Noel W Clarke
- Genito-Urinary Cancer Research, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Department of Surgery, The Christie Hospital, Department of Urology, Salford Royal Hospitals, Manchester, UK
| | | | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Esther Baena
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK.
| |
Collapse
|
19
|
De Nunzio C, Presicce F, Tubaro A. Inflammatory mediators in the development and progression of benign prostatic hyperplasia. Nat Rev Urol 2018; 13:613-26. [PMID: 27686153 DOI: 10.1038/nrurol.2016.168] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Benign prostatic hyperplasia (BPH) is the most common urological disease in elderly men. Epidemiological data suggest a causal link between this condition and prostatic inflammation. The prostate is an immune-competent organ characterized by the presence of a complex immune system. Several stimuli, including infectious agents, urinary reflux, metabolic syndrome, the ageing process, and autoimmune response, have been described as triggers for the dysregulation of the prostatic immune system via different molecular pathways involving the development of inflammatory infiltrates. From a pathophysiological standpoint, subsequent tissue damage and chronic tissue healing could result in the development of BPH nodules.
Collapse
Affiliation(s)
- Cosimo De Nunzio
- Department of Urology, Sant'Andrea Hospital, 'Sapienza' University of Rome, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Fabrizio Presicce
- Department of Urology, Sant'Andrea Hospital, 'Sapienza' University of Rome, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Andrea Tubaro
- Department of Urology, Sant'Andrea Hospital, 'Sapienza' University of Rome, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| |
Collapse
|
20
|
Prostate-Associated Gene 4 (PAGE4): Leveraging the Conformational Dynamics of a Dancing Protein Cloud as a Therapeutic Target. J Clin Med 2018; 7:jcm7060156. [PMID: 29914187 PMCID: PMC6025510 DOI: 10.3390/jcm7060156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of mortality and morbidity globally. While genomic alterations have been identified in PCa, in contrast to some other cancers, use of such information to personalize treatment is still in its infancy. Here, we discuss how PAGE4, a protein which appears to act both as an oncogenic factor as well as a metastasis suppressor, is a novel therapeutic target for PCa. Inhibiting PAGE4 may be a viable strategy for low-risk PCa where it is highly upregulated. Conversely, PAGE4 expression is downregulated in metastatic PCa and, therefore, reinstituting its sustained expression may be a promising option to subvert or attenuate androgen-resistant PCa. Thus, fine-tuning the levels of PAGE4 may represent a novel approach for personalized medicine in PCa.
Collapse
|
21
|
Paterniti I, Campolo M, Cordaro M, Siracusa R, Filippone A, Esposito E, Cuzzocrea S. Effects of different natural extracts in an experimental model of benign prostatic hyperplasia (BPH). Inflamm Res 2018; 67:617-626. [PMID: 29679313 DOI: 10.1007/s00011-018-1152-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN To characterize the impact of inflammatory process and oxidative stress in the degree of benign prostatic hyperplasia (BPH), a common condition in which chronic inflammation plays a crucial role, we investigated the effect of different plant extract preparations in an in vivo model of BPH as new therapeutic target. MATERIAL BPH was made in rats with daily administration of testosterone propionate (3 mg/kg) for 14 days. TREATMENT Rats were randomized into different groups to receive oral administration of plant extract preparations: Serenoa repens with selenium (SeR 28.5 mg/kg associated with Se 0.005 mg/kg), Teoside (2 mg/kg), and Puryprost (14 mg/kg containing Teoside 50% 2 mg/kg and Epilobium 12 mg/kg). METHODS After 14 days, rats were killed and histological changes, prostate weight and apoptotic pathways were assayed. RESULTS The results obtained demonstrated that the association of treatments reduced prostate weight and hyperplasia, while treatment with Puryprost demonstrated a greater trend of protection compared to the other treatments. CONCLUSION Thus, our results indicate that plant extract could be considered as new useful therapy in the treatment of BPH with particular attention on Puryprost that represents a rational approach to reduce BPH through modulation of inflammatory process and anti-oxidant process.
Collapse
Affiliation(s)
- Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres No. 31, 98166, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres No. 31, 98166, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres No. 31, 98166, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres No. 31, 98166, Messina, Italy
| | - Antonio Filippone
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres No. 31, 98166, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres No. 31, 98166, Messina, Italy. .,Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, USA.
| |
Collapse
|
22
|
Tyagi P, Motley SS, Koyama T, Kashyap M, Gingrich J, Yoshimura N, Fowke JH. Molecular correlates in urine for the obesity and prostatic inflammation of BPH/LUTS patients. Prostate 2018; 78:17-24. [PMID: 29080225 PMCID: PMC5716834 DOI: 10.1002/pros.23439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/29/2017] [Indexed: 11/07/2022]
Abstract
PURPOSE Benign prostatic hyperplasia (BPH) is strongly associated with obesity and prostatic tissue inflammation, but the molecular underpinning of this relationship is not known. Here, we examined the association between urine levels of chemokines/adipokines with histological markers of prostate inflammation, obesity, and lower urinary tract symptoms LUTS in BPH patients. METHODS Frozen urine specimens from 207 BPH/LUTS patients enrolled in Nashville Men's Health Study were sent for blinded analysis of 11 analytes, namely sIL-1RA, CXC chemokines (CXCL-1, CXCL-8, CXCL-10), CC chemokines (CCL2, CCL3, CCL5), PDGF-BB, interleukins IL-6, IL-17, and sCD40L using Luminex™ xMAP® technology. After adjusting for age and medication use, the urine levels of analytes were correlated with the scales of obesity, prostate inflammation grade, extent, and markers of lymphocytic infiltration (CD3 and CD20) using linear regression. RESULTS sIL-1RA levels were significantly raised with higher BMI, waist circumference and waist-hip ratio in BPH patients after correction for multiple testing (P = 0.02). Men with greater overall extent of inflammatory infiltrates and maximal CD3 infiltration were marginally associated with CXCL-10 (P = 0.054) and CCL5 (P = 0.054), respectively. CCL3 in 15 patients with moderate to severe grade inflammation was marginally associated with maximal CD20 infiltration (P = 0.09), whereas CCL3 was undetectable in men with mild prostate tissue inflammation. There was marginal association of sCD40L with AUA-SI scores (P = 0.07). CONCLUSIONS Strong association of sIL-1RA in urine with greater body size supports it as a major molecular correlate of obesity in the urine of BPH patients. Increased urine levels of CXCL-10, CCL5, and CCL3 were marginally associated with the scores for prostate tissue inflammation and lymphocytic infiltration. Overall, elevated urinary chemokines support that BPH is a metabolic disorder and suggest a molecular link between BPH/LUTS and prostatic inflammation.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh
| | - Saundra S. Motley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37032
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37032
| | | | | | | | - Jay H. Fowke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37032
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37032
| |
Collapse
|
23
|
Espinosa-Juárez JV, Colado-Velázquez JI, Mailloux-Salinas P, Medina-Contreras J, Correa-López PV, Gómez-Viquez NL, Meza-Cuenca F, Huang F, Bravo G. Beneficial effects of lipidic extracts of saladette tomato pomace and Serenoa repens on prostate and bladder health in obese male Wistar rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4451-4458. [PMID: 28276068 DOI: 10.1002/jsfa.8308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/22/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Obesity is associated with increased risk of a number of serious medical conditions, including urological disorders. This study investigated the effect of lipidic extracts of saladette tomato pomace (STP) and Serenoa repens (SR) on the prostate and bladder in a rat obese model induced by high-carbohydrate diet. RESULTS High-sucrose-fed rats showed higher prostate weight as well as increased contractility and stromal and epithelial hyperplasia in the prostate. Treatment with STP and SR improved contractility and diminished hyperplasia and hypertrophy in the prostate. Obese animals also showed impaired bladder contractility, but neither extract reversed this deterioration. In the histological study, a disarray in the process of smooth muscle cell proliferation with non-parallel fibers was observed; interestingly, treatment with STP and SR led to improvement in this derangement. CONCLUSION These findings indicated impaired contractility and hyperplasia in the prostate and bladder of obese rats induced by high sucrose. STP and SR could enhance prostate function by reducing contractility and hyperplasia and improve smooth muscle fiber structure and decrease cell proliferation in the bladder, suggesting their possible health-beneficial effects on lower urinary tract symptoms. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fengyang Huang
- Department of Pharmacology and Toxicology, Hospital Infantil de México Federico Gómez, México City, Mexico
| | - Guadalupe Bravo
- Pharmacobiology Department, Cinvestav-IPN, México City, Mexico
| |
Collapse
|
24
|
Strand DW, Costa DN, Francis F, Ricke WA, Roehrborn CG. Targeting phenotypic heterogeneity in benign prostatic hyperplasia. Differentiation 2017; 96:49-61. [PMID: 28800482 DOI: 10.1016/j.diff.2017.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
Abstract
Benign prostatic hyperplasia and associated lower urinary tract symptoms remain difficult to treat medically, resulting in hundreds of thousands of surgeries performed annually in elderly males. New therapies have not improved clinical outcomes since alpha blockers and 5 alpha reductase inhibitors were introduced in the 1990s. An underappreciated confounder to identifying novel targets is pathological heterogeneity. Individual patients display unique phenotypes, composed of distinct cell types. We have yet to develop a cellular or molecular understanding of these unique phenotypes, which has led to failure in developing targeted therapies for personalized medicine. This review covers the strategic experimental approach to unraveling the cellular pathogenesis of discrete BPH phenotypes and discusses how to incorporate these findings into the clinic to improve outcomes.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of Urology, University of Texas Southwestern Medical Center, USA.
| | - Daniel N Costa
- Department of Radiology, University of Texas Southwestern Medical Center, USA
| | - Franto Francis
- Department of Pathology, University of Texas Southwestern Medical Center, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin School of Medicine, USA
| | - Claus G Roehrborn
- Department of Urology, University of Texas Southwestern Medical Center, USA
| |
Collapse
|
25
|
Kulkarni P, Dunker AK, Weninger K, Orban J. Prostate-associated gene 4 (PAGE4), an intrinsically disordered cancer/testis antigen, is a novel therapeutic target for prostate cancer. Asian J Androl 2017; 18:695-703. [PMID: 27270343 PMCID: PMC5000790 DOI: 10.4103/1008-682x.181818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prostate-associated gene 4 (PAGE4) is a remarkably prostate-specific Cancer/Testis Antigen that is highly upregulated in the human fetal prostate and its diseased states but not in the adult normal gland. PAGE4 is an intrinsically disordered protein (IDP) that functions as a stress-response protein to suppress reactive oxygen species as well as prevent DNA damage. In addition, PAGE4 is also a transcriptional regulator that potentiates transactivation by the oncogene c-Jun. c-Jun forms the AP-1 complex by heterodimerizing with members of the Fos family and plays an important role in the development and pathology of the prostate gland, underscoring the importance of the PAGE4/c-Jun interaction. HIPK1, also a component of the stress-response pathway, phosphorylates PAGE4 at T51 which is critical for its transcriptional activity. Phosphorylation induces conformational and dynamic switching in the PAGE4 ensemble leading to a new cellular function. Finally, bioinformatics evidence suggests that the PAGE4 mRNA could be alternatively spliced resulting in four potential isoforms of the polypeptide alluding to the possibility of a range of conformational ensembles with latent functions. Considered together, the data suggest that PAGE4 may represent the first molecular link between stress and prostate cancer (PCa). Thus, pharmacologically targeting PAGE4 may be a novel opportunity for treating and managing patients with PCa, especially patients with low-risk disease.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and Informatics, Indianapolis, IN 46202, USA
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
26
|
Liu L, Liu Y, Liu C, Zhang Z, Du Y, Zhao H. Analysis of gene expression profile identifies potential biomarkers for atherosclerosis. Mol Med Rep 2016; 14:3052-8. [PMID: 27573188 PMCID: PMC5042771 DOI: 10.3892/mmr.2016.5650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 12/30/2015] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to identify potential biomarkers for atherosclerosis via analysis of gene expression profiles. The microarray dataset no. GSE20129 was downloaded from the Gene Expression Omnibus database. A total of 118 samples from the peripheral blood of female patients was used, including 47 atherosclerotic and 71 non‑atherosclerotic patients. The differentially expressed genes (DEGs) in the atherosclerosis samples were identified using the Limma package. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery tool. The recursive feature elimination (RFE) algorithm was applied for feature selection via iterative classification, and support vector machine classifier was used for the validation of prediction accuracy. A total of 430 DEGs in the atherosclerosis samples were identified, including 149 up‑ and 281 downregulated genes. Subsequently, the RFE algorithm was used to identify 11 biomarkers, whose receiver operating characteristic curves had an area under curve of 0.92, indicating that the identified 11 biomarkers were representative. The present study indicated that APH1B, JAM3, FBLN2, CSAD and PSTPIP2 may have important roles in the progression of atherosclerosis in females and may be potential biomarkers for early diagnosis and prognosis as well as treatment targets for this disease.
Collapse
Affiliation(s)
- Luran Liu
- Department of Neurology and
- Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Liu
- Department of Neurology and
- Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | | | | | | | | |
Collapse
|
27
|
Qaiser F, Trembley JH, Sadiq S, Muhammad I, Younis R, Hashmi SN, Murtaza B, Rector TS, Naveed AK, Ahmed K. Examination of CK2α and NF-κB p65 expression in human benign prostatic hyperplasia and prostate cancer tissues. Mol Cell Biochem 2016; 420:43-51. [PMID: 27435858 PMCID: PMC6668611 DOI: 10.1007/s11010-016-2765-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 02/08/2023]
Abstract
Protein kinase CK2 plays a critical role in cell growth, proliferation, and suppression of cell death. CK2 is overexpressed, especially in the nuclear compartment, in the majority of cancers, including prostate cancer (PCa). CK2-mediated activation of transcription factor nuclear factor kappa B (NF-κB) p65 is a key step in cellular proliferation, resulting in translocation of NF-κB p65 from the cytoplasm to the nucleus. As CK2 expression and activity are also elevated in benign prostatic hyperplasia (BPH), we sought to increase the knowledge of CK2 function in benign and malignant prostate by examination of the relationships between nuclear CK2 and nuclear NF-κB p65 protein expression. The expression level and localization of CK2α and NF-κB p65 proteins in PCa and BPH tissue specimens was determined. Nuclear CK2α and NF-κB p65 protein levels are significantly higher in PCa compared with BPH, and these proteins are positively correlated with each other in both diseases. Nuclear NF-κB p65 levels correlated with Ki-67 or with cytoplasmic NF-κB p65 expression in BPH, but not in PCa. The findings provide information that combined analysis of CK2α and NF-κB p65 expression in prostate specimens relates to the disease status. Increased nuclear NF-κB p65 expression levels in PCa specifically related to nuclear CK2α levels, indicating a possible CK2-dependent relationship in malignancy. In contrast, nuclear NF-κB p65 protein levels related to both Ki-67 and cytoplasmic NF-κB p65 levels exclusively in BPH, suggesting a potential separate impact for NF-κB p65 function in proliferation for benign disease as opposed to malignant disease.
Collapse
Affiliation(s)
- Fatima Qaiser
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sarah Sadiq
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
| | - Iqbal Muhammad
- Department of Histopathology, Army Medical College, Rawalpindi, Pakistan
| | - Rubina Younis
- Department of Histopathology, Army Medical College, Rawalpindi, Pakistan
| | - Shoaib Naiyar Hashmi
- Department of Histopathology, Armed Forces Institute of Pathology, Combined Military Hospital, Rawalpindi, Pakistan
| | - Badar Murtaza
- Armed Forces Institute of Urology, Combined Military Hospital, Rawalpindi, Pakistan
| | - Thomas S Rector
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
| | - Abdul Khaliq Naveed
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
- Al-Mizan Campus, Riphah International University, 274 Peshawar Road, Rawalpindi, Pakistan
| | - Khalil Ahmed
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
28
|
Austin DC, Strand DW, Love HL, Franco OE, Grabowska MM, Miller NL, Hameed O, Clark PE, Matusik RJ, Jin RJ, Hayward SW. NF-κB and androgen receptor variant 7 induce expression of SRD5A isoforms and confer 5ARI resistance. Prostate 2016; 76:1004-18. [PMID: 27197599 PMCID: PMC4912960 DOI: 10.1002/pros.23195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is treated with 5α-reductase inhibitors (5ARI). These drugs inhibit the conversion of testosterone to dihydrotestosterone resulting in apoptosis and prostate shrinkage. Most patients initially respond to 5ARIs; however, failure is common especially in inflamed prostates, and often results in surgery. This communication examines a link between activation of NF-κB and increased expression of SRD5A2 as a potential mechanism by which patients fail 5ARI therapy. METHODS Tissue was collected from "Surgical" patients, treated specifically for lower urinary tract symptoms secondary to advanced BPH; and, cancer free transition zone from "Incidental" patients treated for low grade, localized peripheral zone prostate cancer. Clinical, molecular and histopathological profiles were analyzed. Human prostatic stromal and epithelial cell lines were genetically modified to regulate NF-κB activity, androgen receptor (AR) full length (AR-FL), and AR variant 7 (AR-V7) expression. RESULTS SRD5A2 is upregulated in advanced BPH. SRD5A2 was significantly associated with prostate volume determined by Transrectal Ultrasound (TRUS), and with more severe lower urinary tract symptoms (LUTS) determined by American Urological Association Symptom Score (AUASS). Synthesis of androgens was seen in cells in which NF-κB was activated. AR-FL and AR-V7 expression increased SRD5A2 expression while forced activation of NF-κB increased all three SRD5A isoforms. Knockdown of SRD5A2 in the epithelial cells resulted in significant reduction in proliferation, AR target gene expression, and response to testosterone (T). In tissue recombinants, canonical NF-κB activation in prostatic epithelium elevated all three SRD5A isoforms and resulted in in vivo growth under castrated conditions. CONCLUSION Increased BPH severity in patients correlates with SRD5A2 expression. We demonstrate that NF-κB and AR-V7 upregulate SRD5A expression providing a mechanism to explain failure of 5ARI therapy in BPH patients. Prostate 76:1004-1018, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David C. Austin
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas W. Strand
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Harold L. Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Magdalena M. Grabowska
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicole L. Miller
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar Hameed
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Peter E. Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J. Matusik
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ren J. Jin
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Simon W. Hayward
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| |
Collapse
|
29
|
Fowke JH, Koyama T, Fadare O, Clark PE. Does Inflammation Mediate the Obesity and BPH Relationship? An Epidemiologic Analysis of Body Composition and Inflammatory Markers in Blood, Urine, and Prostate Tissue, and the Relationship with Prostate Enlargement and Lower Urinary Tract Symptoms. PLoS One 2016; 11:e0156918. [PMID: 27336586 PMCID: PMC4918934 DOI: 10.1371/journal.pone.0156918] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND BPH is a common disease associated with age and obesity. However, the biological pathways between obesity and BPH are unknown. Our objective was to investigate biomarkers of systemic and prostate tissue inflammation as potential mediators of the obesity and BPH association. METHODS Participants included 191 men without prostate cancer at prostate biopsy. Trained staff measured weight, height, waist and hip circumferences, and body composition by bioelectric impedance analysis. Systemic inflammation was estimated by serum IL-6, IL-1β, IL-8, and TNF-α; and by urinary prostaglandin E2 metabolite (PGE-M), F2-isoprostane (F2iP), and F2-isoprostane metabolite (F2iP-M) levels. Prostate tissue was scored for grade, aggressiveness, extent, and location of inflammatory regions, and also stained for CD3 and CD20 positive lymphocytes. Analyses investigated the association between multiple body composition scales, systemic inflammation, and prostate tissue inflammation against BPH outcomes, including prostate size at ultrasound and LUTS severity by the AUA-symptom index (AUA-SI). RESULTS Prostate size was significantly associated with all obesity measures. For example, prostate volume was 5.5 to 9.0 mls larger comparing men in the 25th vs. 75th percentile of % body fat, fat mass (kg) or lean mass (kg). However, prostate size was not associated with proinflammatory cytokines, PGE-M, F2iP, F2iP-M, prostate tissue inflammation scores or immune cell infiltration. In contrast, the severity of prostate tissue inflammation was significantly associated with LUTS, such that there was a 7 point difference in AUA-SI between men with mild vs. severe inflammation (p = 0.004). Additionally, men with a greater waist-hip ratio (WHR) were significantly more likely to have severe prostate tissue inflammation (p = 0.02), and a high WHR was significantly associated with moderate/severe LUTS (OR = 2.56, p = 0.03) among those participants with prostate tissue inflammation. CONCLUSION The WHR, an estimate of centralized obesity, was associated with the severity of inflammatory regions in prostate tissue and with LUTS severity among men with inflammation. Our results suggest centralized obesity advances prostate tissue inflammation to increase LUTS severity. Clinically targeting centralized fat deposition may reduce LUTS severity. Mechanistically, the lack of a clear relationship between systemic inflammatory or oxidative stress markers in blood or urine with prostate size or LUTS suggests pathways other than systemic inflammatory signaling may link body adiposity to BPH outcomes.
Collapse
Affiliation(s)
- Jay H. Fowke
- Departments of Medicine and Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego, San Diego, CA, United States of America
| | - Peter E. Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
30
|
Kulkarni P, Getzenberg RH. Disorder, Promiscuous Interactions, and Stochasticity Regulate State Switching in the Unstable Prostate. J Cell Biochem 2016; 117:2235-40. [PMID: 27152744 DOI: 10.1002/jcb.25578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
A causal link between benign prostatic hyperplasia (BPH) and prostate cancer has long been suspected but not widely accepted. A new model is proposed that supports such a connection. In contrast to the prevailing wisdom, our model, that draws on dynamical systems theory, suggests that in response to stress, epithelial cells in the unstable gland can give rise to both types of diseases via a phenotypic switching mechanism. The central idea is that phenotypic switching is a stochastic process which exploits the plasticity of the epithelial cell. It is driven by 'noise' contributed by the conformational dynamics of proteins that are intrinsically disordered. In a system that is noisy when stressed, disorder promotes promiscuity, unmasks latent information, and rewires the network to cause phenotypic switching. Cells with newly acquired phenotypes can transcend the traditional zonal boundaries to give rise to BPH or prostate cancer depending on the microenvironment. Establishing causality between the two diseases may provide us with an opportunity to better understand their etiology and guide prevention and treatment strategies. J. Cell. Biochem. 117: 2235-2240, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
| | | |
Collapse
|
31
|
Austin DC, Strand DW, Love HL, Franco OE, Jang A, Grabowska MM, Miller NL, Hameed O, Clark PE, Fowke JH, Matusik RJ, Jin RJ, Hayward SW. NF-κB and androgen receptor variant expression correlate with human BPH progression. Prostate 2016; 76:491-511. [PMID: 26709083 PMCID: PMC4763342 DOI: 10.1002/pros.23140] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a common, chronic progressive disease. Inflammation is associated with prostatic enlargement and resistance to 5α-reductase inhibitor (5ARI) therapy. Activation of the nuclear factor-kappa B (NF-κB) pathway is linked to both inflammation and ligand-independent prostate cancer progression. METHODS NF-κB activation and androgen receptor variant (AR-V) expression were quantified in transition zone tissue samples from patients with a wide range of AUASS from incidental BPH in patients treated for low grade, localized peripheral zone prostate cancer to advanced disease requiring surgical intervention. To further investigate these pathways, human prostatic stromal and epithelial cell lines were transduced with constitutively active or kinase dead forms of IKK2 to regulate canonical NF-κB activity. The effects on AR full length (AR-FL) and androgen-independent AR-V expression as well as cellular growth and differentiation were assessed. RESULTS Canonical NF-κB signaling was found to be upregulated in late versus early stage BPH, and to be strongly associated with non-insulin dependent diabetes mellitus. Elevated expression of AR-variant 7 (AR-V7), but not other AR variants, was found in advanced BPH samples. Expression of AR-V7 significantly correlated with the patient AUASS and TRUS volume. Forced activation of canonical NF-κB in human prostatic epithelial and stromal cells resulted in elevated expression of both AR-FL and AR-V7, with concomitant ligand-independent activation of AR reporters. Activation of NF-κB and over expression of AR-V7 in human prostatic epithelial cells maintained cell viability in the face of 5ARI treatment. CONCLUSION Activation of NF-κB and AR-V7 in the prostate is associated with increased disease severity. AR-V7 expression is inducible in human prostate cells by forced activation of NF-κB resulting in resistance to 5ARI treatment, suggesting a potential mechanism by which patients may become resistant to 5ARI therapy.
Collapse
Affiliation(s)
- David C Austin
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas W Strand
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Harold L Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Alex Jang
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Magdalena M Grabowska
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicole L Miller
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar Hameed
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Peter E Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jay H Fowke
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Matusik
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ren J Jin
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Simon W Hayward
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| |
Collapse
|
32
|
Strand DW, Aaron L, Henry G, Franco OE, Hayward SW. Isolation and analysis of discreet human prostate cellular populations. Differentiation 2016; 91:139-51. [PMID: 26546040 PMCID: PMC4854811 DOI: 10.1016/j.diff.2015.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 02/03/2023]
Abstract
The use of lineage tracing in transgenic mouse models has revealed an abundance of subcellular phenotypes responsible for maintaining prostate homeostasis. The ability to use fresh human tissues to examine the hypotheses generated by these mouse experiments has been greatly enhanced by technical advances in tissue processing, flow cytometry and cell culture. We describe in detail the optimization of protocols for each of these areas to facilitate research on solving human prostate diseases through the analysis of human tissue.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of Urology, UT Southwestern University Medical Center, Dallas, TX, USA
| | - LaTayia Aaron
- Department of Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Gervaise Henry
- Department of Urology, UT Southwestern University Medical Center, Dallas, TX, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University Health System, Research Institute, Evanston, IL, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University Health System, Research Institute, Evanston, IL, USA.
| |
Collapse
|
33
|
Grabowska MM, Kelly SM, Reese AL, Cates JM, Case TC, Zhang J, DeGraff DJ, Strand DW, Miller NL, Clark PE, Hayward SW, Gronostajski RM, Anderson PD, Matusik RJ. Nfib Regulates Transcriptional Networks That Control the Development of Prostatic Hyperplasia. Endocrinology 2016; 157:1094-109. [PMID: 26677878 PMCID: PMC4769366 DOI: 10.1210/en.2015-1312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A functional complex consisting of androgen receptor (AR) and forkhead box A1 (FOXA1) proteins supports prostatic development, differentiation, and disease. In addition, the interaction of FOXA1 with cofactors such as nuclear factor I (NFI) family members modulates AR target gene expression. However, the global role of specific NFI family members has yet to be described in the prostate. In these studies, chromatin immunoprecipitation followed by DNA sequencing in androgen-dependent LNCaP prostate cancer cells demonstrated that 64.3% of NFIB binding sites are associated with AR and FOXA1 binding sites. Interrogation of published data revealed that genes associated with NFIB binding sites are predominantly induced after dihydrotestosterone treatment of LNCaP cells, whereas NFIB knockdown studies demonstrated that loss of NFIB drives increased AR expression and superinduction of a subset of AR target genes. Notably, genes bound by NFIB only are associated with cell division and cell cycle. To define the role of NFIB in vivo, mouse Nfib knockout prostatic tissue was rescued via renal capsule engraftment. Loss of Nfib expression resulted in prostatic hyperplasia, which did not resolve in response to castration, and an expansion of an intermediate cell population in a small subset of grafts. In human benign prostatic hyperplasia, luminal NFIB loss correlated with more severe disease. Finally, some areas of intermediate cell expansion were also associated with NFIB loss. Taken together, these results show a fundamental role for NFIB as a coregulator of AR action in the prostate and in controlling prostatic hyperplasia.
Collapse
Affiliation(s)
- Magdalena M Grabowska
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Stephen M Kelly
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Amy L Reese
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Justin M Cates
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Tom C Case
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Jianghong Zhang
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - David J DeGraff
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Douglas W Strand
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Nicole L Miller
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Peter E Clark
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Simon W Hayward
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Richard M Gronostajski
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Philip D Anderson
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Robert J Matusik
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
34
|
Strand DW, Goldstein AS. The many ways to make a luminal cell and a prostate cancer cell. Endocr Relat Cancer 2015; 22:T187-97. [PMID: 26307022 PMCID: PMC4893788 DOI: 10.1530/erc-15-0195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
Research in the area of stem/progenitor cells has led to the identification of multiple stem-like cell populations implicated in prostate homeostasis and cancer initiation. Given that there are multiple cells that can regenerate prostatic tissue and give rise to prostate cancer, our focus should shift to defining the signaling mechanisms that drive differentiation and progenitor self-renewal. In this article, we will review the literature, present the evidence and raise important unanswered questions that will help guide the field forward in dissecting critical mechanisms regulating stem-cell differentiation and tumor initiation.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of UrologyUniversity of Texas Southwestern, Dallas, Texas, USADepartment of Molecular and Medical PharmacologyDepartment of Urology, David Geffen School of Medicine, Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Andrew S Goldstein
- Department of UrologyUniversity of Texas Southwestern, Dallas, Texas, USADepartment of Molecular and Medical PharmacologyDepartment of Urology, David Geffen School of Medicine, Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
35
|
He Y, Chen Y, Mooney SM, Rajagopalan K, Bhargava A, Sacho E, Weninger K, Bryan PN, Kulkarni P, Orban J. Phosphorylation-induced Conformational Ensemble Switching in an Intrinsically Disordered Cancer/Testis Antigen. J Biol Chem 2015; 290:25090-102. [PMID: 26242913 DOI: 10.1074/jbc.m115.658583] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 11/06/2022] Open
Abstract
Prostate-associated gene 4 (PAGE4) is an intrinsically disordered cancer/testis antigen that is up-regulated in the fetal and diseased human prostate. Knocking down PAGE4 expression results in cell death, whereas its overexpression leads to a growth advantage of prostate cancer cells (Zeng, Y., He, Y., Yang, F., Mooney, S. M., Getzenberg, R. H., Orban, J., and Kulkarni, P. (2011) The cancer/testis antigen prostate-associated gene 4 (PAGE4) is a highly intrinsically disordered protein. J. Biol. Chem. 286, 13985-13994). Phosphorylation of PAGE4 at Thr-51 is critical for potentiating c-Jun transactivation, an important factor in controlling cell growth, apoptosis, and stress response. Using NMR spectroscopy, we show that the PAGE4 polypeptide chain has local and long-range conformational preferences that are perturbed by site-specific phosphorylation at Thr-51. The population of transient turn-like structures increases upon phosphorylation in an ∼20-residue acidic region centered on Thr-51. This central region therefore becomes more compact and more negatively charged, with increasing intramolecular contacts to basic sequence motifs near the N and C termini. Although flexibility is decreased in the central region of phospho-PAGE4, the polypeptide chain remains highly dynamic overall. PAGE4 utilizes a transient helical structure adjacent to the central acidic region to bind c-Jun with low affinity in vitro. The binding interaction is attenuated by phosphorylation at Thr-51, most likely because of masking the effects of the more compact phosphorylated state. Therefore, phosphorylation of PAGE4 leads to conformational shifts in the dynamic ensemble, with large functional consequences. The changes in the structural ensemble induced by posttranslational modifications are similar conceptually to the conformational switching events seen in some marginally stable ("metamorphic") folded proteins in response to mutation or environmental triggers.
Collapse
Affiliation(s)
- Yanan He
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Yihong Chen
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Steven M Mooney
- the Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Krithika Rajagopalan
- the Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Ajay Bhargava
- Shakti BioResearch, Woodbridge, Connecticut 06525, and
| | - Elizabeth Sacho
- the Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
| | - Keith Weninger
- the Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
| | - Philip N Bryan
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Prakash Kulkarni
- the Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287,
| | - John Orban
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742,
| |
Collapse
|
36
|
Abstract
Androgen receptor (AR) signaling is vital to the development and function of the prostate and is a key pathway in prostate cancer. AR is differentially expressed in the stroma and epithelium, with both paracrine and autocrine control throughout the prostate. Stromal-epithelial interactions within the prostate are commonly dependent on AR signaling and expression. Alterations in these pathways can promote tumorigenesis. AR is also expressed in normal and malignant mammary tissues. Emerging data indicate a role for AR in certain subtypes of breast cancer that has the potential to be exploited therapeutically. The aim of this review is to highlight the importance of these interactions in normal development and tumorigenesis, with a focus on the prostate and breast.
Collapse
Affiliation(s)
- Cera M Nieto
- Department of PharmacologyUniversity of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leah C Rider
- Department of PharmacologyUniversity of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Scott D Cramer
- Department of PharmacologyUniversity of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|