1
|
Kuriki Y, Sogawa M, Komatsu T, Kawatani M, Fujioka H, Fujita K, Ueno T, Hanaoka K, Kojima R, Hino R, Ueo H, Ueo H, Kamiya M, Urano Y. Modular Design Platform for Activatable Fluorescence Probes Targeting Carboxypeptidases Based on ProTide Chemistry. J Am Chem Soc 2024; 146:521-531. [PMID: 38110248 DOI: 10.1021/jacs.3c10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.
Collapse
Affiliation(s)
- Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mari Sogawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minoru Kawatani
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kyohhei Fujita
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rumi Hino
- Department of Sports and Health Science, Daito Bunka University, 560 Iwadono, Higashimatsuyama, Saitama 355-8501, Japan
| | - Hiroki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Hiroaki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Zhuo Y, Zhang W, Du J, Jiang H, Chen G, Feng X, Gu H. Identification of m6A-associated genes as prognostic and immune-associated biomarkers in Wilms tumor. Discov Oncol 2023; 14:201. [PMID: 37938417 PMCID: PMC10632345 DOI: 10.1007/s12672-023-00817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
OBJECTIVES Wilms tumor (WT) is a common renal malignant tumor in children. We aimed to investigate the potential prognostic value of m6A-related genes and their relationship to the immune microenvironment in WT. METHODS RNA-seq data and clinical information from 121 WT and 6 normal samples were obtained from the University of California Santa Cruz Xena database. We used various bioinformatics analysis tools to analyze these data and verify the expression level of m6A-related genes by experiments. RESULTS Four m6A-related genes were successfully screened, including ADGRG2, CPD, CTHRC1, and LRTM2. Kaplan-Meier survival curves showed that the four genes were closely related to the prognosis of WT, which was also confirmed by receiver operator characteristic curves. Subsequently, in the immune microenvironment of WT, we discovered that Th1_cells were positively correlated with ADGRG2, CCR was negatively correlated with CPD, CCR was positively correlated with CTHRC1, APC_co_stimulation, CCR, Macrophages, inflammation-promoting cells, Treg, and Type_II_IFN_Reponse were negatively correlated with LRTM2. Finally, qRT-PCR showed that expression levels of the four genes were upregulated in the nephroblastoma cell lines (G-401, SK-NEP-1, and WT-CLS1) compared with the human embryonic kidney cell lines (293T). CONCLUSIONS Taken together, our study first time screened the m6A-related genes and revealed that ADGRG2, CPD, CTHRC1, and LRTM2 are the prognostic and immune-associated biomarkers in WT.
Collapse
Affiliation(s)
- Yingquan Zhuo
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Wengqi Zhang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jun Du
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Hua Jiang
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Guangtang Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaoyun Feng
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Huajian Gu
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
3
|
Cuesta-Casanovas L, Delgado-Martínez J, Cornet-Masana JM, Carbó JM, Banús-Mulet A, Guijarro F, Esteve J, Risueño RM. Prolactin receptor signaling induces acquisition of chemoresistance and reduces clonogenicity in acute myeloid leukemia. Cancer Cell Int 2023; 23:97. [PMID: 37208719 DOI: 10.1186/s12935-023-02944-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Development of precision medicine requires the identification of easily detectable and druggable biomarkers. Despite recent targeted drug approvals, prognosis of acute myeloid leukemia (AML) patients needs to be greatly improved, as relapse and refractory disease are still difficult to manage. Thus, new therapeutic approaches are needed. Based on in silico-generated preliminary data and the literature, the role of the prolactin (PRL)-mediated signaling was interrogated in AML. METHODS Protein expression and cell viability were determined by flow cytometry. Repopulation capacity was studied in murine xenotransplantation assays. Gene expression was measured by qPCR and luciferase-reporters. SA-β-Gal staining was used as a senescence marker. RESULTS The prolactin receptor (PRLR) was upregulated in AML cells, as compared to their healthy counterpart. The genetic and molecular inhibition of this receptor reduced the colony-forming potential. Disruption of the PRLR signaling, either using a mutant PRL or a dominant-negative isoform of PRLR, reduced the leukemia burden in vivo, in xenotransplantation assays. The expression levels of PRLR directly correlated with resistance to cytarabine. Indeed, acquired cytarabine resistance was accompanied with the induction of PRLR surface expression. The signaling associated to PRLR in AML was mainly mediated by Stat5, in contrast to the residual function of Stat3. In concordance, Stat5 mRNA was significantly overexpressed at mRNA levels in relapse AML samples. A senescence-like phenotype, measured by SA-β-gal staining, was induced upon enforced expression of PRLR in AML cells, partially dependent on ATR. Similar to the previously described chemoresistance-induced senescence in AML, no cell cycle arrest was observed. Additionally, the therapeutic potential of PRLR in AML was genetically validated. CONCLUSIONS These results support the role of PRLR as a therapeutic target for AML and the further development of drug discovery programs searching for specific PRLR inhibitors.
Collapse
Affiliation(s)
- Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
- Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Jennifer Delgado-Martínez
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
- Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Josep M Cornet-Masana
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
| | - José M Carbó
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
| | - Antònia Banús-Mulet
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
| | - Francesca Guijarro
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
- Department of Hematology, Hospital Clínic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Esteve
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
- Department of Hematology, Hospital Clínic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruth M Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
4
|
Xu T, Zhang Z, Chen H, Cai R, Yang Q, Liu Q, Fan Y, Liu W, Yao C. Carboxypeptidase N2 as a Novel Diagnostic and Prognostic Biomarker for Lung Adenocarcinoma. Front Oncol 2022; 12:843325. [PMID: 35686102 PMCID: PMC9170673 DOI: 10.3389/fonc.2022.843325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/06/2022] [Indexed: 01/05/2023] Open
Abstract
Carboxypeptidase N2 (CPN2) is a plasma metallo-protease that cleaves basic amino acids from the C-terminal of peptides and proteins. Emerging evidence showed that carboxypeptidases perform many diverse functions in the body and play key roles in tumorigenesis. However, the clinical significance and biological functions of CPN2 in lung adenocarcinoma remain unclear. Our study aimed to explore the potential role and functions of CPN2 in lung adenocarcinoma. The results showed that the transcription level of CPN2 was significantly increased in the tumor tissues of lung adenocarcinoma patients compared to the adjacent normal tissues in The Cancer Genome Atlas cohort (P < 0.05). The survival plots showed that the overall survival of patients with a high expression of CPN2 was significantly lower than that of patients with a low expression of CPN2, both in the Kaplan-Meier database and the clinical sample cohort (P < 0.05). The tissue microarray analysis found that CPN2 protein expression was significantly positively correlated with node status and tumor stage as well as tumor malignancy (P < 0.05). Further univariate and multivariate Cox regression analyses showed that CPN2 may act as an independent prognostic factor in patients with lung adenocarcinoma (P < 0.05). In addition, the analysis of co-expression genes from LinkedOmics showed that CPN2 was positively associated with many genes of fibrillar collagen family members and the PI3K-Akt pathway. The gene set enrichment analysis showed that a higher expression of CPN2 may participate in mTOR, TGF-BETA, NOTCH, TOLL-like-receptor, WNT, and MAPK signaling pathway in lung adenocarcinoma. Notably, the knockdown of CPN2 significantly inhibited the ability of cell proliferation, clone formation, invasion, and migration. Our findings suggested that the upregulation of CPN2 is associated with a worse clinical outcome in lung adenocarcinoma and cancer-related pathways, which laid the foundation for further research on CPN2 during carcinogenesis.
Collapse
Affiliation(s)
- Ting Xu
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongqiang Chen
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qian Yang
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qi Liu
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yahan Fan
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenbin Liu
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Yao
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Cui R, Wang C, Zhao Q, Wang Y, Li Y. Serum Carboxypeptidase N1 Serves as a Potential Biomarker Complementing CA15-3 for Breast Cancer. Anticancer Agents Med Chem 2021; 20:2053-2065. [PMID: 32619179 DOI: 10.2174/1871520620666200703191135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The incidence and mortality of breast cancer are increasing annually. Breast cancer seriously threatens women's health and quality of life. We aimed to measure the clinical value of CPN1, a new serum marker of breast cancer and to evaluate the efficacy of CPN1 in combination with CA15-3. METHODS Seventy samples of breast cancer with lymph node metastasis, seventy-three samples of nonmetastatic breast cancer and twenty-five samples of healthy human serum were collected. Serum CA15-3 concentration was determined by Roche Elecsys, and serum CPN1 concentration was determined by ELISA. RESULTS In breast cancer patients, serum CPN1 concentration was positively correlated with tumour size, clinical stage and CA15-3 concentration (r = 0.376, P<0.0001). ROC curve analysis showed that the optimal critical concentration of CPN1 for breast cancer diagnosis was 32.8pg/ml. The optimal critical concentration of CPN1 in the diagnosis of metastatic breast cancer was 66.121pg/ml. CPN1 has a greater diagnostic ability for breast cancer (AUCCA15-3=0.702 vs. AUCCPN1=0.886, P<0.0001) and metastatic breast cancer (AUCCA15-3=0.629 vs. AUCCPN1=0.887, P<0.0001) than CA15-3, and the combined detection of CA15-3 and CPN1 can improve the diagnostic efficiency for breast cancer (AUCCA15-3+CPN1=0.916) and for distinguishing between metastatic and non-metastatic breast cancer (AUCCA15-3+CPN1=0.895). CONCLUSION CPN1 can be used as a new tumour marker to diagnose and evaluate the invasion and metastasis of breast cancer. The combined detection of CPN1 and CA15-3 is more accurate and has a certain value in clinical application.
Collapse
Affiliation(s)
- Ranliang Cui
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Chaomin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Qi Zhao
- Tianjin Medical University, Tianjin, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Yueguo Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
6
|
Padella A, Simonetti G, Paciello G, Giotopoulos G, Baldazzi C, Righi S, Ghetti M, Stengel A, Guadagnuolo V, De Tommaso R, Papayannidis C, Robustelli V, Franchini E, Ghelli Luserna di Rorà A, Ferrari A, Fontana MC, Bruno S, Ottaviani E, Soverini S, Storlazzi CT, Haferlach C, Sabattini E, Testoni N, Iacobucci I, Huntly BJP, Ficarra E, Martinelli G. Novel and Rare Fusion Transcripts Involving Transcription Factors and Tumor Suppressor Genes in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:E1951. [PMID: 31817495 PMCID: PMC6966504 DOI: 10.3390/cancers11121951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Approximately 18% of acute myeloid leukemia (AML) cases express a fusion transcript. However, few fusions are recurrent across AML and the identification of these rare chimeras is of interest to characterize AML patients. Here, we studied the transcriptome of 8 adult AML patients with poorly described chromosomal translocation(s), with the aim of identifying novel and rare fusion transcripts. We integrated RNA-sequencing data with multiple approaches including computational analysis, Sanger sequencing, fluorescence in situ hybridization and in vitro studies to assess the oncogenic potential of the ZEB2-BCL11B chimera. We detected 7 different fusions with partner genes involving transcription factors (OAZ-MAFK, ZEB2-BCL11B), tumor suppressors (SAV1-GYPB, PUF60-TYW1, CNOT2-WT1) and rearrangements associated with the loss of NF1 (CPD-PXT1, UTP6-CRLF3). Notably, ZEB2-BCL11B rearrangements co-occurred with FLT3 mutations and were associated with a poorly differentiated or mixed phenotype leukemia. Although the fusion alone did not transform murine c-Kit+ bone marrow cells, 45.4% of 14q32 non-rearranged AML cases were also BCL11B-positive, suggesting a more general and complex mechanism of leukemogenesis associated with BCL11B expression. Overall, by combining different approaches, we described rare fusion events contributing to the complexity of AML and we linked the expression of some chimeras to genomic alterations hitting known genes in AML.
Collapse
Affiliation(s)
- Antonella Padella
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Giorgia Simonetti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Giulia Paciello
- Department of Control and Computer Engineering DAUIN, Politecnico di Torino, 10129 Turin, Italy; (G.P.); (E.F.)
| | - George Giotopoulos
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, UK; (G.G.); (B.J.P.H.)
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0XY, UK
| | - Carmen Baldazzi
- Institute of Hematology “L. and A. Seràgnoli”, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | - Simona Righi
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Martina Ghetti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Anna Stengel
- MLL-Munich Leukemia Laboratory, 81377 Munich, Germany; (A.S.); (C.H.)
| | - Viviana Guadagnuolo
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Rossella De Tommaso
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Cristina Papayannidis
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Valentina Robustelli
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Eugenia Franchini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Andrea Ghelli Luserna di Rorà
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Anna Ferrari
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Maria Chiara Fontana
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Emanuela Ottaviani
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Simona Soverini
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | | | - Claudia Haferlach
- MLL-Munich Leukemia Laboratory, 81377 Munich, Germany; (A.S.); (C.H.)
| | - Elena Sabattini
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Nicoletta Testoni
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Brian J. P. Huntly
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, UK; (G.G.); (B.J.P.H.)
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elisa Ficarra
- Department of Control and Computer Engineering DAUIN, Politecnico di Torino, 10129 Turin, Italy; (G.P.); (E.F.)
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| |
Collapse
|
7
|
Abramicheva PA, Smirnova OV. Prolactin Receptor Isoforms as the Basis of Tissue-Specific Action of Prolactin in the Norm and Pathology. BIOCHEMISTRY (MOSCOW) 2019; 84:329-345. [PMID: 31228925 DOI: 10.1134/s0006297919040011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review describes functional and structural features of different isoforms of prolactin receptor, mechanisms of signaling pathway activation, and molecular messengers involved in the transmission and termination of signal from the prolactin receptor isoforms. Changes in the ratio between prolactin receptor isoforms, key mediators of prolactin signal transduction and termination in various organs and tissues, are analyzed. Special attention is given to the role of molecular mediators and the ratio between the isoforms in normal physiological functions and pathologies. Approaches for therapeutic correction of prolactin signaling impairments are discussed.
Collapse
Affiliation(s)
- P A Abramicheva
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia.
| | - O V Smirnova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia
| |
Collapse
|
8
|
Park JE, Tse SW, Xue G, Assisi C, Maqueda AS, Ramon GPX, Low JK, Kon OL, Tay CY, Tam JP, Sze SK. Pulsed SILAC-based proteomic analysis unveils hypoxia- and serum starvation-induced de novo protein synthesis with PHD finger protein 14 (PHF14) as a hypoxia sensitive epigenetic regulator in cell cycle progression. Oncotarget 2019; 10:2136-2150. [PMID: 31040906 PMCID: PMC6481330 DOI: 10.18632/oncotarget.26669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022] Open
Abstract
Hypoxia is an environmental cue that is associated with multiple tumorigenic processes such as immunosuppression, angiogenesis, cancer invasion, metastasis, drug resistance, and poor clinical outcomes. When facing hypoxic stress, cells initiate several adaptive responses such as cell cycle arrest to reduce excessive oxygen consumption and co-activation of oncogenic factors. In order to identify the critical novel proteins for hypoxia responses, we used pulsed-SILAC method to trace the active cellular translation events in A431 cells. Proteomic discovery data and biochemical assays showed that cancer cells selectively activate key glycolytic enzymes and novel ER-stress markers, while protein synthesis is severely suppressed. Interestingly, deprivation of oxygen affected the expression of various epigenetic regulators such as histone demethylases and NuRD (nucleosome remodeling and deacetylase) complex in A431 cells. In addition, we identified PHF14 (the plant homeodomain finger-14) as a novel hypoxia-sensitive epigenetic regulator that plays a key role in cell cycle progress and protein synthesis. Hypoxia-mediated inhibition of PHF14 was associated with increase of key cell cycle inhibitors, p14ARF, p15INK4b, and p16INK4a, which are responsible for G1-S phase transition and decrease of AKT-mTOR-4E-BP1/pS6K signaling pathway, a master regulator of protein synthesis, in response to environmental cues. Analysis of TCGA colon cancer (n=461) and skin cancer (n=470) datasets revealed a positive correlation between PHF14 expression and protein translation initiation factors, eIF4E, eIF4B, and RPS6. Significance of PHF14 gene was further demonstrated by in vivo mouse xenograft model using PHF14 KD cell lines.
Collapse
Affiliation(s)
- Jung Eun Park
- Division of Structural Biology and Biochemistry School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Shun Wilford Tse
- Division of Structural Biology and Biochemistry School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Guo Xue
- Division of Structural Biology and Biochemistry School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Christina Assisi
- Division of Structural Biology and Biochemistry School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Aida Serra Maqueda
- Division of Structural Biology and Biochemistry School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Gallart Palau Xavier Ramon
- Division of Structural Biology and Biochemistry School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jee Keem Low
- Department of Oncology, Tan Tock Seng Hospital, Singapore 308433
| | - Oi Lian Kon
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610
| | - Chor Yong Tay
- Division of Materials Technology School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - James P Tam
- Division of Structural Biology and Biochemistry School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Siu Kwan Sze
- Division of Structural Biology and Biochemistry School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
9
|
Garcia-Pardo J, Tanco S, Díaz L, Dasgupta S, Fernandez-Recio J, Lorenzo J, Aviles FX, Fricker LD. Substrate specificity of human metallocarboxypeptidase D: Comparison of the two active carboxypeptidase domains. PLoS One 2017; 12:e0187778. [PMID: 29131831 PMCID: PMC5683605 DOI: 10.1371/journal.pone.0187778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Metallocarboxypeptidase D (CPD) is a membrane-bound component of the trans-Golgi network that cycles to the cell surface through exocytic and endocytic pathways. Unlike other members of the metallocarboxypeptidase family, CPD is a multicatalytic enzyme with three carboxypeptidase-like domains, although only the first two domains are predicted to be enzymatically active. To investigate the enzymatic properties of each domain in human CPD, a critical active site Glu in domain I and/or II was mutated to Gln and the protein expressed, purified, and assayed with a wide variety of peptide substrates. CPD with all three domains intact displays >50% activity from pH 5.0 to 7.5 with a maximum at pH 6.5, as does CPD with mutation of domain I. In contrast, the domain II mutant displayed >50% activity from pH 6.5–7.5. CPD with mutations in both domains I and II was completely inactive towards all substrates and at all pH values. A quantitative peptidomics approach was used to compare the activities of CPD domains I and II towards a large number of peptides. CPD cleaved C-terminal Lys or Arg from a subset of the peptides. Most of the identified substrates of domain I contained C-terminal Arg, whereas comparable numbers of Lys- and Arg-containing peptides were substrates of domain II. We also report that some peptides with C-terminal basic residues were not cleaved by either domain I or II, showing the importance of the P1 position for CPD activity. Finally, the preference of domain I for C-terminal Arg was validated through molecular docking experiments. Together with the differences in pH optima, the different substrate specificities of CPD domains I and II allow the enzyme to perform distinct functions in the various locations within the cell.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sebastian Tanco
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lucía Díaz
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Sayani Dasgupta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francesc X. Aviles
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail: (LDF); (FXA)
| | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LDF); (FXA)
| |
Collapse
|
10
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Prolactin/androgen-inducible carboxypeptidase-D increases with nitrotyrosine and Ki67 for breast cancer progression in vivo, and upregulates progression markers VEGF-C and Runx2 in vitro. Breast Cancer Res Treat 2017; 164:27-40. [PMID: 28364216 DOI: 10.1007/s10549-017-4223-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Carboxypeptidase-D (CPD) cleaves C-terminal arginine (Arg) to produce nitric oxide (NO). Upregulation of CPD and NO by 17β-estradiol, prolactin (PRL), and androgen increases survival of human breast cancer (BCa) cells in vitro. To demonstrate similar events in vivo, CPD, nitrotyrosine (NT, hallmark of NO action), androgen receptor (AR), prolactin receptor (PRLR), and phospho-Stat5a (for activated PRLR) levels were evaluated in benign and malignant human breast tissues, and correlated with cell proliferation (Ki67) and BCa progression (Cullin-3) biomarkers. METHODS Paraffin-embedded breast tissues were analyzed by immunohistochemistry (IHC). BCa progression markers in human MCF-7 and T47D BCa cell lines treated with NO donor SIN-1 or PRL, ±CPD inhibitors were analyzed by RT-qPCR and immunoblotting. RESULTS IHC showed progressive increases in CPD, NT, Ki67, and Cullin-3 from low levels in benign tissues to high levels in ductal carcinoma in situ, low-grade, high-grade, and triple-negative BCa. CPD and NT staining were closely associated, implicating CPD in NO production. Phospho-Stat5a increased significantly from benign to high-grade BCa and was mostly nuclear. AR and PRLR were abundant in benign breast and BCa, including triple-negative tumors. SIN-1 and PRL increased VEGF-C and Runx2, but not Cullin-3, in BCa cell lines. PRL induction of VEGF-C and Runx2 was inhibited partly by CPD inhibitors, implicating NO, produced by PRL-regulated CPD, in BCa progression. CONCLUSIONS The CPD-Arg-NO pathway contributes to BCa progression in vitro and in vivo. PRL/androgen activation of the pathway support combined AR and PRLR blockade as an additional therapy for BCa.
Collapse
|
12
|
Thomas LN, Merrimen J, Bell DG, Rendon R, Too CKL. Prolactin- and testosterone-induced carboxypeptidase-D correlates with increased nitrotyrosines and Ki67 in prostate cancer. Prostate 2015. [PMID: 26202060 DOI: 10.1002/pros.23054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Carboxypeptidase-D (CPD) cleaves C-terminal arginine for conversion to nitric oxide (NO) by nitric oxide synthase (NOS). Prolactin (PRL) and androgens stimulate CPD gene transcription and expression, which increases intracellular production of NO to promote viability of prostate cancer (PCa) cells in vitro. The current study evaluated whether hormonal upregulation of CPD and NO promote PCa cell viabilty in vivo, by correlating changes in expression of CPD and nitrotyrosine residues (products of NO action) with proliferation marker Ki67 and associated proteins during PCa development and progression. METHODS Fresh prostate tissues, obtained from 40 men with benign prostatic hyperplasia (BPH) or PCa, were flash-frozen at the time of surgery and used for RT-qPCR analysis of CPD, androgen receptor (AR), PRL receptor (PRLR), eNOS, and Ki67 levels. Archival paraffin-embedded tissues from 113 men with BPH or PCa were used for immunohistochemical (IHC) analysis of CPD, nitrotyrosines, phospho-Stat5 (for activated PRLR), AR, eNOS/iNOS, and Ki67. RESULTS RT-qPCR and IHC analyses showed strong AR and PRLR expression in benign and malignant prostates. CPD mRNA levels increased ∼threefold in PCa compared to BPH, which corresponded to a twofold increase in Ki67 mRNA levels. IHC analysis showed a progressive increase in CPD from 11.4 ± 2.1% in benign to 21.8 ± 3.2% in low-grade (P = 0.007), 40.7 ± 4.0% in high-grade (P < 0.0001) and 50.0 ± 9.5% in castration-recurrent PCa (P < 0.0001). Immunostaining for nitrotyrosines and Ki67 mirrored these increases during PCa progression. CPD, nitrotyrosines, and Ki67 tended to co-localize, as did phospho-Stat5. CONCLUSIONS CPD, nitrotyrosine, and Ki67 levels were higher in PCa than in benign and tended to co-localize, along with phospho-Stat5. The strong correlation in expression of these proteins in benign and malignant prostate tissues, combined with abundant AR and PRLR, supports in vitro evidence that the CPD-Arg-NO pathway is involved in the regulation of PCa cell proliferation. It further highlights a role for PRL in the development and progression of PCa.
Collapse
Affiliation(s)
- Lynn N Thomas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Merrimen
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - David G Bell
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ricardo Rendon
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Catherine K L Too
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Goffin V, Touraine P. The prolactin receptor as a therapeutic target in human diseases: browsing new potential indications. Expert Opin Ther Targets 2015; 19:1229-44. [PMID: 26063597 DOI: 10.1517/14728222.2015.1053209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Prolactin (PRL) signaling has emerged as a relevant target in breast and prostate cancers. This has encouraged various laboratories to develop compounds targeting the PRL receptor (PRLR). As the latter is widely distributed, it is timely to address whether other conditions could also benefit from such inhibitors. AREAS COVERED The authors briefly overview the two classes of PRLR blockers, which involve: i) PRL-core based analogs that have been validated as competitive antagonists in various preclinical models, and ii) anti-PRLR neutralizing antibodies that are currently in clinical Phase I for advanced breast and prostate cancers. The main purpose of this review is to discuss the multiple organs/diseases that may be considered as potential targets/indications for such inhibitors. This is done in light of reports suggesting that PRLR expression/signaling is increased in disease, and/or that systemic or locally elevated PRL levels correlate with (or promote) organ pathogenesis. EXPERT OPINION The two immediate challenges in the field are i) to provide the scientific community with potent anti-prolactin receptor antibodies to map prolactin receptor expression in target organs, and ii) to take advantage of the availability of functionally validated PRLR blockers to establish the relevance of these potential indications in humans.
Collapse
Affiliation(s)
- Vincent Goffin
- Research Director at Inserm, Head of the 'PRL/GH Pathophysiology: Translational Approaches' Laboratory,University Paris Descartes, Institut Necker Enfants Malades (INEM), Inserm Unit 1151, Faculté de Médecine Paris Descartes , Bâtiment Leriche, 14 Rue Maria Helena Vieira Da Silva, CS61431, 75993 Paris Cedex 14 , France +33 1 72 60 63 68 +33 1 72 60 64 01 ;
| | | |
Collapse
|
14
|
Prolactin-Induced Prostate Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:221-42. [DOI: 10.1007/978-3-319-12114-7_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|