1
|
Bernatz S, Reddin IG, Fenton TR, Vogl TJ, Wild PJ, Köllermann J, Mandel P, Wenzel M, Hoeh B, Mahmoudi S, Koch V, Grünewald LD, Hammerstingl R, Döring C, Harter PN, Weber KJ. Epigenetic profiling of prostate cancer reveals potential prognostic signatures. J Cancer Res Clin Oncol 2024; 150:396. [PMID: 39180680 PMCID: PMC11344710 DOI: 10.1007/s00432-024-05921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE While epigenetic profiling discovered biomarkers in several tumor entities, its application in prostate cancer is still limited. We explored DNA methylation-based deconvolution of benign and malignant prostate tissue for biomarker discovery and the potential of radiomics as a non-invasive surrogate. METHODS We retrospectively included 30 patients (63 [58-79] years) with prostate cancer (PCa) who had a multiparametric MRI of the prostate before radical prostatectomy between 2014 and 2019. The control group comprised four patients with benign prostate tissue adjacent to the PCa lesions and four patients with benign prostatic hyperplasia. Tissue punches of all lesions were obtained. DNA methylation analysis and reference-free in silico deconvolution were conducted to retrieve Latent Methylation Components (LCMs). LCM-based clustering was analyzed for cellular composition and correlated with clinical disease parameters. Additionally, PCa and adjacent benign lesions were analyzed using radiomics to predict the epigenetic signatures non-invasively. RESULTS LCMs identified two clusters with potential prognostic impact. Cluster one was associated with malignant prostate tissue (p < 0.001) and reduced immune-cell-related signatures (p = 0.004) of CD19 and CD4 cells. Cluster one comprised exclusively malignant prostate tissue enriched for significant prostate cancer and advanced tumor stages (p < 0.03 for both). No radiomics model could non-invasively predict the epigenetic clusters. CONCLUSION Epigenetic clusters were associated with prognostically and clinically relevant metrics in prostate cancer. Further, immune cell-related signatures differed significantly between prognostically favorable and unfavorable clusters. Further research is necessary to explore potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Simon Bernatz
- Goethe University Frankfurt, University Hospital, Clinic for Radiology and Nuclear Medicine, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute for Pathology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Ian G Reddin
- School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Thomas J Vogl
- Goethe University Frankfurt, University Hospital, Clinic for Radiology and Nuclear Medicine, Frankfurt am Main, Germany
| | - Peter J Wild
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute for Pathology, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Jens Köllermann
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - Philipp Mandel
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main, Germany
| | - Mike Wenzel
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main, Germany
| | - Benedikt Hoeh
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main, Germany
| | - Scherwin Mahmoudi
- Goethe University Frankfurt, University Hospital, Clinic for Radiology and Nuclear Medicine, Frankfurt am Main, Germany
| | - Vitali Koch
- Goethe University Frankfurt, University Hospital, Clinic for Radiology and Nuclear Medicine, Frankfurt am Main, Germany
| | - Leon D Grünewald
- Goethe University Frankfurt, University Hospital, Clinic for Radiology and Nuclear Medicine, Frankfurt am Main, Germany
| | - Renate Hammerstingl
- Goethe University Frankfurt, University Hospital, Clinic for Radiology and Nuclear Medicine, Frankfurt am Main, Germany
| | - Claudia Döring
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
| | - Katharina J Weber
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany.
| |
Collapse
|
2
|
FitzGerald LM, Jung CH, Wong EM, Joo JE, Bassett JK, Dowty JG, Wang X, Dai JY, Stanford JL, O'Callaghan N, Nottle T, Pedersen J, Giles GG, Southey MC. Detection of differentially methylated CpGs between tumour and adjacent benign cells in diagnostic prostate cancer samples. Sci Rep 2024; 14:17877. [PMID: 39095452 PMCID: PMC11297152 DOI: 10.1038/s41598-024-66488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Differentially methylated CpG sites (dmCpGs) that distinguish prostate tumour from adjacent benign tissue could aid in the diagnosis and prognosis of prostate cancer. Previously, the identification of such dmCpGs has only been undertaken in radical prostatectomy (RP) samples and not primary diagnostic tumour samples (needle biopsy or transurethral resection of the prostate). We interrogated an Australian dataset comprising 125 tumour and 43 adjacent histologically benign diagnostic tissue samples, including 41 paired samples, using the Infinium Human Methylation450 BeadChip. Regression analyses of paired tumour and adjacent benign samples identified 2,386 significant dmCpGs (Bonferroni p < 0.01; delta-β ≥ 40%), with LASSO regression selecting 16 dmCpGs that distinguished tumour samples in the full Australian diagnostic dataset (AUC = 0.99). Results were validated in independent North American (npaired = 19; AUC = 0.87) and The Cancer Genome Atlas (TCGA; npaired = 50; AUC = 0.94) RP datasets. Two of the 16 dmCpGs were in genes that were significantly down-regulated in Australian tumour samples (Bonferroni p < 0.01; GSTM2 and PRKCB). Ten additional dmCpGs distinguished low (n = 34) and high Gleason (n = 88) score tumours in the diagnostic Australian dataset (AUC = 0.95), but these performed poorly when applied to the RP datasets (North American: AUC = 0.66; TCGA: AUC = 0.62). The DNA methylation marks identified here could augment and improve current diagnostic tests and/or form the basis of future prognostic tests.
Collapse
Affiliation(s)
- Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Chol-Hee Jung
- Melbourne Bioinformatics, University of Melbourne, Parkville, VIC, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - JiHoon E Joo
- Centre for Epidemiology and Biostatistics, School of Global and Population Health, University of Melbourne, Parkville, Australia
| | - Julie K Bassett
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - James G Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James Y Dai
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Neil O'Callaghan
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Tim Nottle
- TissuPath, Mount Waverley, Melbourne, VIC, Australia
| | - John Pedersen
- TissuPath, Mount Waverley, Melbourne, VIC, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Global and Population Health, University of Melbourne, Parkville, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Saleem MA, Mustafa MS. Promoter Hypermethylation of the BRCA1 Gene as a Novel Biomarker for Prostate Cancer. Cureus 2024; 16:e66467. [PMID: 39246954 PMCID: PMC11380563 DOI: 10.7759/cureus.66467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) is recognized as one of the most common malignancies that greatly affects the male population globally. Breast cancer gene 1 (BRCA1) is an important tumor suppressor gene that plays a central role in the maintenance of genomic integrity by promoting the repair of double-strand breaks of DNA. Here, we present a pilot study to examine the promoter methylation and gene expression of the BRCA1 gene in patients with PCa in Erbil governorate, Iraq. The collection of samples took place in Erbil City, Iraq, specifically at Rizgary Hospital, PAR Hospital, and Al-Mufti's private laboratory. A total of 40 tissue samples were collected from age-matched individuals, comprising 30 pathologically confirmed PCa cases and 10 normal prostatic tissue taken from individuals who, during diagnosis, were found to be negative for PCa. Data on demographic and clinical information, such as pathological stage, age, and prostate-specific antigen (PSA) level, were gathered from the medical records. The impact of the promoter methylation was forecasted using the DNA bisulfite conversion technique and methyl-specific PCR (MSP) with specific primers for the BRCA1 promoter region. The assessment of BRCA1 expression was conducted using quantitative real-time PCR (qPCR). Among the 30 patients examined, 76.6% (23 cases) were found to have BRCA1 promoter methylation, and none of the normal tissues appeared to have DNA methylation. BRCA1 promoter methylation was positively associated with the advanced stage of disease (p=0.01) and Gleason score (p=0.007). The analysis revealed a significant downregulation of the BRCA1 gene expression in methylated tumor samples as compared to non-methylated tumors and normal tissues, suggesting the role of epigenetic silencing. To the best of our knowledge, this is the first study investigating methylation status and level of BRCA1 mRNA transcripts among PCa patients in Iraq. Our findings suggest that promoter hypermethylation of the BRCA1 gene could serve as a viable biomarker for PCa, marking a significant discovery.
Collapse
Affiliation(s)
- Mohammed A Saleem
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, IRQ
| | - Mustafa S Mustafa
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, IRQ
| |
Collapse
|
4
|
Bose S, Saha S, Goswami H, Shanmugam G, Sarkar K. Involvement of CCCTC-binding factor in epigenetic regulation of cancer. Mol Biol Rep 2023; 50:10383-10398. [PMID: 37840067 DOI: 10.1007/s11033-023-08879-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
A major global health burden continues to be borne by the complex and multifaceted disease of cancer. Epigenetic changes, which are essential for the emergence and spread of cancer, have drawn a huge amount of attention recently. The CCCTC-binding factor (CTCF), which takes part in a wide range of cellular processes including genomic imprinting, X chromosome inactivation, 3D chromatin architecture, local modifications of histone, and RNA polymerase II-mediated gene transcription, stands out among the diverse array of epigenetic regulators. CTCF not only functions as an architectural protein but also modulates DNA methylation and histone modifications. Epigenetic regulation of cancer has already been the focus of plenty of studies. Understanding the role of CTCF in the cancer epigenetic landscape may lead to the development of novel targeted therapeutic strategies for cancer. CTCF has already earned its status as a tumor suppressor gene by acting like a homeostatic regulator of genome integrity and function. Moreover, CTCF has a direct effect on many important transcriptional regulators that control the cell cycle, apoptosis, senescence, and differentiation. As we learn more about CTCF-mediated epigenetic modifications and transcriptional regulations, the possibility of utilizing CTCF as a diagnostic marker and therapeutic target for cancer will also increase. Thus, the current review intends to promote personalized and precision-based therapeutics for cancer patients by shedding light on the complex interplay between CTCF and epigenetic processes.
Collapse
Affiliation(s)
- Sayani Bose
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Srawsta Saha
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Harsita Goswami
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
5
|
Creighton CJ, Zhang F, Zhang Y, Castro P, Hu R, Islam M, Ghosh S, Ittmann M, Kwabi-Addo B. Comparative and integrative analysis of transcriptomic and epigenomic-wide DNA methylation changes in African American prostate cancer. Epigenetics 2023; 18:2180585. [PMID: 37279148 PMCID: PMC9980641 DOI: 10.1080/15592294.2023.2180585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
African American (AA) men have the highest incidence and mortality rate from Prostate cancer (PCa) than any other racial/ethnic group. To date, PCa genomic studies have largely under-represented tumour samples from AA men. We measured genome-wide DNA methylation in benign and tumor prostate tissues from AA men using the Illumina Infunium 850 K EPIC array. mRNA expression database from a subset of the AA biospecimen were used to assess correlation of transcriptome and methylation datasets. Genome-wide methylation analysis identified 11,460 probes that were significant (p < 0.01) and differentially methylated in AA PCa compared to normal prostate tissues and showed significant (p < 0.01) inverse-correlation with mRNA expression. Ingenuity pathway analysis and Gene Ontology analysis in our AA dataset compared with TCGA dataset showed similarities in methylation patterns: top candidate genes with significant hypermethylation and corresponding down-regulated gene expression were associated with biological pathways in hemidesmosome assembly, mammary gland development, epidermis development, hormone biosynthesis, and cell communication. In addition, top candidate genes with significant hypomethylation and corresponding up-regulated gene expression were associated with biological pathways in macrophage differentiation, cAMP-dependent protein kinase activity, protein destabilization, transcription co-repression, and fatty acid biosynthesis. In contrast, differences in genome-wide methylation in our AA dataset compared with TCGA dataset were enriched for genes in steroid signalling, immune signalling, chromatin structure remodelling and RNA processing. Overall, differential methylation of AMIGO3, IER3, UPB1, GRM7, TFAP2C, TOX2, PLSCR2, ZNF292, ESR2, MIXL1, BOLL, and FGF6 were significant and uniquely associated with PCa progression in our AA cohort.
Collapse
Affiliation(s)
- Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Flora Zhang
- Center for Women’s Studies, Colgate University, Hamilton, New York, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Patricia Castro
- Department of Pathology and Immunology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Rong Hu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Md Islam
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, Columbia, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University, Washington, Columbia, USA
| |
Collapse
|
6
|
Ozawa S, Ojiro R, Tang Q, Zou X, Woo GH, Yoshida T, Shibutani M. Identification of genes showing altered DNA methylation and gene expression in the renal proximal tubular cells of rats treated with ochratoxin A for 13 weeks. J Appl Toxicol 2023; 43:1533-1548. [PMID: 37162024 DOI: 10.1002/jat.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin that causes renal carcinogenicity following the induction of karyomegaly in proximal tubular cells after repeated administration to rats. Here, we performed gene profiling regarding altered DNA methylation and gene expression in the renal tubules focusing on the mechanism of OTA-induced carcinogenesis. For this purpose, OTA or 3-chloro-1,2-propanediol (3-MCPD), a renal carcinogen not inducing karyomegaly, was administered to rats for 13 weeks, and DNA methylation array and RNA sequencing analyses were performed on proximal tubular cells. Genes for which OTA altered the methylation status and gene expression level, after excluding genes showing similar expression changes by 3-MCPD, were subjected to confirmation analysis of the transcript level by real-time reverse-transcription PCR. Gene Ontology (GO)-based functional annotation analysis of validated genes revealed a cluster of hypermethylated and downregulated genes enriched under the GO term "mitochondrion," such as those associated with metabolic reprogramming in carcinogenic process (Clpx, Mrpl54, Mrps34, and Slc25a23). GO terms enriched for hypomethylated and upregulated genes included "response to arsenic-containing substance," represented by Cdkn1a involved in cell cycle arrest, and "positive regulation of IL-17 production," represented by Osm potentiating cell proliferation promotion. Other genes that did not cluster under any GO term included Lrrc14 involved in NF-κB-mediated inflammation, Gen1 linked to DNA repair, Has1 related to chromosomal aberration, and Anxa3 involved in tumor development and progression. In conclusion, a variety of genes engaged in carcinogenic processes were obtained by epigenetic gene profiling in rat renal tubular cells specific to OTA treatment for 13 weeks.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
7
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Araúzo-Bravo MJ, Erichsen L, Ott P, Beermann A, Sheikh J, Gerovska D, Thimm C, Bendhack ML, Santourlidis S. Consistent DNA Hypomethylations in Prostate Cancer. Int J Mol Sci 2022; 24:ijms24010386. [PMID: 36613831 PMCID: PMC9820221 DOI: 10.3390/ijms24010386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
With approximately 1.4 million men annually diagnosed with prostate cancer (PCa) worldwide, PCa remains a dreaded threat to life and source of devastating morbidity. In recent decades, a significant decrease in age-specific PCa mortality has been achieved by increasing prostate-specific antigen (PSA) screening and improving treatments. Nevertheless, upcoming, augmented recommendations against PSA screening underline an escalating disproportion between the benefit and harm of current diagnosis/prognosis and application of radical treatment standards. Undoubtedly, new potent diagnostic and prognostic tools are urgently needed to alleviate this tensed situation. They should allow a more reliable early assessment of the upcoming threat, in order to enable applying timely adjusted and personalized therapy and monitoring. Here, we present a basic study on an epigenetic screening approach by Methylated DNA Immunoprecipitation (MeDIP). We identified genes associated with hypomethylated CpG islands in three PCa sample cohorts. By adjusting our computational biology analyses to focus on single CpG-enriched 60-nucleotide-long DNA probes, we revealed numerous consistently differential methylated DNA segments in PCa. They were associated among other genes with NOTCH3, CDK2AP1, KLK4, and ADAM15. These can be used for early discrimination, and might contribute to a new epigenetic tumor classification system of PCa. Our analysis shows that we can dissect short, differential methylated CpG-rich DNA fragments and combinations of them that are consistently present in all tumors. We name them tumor cell-specific differential methylated CpG dinucleotide signatures (TUMS).
Collapse
Affiliation(s)
- Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lars Erichsen
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pauline Ott
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Agnes Beermann
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jamal Sheikh
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Chantelle Thimm
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Marcelo L. Bendhack
- Department of Urology, University Hospital, Positivo University, Curitiba 80420-011, Brazil
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
9
|
Barilla S, Lindblom A, Helgadottir HT. Unravelling genetic variants of a swedish family with high risk of prostate cancer. Hered Cancer Clin Pract 2022; 20:28. [PMID: 35870994 PMCID: PMC9308349 DOI: 10.1186/s13053-022-00234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prostate cancer is the most prevalent cancer in men worldwide. It is a polygenic disease with a substantial proportion of heritability. Identification of novel candidate biomarkers is crucial for clinical cancer prevention and the development of therapeutic strategies. Here, we describe the analysis of rare and common genetic variants that can predispose to the development of prostate cancer. METHODS Whole-genome sequencing was performed on germline DNA of five Swedish siblings which were diagnosed with prostate cancer. The high-risk variants were identified setting the minor allele frequency < 0.01, CADD > 10 and if tested in PRACTICAL, OR > 1.5, while the low-risk variants were identified minor allele frequency > 0.01, CADD > 10 and if tested in PRACTICAL, OR > 1.1. RESULTS We identified 38 candidate high-risk gene variants and 332 candidate low-risk gene variants, where 2 and 14 variants were in coding regions, respectively, that were shared by the brothers with prostate cancer. CONCLUSIONS This study expanded the knowledge of potential risk factor candidates involved in hereditary and familial prostate cancer. Our findings can be beneficial when applying targeted screening in families with a high risk of developing the disease.
Collapse
Affiliation(s)
- Serena Barilla
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Stockholm, Sweden.
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Hafdis T Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Stockholm, Sweden.
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden.
| |
Collapse
|
10
|
Grant OA, Wang Y, Kumari M, Zabet NR, Schalkwyk L. Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin Epigenetics 2022; 14:62. [PMID: 35568878 PMCID: PMC9107695 DOI: 10.1186/s13148-022-01279-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/18/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Sex differences are known to play a role in disease aetiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood by performing a discovery (n = 1171) and validation (n = 2471) analysis. RESULTS We identified and validated 396 sex-associated differentially methylated CpG sites (saDMPs) with the majority found to be female-biased CpGs (74%). These saDMP's are enriched in CpG islands and CpG shores and located preferentially at 5'UTRs, 3'UTRs and enhancers. Additionally, we identified 266 significant sex-associated differentially methylated regions overlapping genes, which have previously been shown to exhibit epigenetic sex differences, and novel genes. Transcription factor binding site enrichment revealed enrichment of transcription factors related to critical developmental processes and sex determination such as SRY and ESR1. CONCLUSION Our study reports a reliable catalogue of sex-associated CpG sites and elucidates several characteristics of these sites using large-scale discovery and validation data sets. This resource will benefit future studies aiming to investigate sex specific epigenetic signatures and further our understanding of the role of DNA methylation in sex differences in human whole blood.
Collapse
Affiliation(s)
- Olivia A Grant
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Yucheng Wang
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK
| | - Meena Kumari
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Leonard Schalkwyk
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|
11
|
Peng Y, Song Y, Wang H. Systematic Elucidation of the Aneuploidy Landscape and Identification of Aneuploidy Driver Genes in Prostate Cancer. Front Cell Dev Biol 2022; 9:723466. [PMID: 35127694 PMCID: PMC8814427 DOI: 10.3389/fcell.2021.723466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aneuploidy is widely identified as a remarkable feature of malignancy genomes. Increasing evidences suggested aneuploidy was involved in the progression and metastasis of prostate cancer (PCa). Nevertheless, no comprehensive analysis was conducted in PCa about the effects of aneuploidy on different omics and, especially, about the driver genes of aneuploidy. Here, we validated the association of aneuploidy with the progression and prognosis of PCa and performed a systematic analysis in mutation profile, methylation profile, and gene expression profile, which detailed the molecular process aneuploidy implicated. By multi-omics analysis, we managed to identify 11 potential aneuploidy driver genes (GSTM2, HAAO, C2orf88, CYP27A1, FAXDC2, HFE, C8orf88, GSTP1, EFS, HIF3A, and WFDC2), all of which were related to the development and metastasis of PCa. Meanwhile, we also found aneuploidy and its driver genes were correlated with the immune microenvironment of PCa. Our findings could shed light on the tumorigenesis of PCa and provide a better understanding of the development and metastasis of PCa; additionally, the driver genes could be promising and actionable therapeutic targets pointing to aneuploidy.
Collapse
Affiliation(s)
- Yun Peng
- Tianjin Institute of Urology, the 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Peking University People’s Hospital, Beijing, China
| | - Haitao Wang
- Department of Oncology, the 2nd Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Haitao Wang,
| |
Collapse
|
12
|
Berglund A, Matta J, Encarnación-Medina J, Ortiz-Sanchéz C, Dutil J, Linares R, Marcial J, Abreu-Takemura C, Moreno N, Putney R, Chakrabarti R, Lin HY, Yamoah K, Osterman CD, Wang L, Dhillon J, Kim Y, Kim SJ, Ruiz-Deya G, Park JY. Dysregulation of DNA Methylation and Epigenetic Clocks in Prostate Cancer among Puerto Rican Men. Biomolecules 2021; 12:2. [PMID: 35053153 PMCID: PMC8773891 DOI: 10.3390/biom12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
In 2021, approximately 248,530 new prostate cancer (PCa) cases are estimated in the United States. Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. The objective of this study was to assess DNA methylation patterns between aggressive and indolent PCa along with ancestry proportions in 49 H/L men from Puerto Rico (PR). Prostate tumors were classified as aggressive (n = 17) and indolent (n = 32) based on the Gleason score. Genomic DNA samples were extracted by macro-dissection. DNA methylation patterns were assessed using the Illumina EPIC DNA methylation platform. We used ADMIXTURE to estimate global ancestry proportions. We identified 892 differentially methylated genes in prostate tumor tissues as compared with normal tissues. Based on an epigenetic clock model, we observed that the total number of stem cell divisions (TNSC) and stem cell division rate (SCDR) were significantly higher in tumor than adjacent normal tissues. Regarding PCa aggressiveness, 141 differentially methylated genes were identified. Ancestry proportions of PR men were estimated as African, European, and Indigenous American; these were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation profiles associated with risk and aggressiveness of PCa in PR H/L men will shed light on potential mechanisms contributing to PCa disparities in PR population.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jarline Encarnación-Medina
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Carmen Ortiz-Sanchéz
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Raymond Linares
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Joshua Marcial
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Caren Abreu-Takemura
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Natasha Moreno
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Ryan Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Carlos Diaz Osterman
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Liang Wang
- Department of Molecular Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Seung Joon Kim
- Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Korea;
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Kumaraswamy A, Welker Leng KR, Westbrook TC, Yates JA, Zhao SG, Evans CP, Feng FY, Morgan TM, Alumkal JJ. Recent Advances in Epigenetic Biomarkers and Epigenetic Targeting in Prostate Cancer. Eur Urol 2021; 80:71-81. [PMID: 33785255 DOI: 10.1016/j.eururo.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT In addition to genetic alterations, epigenetic alterations play a crucial role during prostate cancer progression. A better understanding of the epigenetic factors that promote prostate cancer progression may lead to the design of rational therapeutic strategies to target prostate cancer more effectively. OBJECTIVE To systematically review recent literature on the role of epigenetic factors in prostate cancer and highlight key preclinical and translational data with epigenetic therapies. EVIDENCE ACQUISITION We performed a systemic literature search in PubMed. At the request of the editors, we limited our search to articles published between January 2015 and August 2020 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Clinical trials targeting epigenetic factors were retrieved from clinicaltrials.gov. EVIDENCE SYNTHESIS We retrieved 1451 articles, and 62 were finally selected for review. Twelve additional foundational studies outside this time frame were also included. Findings from both preclinical and clinical studies were reviewed and summarized. We also discuss 12 ongoing clinical studies with epigenetic targeted therapies. CONCLUSIONS Epigenetic mechanisms impact prostate cancer progression. Understanding the role of specific epigenetic factors is critical to determine how we may improve prostate cancer treatment and modulate resistance to standard therapies. Recent preclinical studies and ongoing or completed clinical studies with epigenetic therapies provide a useful roadmap for how to best deploy epigenetic therapies clinically to target prostate cancer. PATIENT SUMMARY Epigenetics is a process by which gene expression is regulated without changes in the DNA sequence itself. Oftentimes, epigenetic changes influence cellular behavior and contribute to cancer development or progression. Understanding how epigenetic changes occur in prostate cancer is the first step toward therapeutic targeting in patients. Importantly, laboratory-based studies and recently completed and ongoing clinical trials suggest that drugs targeting epigenetic factors are promising. More work is necessary to determine whether this class of drugs will add to our existing treatment arsenal in prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Joel A Yates
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christopher P Evans
- Department of Urologic Surgery and UC Davis Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Joshi J Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Differential DNA Methylation in Prostate Tumors from Puerto Rican Men. Int J Mol Sci 2021; 22:ijms22020733. [PMID: 33450964 PMCID: PMC7828429 DOI: 10.3390/ijms22020733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
In 2020, approximately 191,930 new prostate cancer (PCa) cases are estimated in the United States (US). Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. This study aims to assess methylation patterns between aggressive and indolent PCa including DNA repair genes along with ancestry proportions. Prostate tumors classified as aggressive (n = 11) and indolent (n = 13) on the basis of the Gleason score were collected. Tumor and adjacent normal tissue were annotated on H&E (Haemotoxylin and Eosin) slides and extracted by macro-dissection. Methylation patterns were assessed using the Illumina 850K DNA methylation platform. Raw data were processed using the Bioconductor package. Global ancestry proportions were estimated using ADMIXTURE (k = 3). One hundred eight genes including AOX1 were differentially methylated in tumor samples. Regarding the PCa aggressiveness, six hypermethylated genes (RREB1, FAM71F2, JMJD1C, COL5A3, RAE1, and GABRQ) and 11 hypomethylated genes (COL9A2, FAM179A, SLC17A2, PDE10A, PLEKHS1, TNNI2, OR51A4, RNF169, SPNS2, ADAMTSL5, and CYP4F12) were identified. Two significant differentially methylated DNA repair genes, JMJD1C and RNF169, were found. Ancestry proportion results for African, European, and Indigenous American were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation patterns related to PCa in H/L men along with specific patterns related to aggressiveness and DNA repair constitutes a pivotal effort for the understanding of PCa in this population.
Collapse
|
15
|
Omics Derived Biomarkers and Novel Drug Targets for Improved Intervention in Advanced Prostate Cancer. Diagnostics (Basel) 2020; 10:diagnostics10090658. [PMID: 32878288 PMCID: PMC7555799 DOI: 10.3390/diagnostics10090658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies, and the fifth leading cause of cancer related mortality in men. For advanced PCa, radical prostatectomy, radiotherapy, and/or long-term androgen deprivation therapy are the recommended treatment options. However, subsequent progression to metastatic disease after initial therapy results in low 5-year survival rates (29%). Omics technologies enable the acquisition of high-resolution large datasets that can provide insights into molecular mechanisms underlying PCa pathology. For the purpose of this article, a systematic literature search was conducted through the Web of Science Database to critically evaluate recent omics-driven studies that were performed towards: (a) Biomarker development and (b) characterization of novel molecular-based therapeutic targets. The results indicate that multiple omics-based biomarkers with prognostic and predictive value have been validated in the context of PCa, with several of those being also available for commercial use. At the same time, omics-driven potential drug targets have been investigated in pre-clinical settings and even in clinical trials, holding the promise for improved clinical management of advanced PCa, as part of personalized medicine pipelines.
Collapse
|
16
|
Wu L, Yang Y, Guo X, Shu XO, Cai Q, Shu X, Li B, Tao R, Wu C, Nikas JB, Sun Y, Zhu J, Roobol MJ, Giles GG, Brenner H, John EM, Clements J, Grindedal EM, Park JY, Stanford JL, Kote-Jarai Z, Haiman CA, Eeles RA, Zheng W, Long J. An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk. Nat Commun 2020; 11:3905. [PMID: 32764609 PMCID: PMC7413371 DOI: 10.1038/s41467-020-17673-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/28/2020] [Indexed: 12/21/2022] Open
Abstract
It remains elusive whether some of the associations identified in genome-wide association studies of prostate cancer (PrCa) may be due to regulatory effects of genetic variants on CpG sites, which may further influence expression of PrCa target genes. To search for CpG sites associated with PrCa risk, here we establish genetic models to predict methylation (N = 1,595) and conduct association analyses with PrCa risk (79,194 cases and 61,112 controls). We identify 759 CpG sites showing an association, including 15 located at novel loci. Among those 759 CpG sites, methylation of 42 is associated with expression of 28 adjacent genes. Among 22 genes, 18 show an association with PrCa risk. Overall, 25 CpG sites show consistent association directions for the methylation-gene expression-PrCa pathway. We identify DNA methylation biomarkers associated with PrCa, and our findings suggest that specific CpG sites may influence PrCa via regulating expression of candidate PrCa target genes.
Collapse
Affiliation(s)
- Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiang Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Jason B Nikas
- Research & Development, Genomix Inc, Minneapolis, MN, USA
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
- College of Life Science, Longyan University, Longyan, Fujian, P. R. China
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Monique J Roobol
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, 207 Bouverie St, Melbourne, VIC, 3010, Australia
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, 615 St Kilda Rd, Melbourne, VIC, 3004, Australia
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Esther M John
- Department of Medicine (Oncology) and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Judith Clements
- Australian Prostate Cancer Research Centre-QLD, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | | | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, UK
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
17
|
Ilijazi D, Pulverer W, Ertl IE, Lemberger U, Kimura S, Abufaraj M, D’Andrea D, Pradere B, Bruchbacher A, Graf A, Soria F, Susani M, Haitel A, Molinaro L, Pycha A, Comploj E, Pabinger S, Weinhäusel A, Egger G, Shariat SF, Hassler MR. Discovery of Molecular DNA Methylation-Based Biomarkers through Genome-Wide Analysis of Response Patterns to BCG for Bladder Cancer. Cells 2020; 9:cells9081839. [PMID: 32764425 PMCID: PMC7464079 DOI: 10.3390/cells9081839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Bacillus Calmette-Guérin (BCG) immunotherapy, the standard adjuvant intravesical therapy for some intermediate and most high-risk non-muscle invasive bladder cancers (NMIBCs), suffers from a heterogenous response rate. Molecular markers to help guide responses are scarce and currently not used in the clinical setting. Methods: To identify novel biomarkers and pathways involved in response to BCG immunotherapy, we performed a genome-wide DNA methylation analysis of NMIBCs before BCG therapy. Genome-wide DNA methylation profiles of DNA isolated from tumors of 26 BCG responders and 27 failures were obtained using the Infinium MethylationEPIC BeadChip. Results: Distinct DNA methylation patterns were found by genome-wide analysis in the two groups. Differentially methylated CpG sites were predominantly located in gene promoters and gene bodies associated with bacterial invasion of epithelial cells, chemokine signaling, endocytosis, and focal adhesion. In total, 40 genomic regions with a significant difference in methylation between responders and failures were detected. The differential methylation state of six of these regions, localized in the promoters of the genes GPR158, KLF8, C12orf42, WDR44, FLT1, and CHST11, were internally validated by bisulfite-sequencing. GPR158 promoter hypermethylation was the best predictor of BCG failure with an AUC of 0.809 (p-value < 0.001). Conclusions: Tumors from BCG responders and BCG failures harbor distinct DNA methylation profiles. Differentially methylated DNA regions were detected in genes related to pathways involved in bacterial invasion of cells or focal adhesion. We identified candidate DNA methylation biomarkers that may help to predict patient prognosis after external validation in larger, well-designed cohorts.
Collapse
Affiliation(s)
- Dafina Ilijazi
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
| | - Walter Pulverer
- AIT—Austrian Institute of Technology GmbH, Health & Environment Department, Molecular Diagnostics, 1210 Vienna, Austria; (W.P.); (S.P.); (A.W.)
| | - Iris E. Ertl
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
| | - Ursula Lemberger
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
| | - Shoji Kimura
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
- Department of Urology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Mohammad Abufaraj
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
- Division of Urology, Department of Special Surgery, The University of Jordan, Amman 11942, Jordan
| | - David D’Andrea
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
| | - Benjamin Pradere
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
- Department of Urology, CHRU Tours, Francois Rabelais University, 37000 Tours, France
| | - Andreas Bruchbacher
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
| | - Anna Graf
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
| | - Francesco Soria
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
- Division of Urology, Department of Surgical Sciences, San Giovanni Battista Hospital, University of Studies of Torino, 10124 Turin, Italy
| | - Martin Susani
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria; (M.S.); (A.H.); (G.E.)
| | - Andrea Haitel
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria; (M.S.); (A.H.); (G.E.)
| | - Luca Molinaro
- Division of Pathology, Department of Medical Sciences, University of Studies of Torino, 10124 Turin, Italy;
| | - Armin Pycha
- Department of Urology, Central Hospital of Bolzano/Bozen, 39100 Bozen, Italy; (A.P.); (E.C.)
- Sigmund Freud Private University, Medical University, 1020 Vienna, Austria
| | - Evi Comploj
- Department of Urology, Central Hospital of Bolzano/Bozen, 39100 Bozen, Italy; (A.P.); (E.C.)
- College of Health-Care Professions, Claudiana Research, Claudiana, 39100 Bolzano, Italy
| | - Stephan Pabinger
- AIT—Austrian Institute of Technology GmbH, Health & Environment Department, Molecular Diagnostics, 1210 Vienna, Austria; (W.P.); (S.P.); (A.W.)
| | - Andreas Weinhäusel
- AIT—Austrian Institute of Technology GmbH, Health & Environment Department, Molecular Diagnostics, 1210 Vienna, Austria; (W.P.); (S.P.); (A.W.)
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria; (M.S.); (A.H.); (G.E.)
- Ludwig Boltzmann Institute Applied Diagnostics, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Shahrokh F. Shariat
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
- Division of Urology, Department of Special Surgery, The University of Jordan, Amman 11942, Jordan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Urology, Weill Cornell Medical College, New York, NY 10065, USA
- Karl Landsteiner Institute of Urology and Andrology, 3100 St. Poelten, Austria
- Department of Urology, Second Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
- European Association of Urology research foundation, 6842 Arnhem, Netherlands
- Correspondence: (S.F.S.); (M.R.H.); Tel.: +43-01-40400-26150 (M.R.H.)
| | - Melanie R. Hassler
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (D.I.); (I.E.E.); (U.L.); (S.K.); (M.A.); (D.D.); (B.P.); (A.B.); (A.G.); (F.S.)
- Correspondence: (S.F.S.); (M.R.H.); Tel.: +43-01-40400-26150 (M.R.H.)
| |
Collapse
|
18
|
Rauluseviciute I, Drabløs F, Rye MB. DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation. BMC Med Genomics 2020; 13:6. [PMID: 31914996 PMCID: PMC6950795 DOI: 10.1186/s12920-020-0657-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Background Prostate cancer (PCa) has the highest incidence rates of cancers in men in western countries. Unlike several other types of cancer, PCa has few genetic drivers, which has led researchers to look for additional epigenetic and transcriptomic contributors to PCa development and progression. Especially datasets on DNA methylation, the most commonly studied epigenetic marker, have recently been measured and analysed in several PCa patient cohorts. DNA methylation is most commonly associated with downregulation of gene expression. However, positive associations of DNA methylation to gene expression have also been reported, suggesting a more diverse mechanism of epigenetic regulation. Such additional complexity could have important implications for understanding prostate cancer development but has not been studied at a genome-wide scale. Results In this study, we have compared three sets of genome-wide single-site DNA methylation data from 870 PCa and normal tissue samples with multi-cohort gene expression data from 1117 samples, including 532 samples where DNA methylation and gene expression have been measured on the exact same samples. Genes were classified according to their corresponding methylation and expression profiles. A large group of hypermethylated genes was robustly associated with increased gene expression (UPUP group) in all three methylation datasets. These genes demonstrated distinct patterns of correlation between DNA methylation and gene expression compared to the genes showing the canonical negative association between methylation and expression (UPDOWN group). This indicates a more diversified role of DNA methylation in regulating gene expression than previously appreciated. Moreover, UPUP and UPDOWN genes were associated with different compartments — UPUP genes were related to the structures in nucleus, while UPDOWN genes were linked to extracellular features. Conclusion We identified a robust association between hypermethylation and upregulation of gene expression when comparing samples from prostate cancer and normal tissue. These results challenge the classical view where DNA methylation is always associated with suppression of gene expression, which underlines the importance of considering corresponding expression data when assessing the downstream regulatory effect of DNA methylation.
Collapse
Affiliation(s)
- Ieva Rauluseviciute
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, P.O. Box 8905, NO-7491, Trondheim, Norway.
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, P.O. Box 8905, NO-7491, Trondheim, Norway
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, P.O. Box 8905, NO-7491, Trondheim, Norway.,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, NO-7030, Trondheim, Norway
| |
Collapse
|
19
|
Aquino-Gálvez A, González-Ávila G, Jiménez-Sánchez LL, Maldonado-Martínez HA, Cisneros J, Toscano-Marquez F, Castillejos-López M, Torres-Espíndola LM, Velázquez-Cruz R, Rodríguez VHO, Flores-Soto E, Solís-Chagoyán H, Cabello C, Zúñiga J, Romero Y. Dysregulated expression of hypoxia-inducible factors augments myofibroblasts differentiation in idiopathic pulmonary fibrosis. Respir Res 2019; 20:130. [PMID: 31234835 PMCID: PMC6591870 DOI: 10.1186/s12931-019-1100-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an age-related, progressive and lethal disease, whose pathogenesis is associated with fibroblasts/myofibroblasts foci that produce excessive extracellular matrix accumulation in lung parenchyma. Hypoxia has been described as a determinant factor in its development and progression. However, the role of distinct members of this pathway is not completely described. METHODS By western blot, quantitative PCR, Immunohistochemistry and Immunocitochemistry were evaluated, the expression HIF alpha subunit isoforms 1, 2 & 3 as well, as their role in myofibroblast differentiation in lung tissue and fibroblast cell lines derived from IPF patients. RESULTS Hypoxia signaling pathway was found very active in lungs and fibroblasts from IPF patients, as demonstrated by the abundance of alpha subunits 1 and 2, which further correlated with the increased expression of myofibroblast marker αSMA. In contrast, HIF-3α showed reduced expression associated with its promoter hypermethylation. CONCLUSIONS This study lends further support to the involvement of hypoxia in the pathogenesis of IPF, and poses HIF-3α expression as a potential negative regulator of these phenomena.
Collapse
Affiliation(s)
- Arnoldo Aquino-Gálvez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, 14080, Mexico City, CP, Mexico.
| | - Georgina González-Ávila
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, 14080, Mexico City, CP, Mexico
| | - Laura Lorena Jiménez-Sánchez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, 14080, Mexico City, CP, Mexico
| | | | - José Cisneros
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, 14080, Mexico City, CP, Mexico
| | | | - Manuel Castillejos-López
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, 14080, Mexico City, CP, Mexico
| | | | | | | | - Edgar Flores-Soto
- Departamento de Farmacologia, Facultad de Medicina, Universidad Nacional Autónoma México, Mexico City, Mexico
| | | | - Carlos Cabello
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, 14080, Mexico City, CP, Mexico
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, 14080, Mexico City, CP, Mexico.,Escuela de medicina y ciencias de la salud, Tecnologico de Monterrey, Mexico City, Mexico
| | - Yair Romero
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, 14080, Mexico City, CP, Mexico. .,Facultad de Ciencias, Universidad Nacional Autónoma México, Mexico City, Mexico.
| |
Collapse
|
20
|
Jarrard WE, Schultz A, Etheridge T, Damodaran S, Allen GO, Jarrard D, Yang B. Screening of urine identifies PLA2G16 as a field defect methylation biomarker for prostate cancer detection. PLoS One 2019; 14:e0218950. [PMID: 31233548 PMCID: PMC6590820 DOI: 10.1371/journal.pone.0218950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/12/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Prostate cancer (PC) is a multifocal disease. DNA methylation alterations are not restricted to the immediate peritumor environment, but spatially widespread in the adjacent and distant histologically normal prostate tissues. In the current study, we utilized high-throughput methylation arrays to identify epigenetic changes in the urine from men with and without cancer. DESIGN, SETTING, AND PARTICIPANTS DNA urine samples were enriched for methylated fragments using MBD methyl-binding antibodies and applied to high density CytoScanHD arrays. Significant loci were validated using quantitative pyrosequencing and binary logistic regression modeling applied to urine sample analyses in a training (n = 83) and validation approach (n = 84). Methylation alterations in prostate tissues using pyrosequencing at the PLA2G16 locus were examined in 38 histologically normal specimens from men with (TA, n = 26) and without (NTA, n = 12) cancer and correlated to gene expression. RESULTS Methylation microarrays identified 3,986 loci showing significantly altered methylation in the urine samples from patients with PC compared to those without (TA vs NTA; p<0.01). These loci were then compared against subjects with their prostates removed to exclude non-prostate cell markers yielding 196 significant regions. Multiple CpGs adjacent to PLA2G16 CpG island showed increased methylation in TA compared to NTA (p<0.01) in a large validation study of urine samples. The predictive accuracy of PLA2G16 methylation at CG2 showed the highest predictive value at 0.8 (odds ratio, 1.37; 95% confidence interval, 1.16-1.62; p<0.001). Using a probability cutoff of 0.065, the sensitivity and specificity of the multivariate model was 92% and 35%. When histologically normal prostate tissues/biopsies from patients with PC (TA) were compared to subjects without cancer, significant hypermethylation of PLA2G16 was noted (odds ratio, 1.35; 95% confidence interval, 1.07-1.71; p = 0.01). CONCLUSION PLA2G16 methylation defines an extensive field defect in histologically normal prostate tissue associated with PC. PLA2G16 methylation in urine and prostate tissues can detect the presence of PC.
Collapse
Affiliation(s)
- William E. Jarrard
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States of America
| | - Adam Schultz
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States of America
| | - Tyler Etheridge
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Shivashankar Damodaran
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Glenn O. Allen
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - David Jarrard
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States of America
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Bing Yang
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
21
|
Strmiska V, Michalek P, Lackova Z, Guran R, Krizkova S, Vanickova L, Zitka O, Stiborova M, Eckschlager T, Klejdus B, Pacik D, Tvrdikova E, Keil C, Haase H, Adam V, Heger Z. Sarcosine is a prostate epigenetic modifier that elicits aberrant methylation patterns through the SAMe-Dnmts axis. Mol Oncol 2019; 13:1002-1017. [PMID: 30628163 PMCID: PMC6487735 DOI: 10.1002/1878-0261.12439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/23/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
DNA hypermethylation is one of the most common epigenetic modifications in prostate cancer (PCa). Several studies have delineated sarcosine as a PCa oncometabolite that increases the migration of malignant prostate cells while decreasing their doubling time. Here, we show that incubation of prostate cells with sarcosine elicited the upregulation of sarcosine N‐demethylation enzymes, sarcosine dehydrogenase and pipecolic acid oxidase. This process was accompanied by a considerable increase in the production of the major methyl‐donor S‐adenosylmethionine (SAMe), together with an elevation of cellular methylation potential. Global DNA methylation analyses revealed increases in methylated CpG islands in distinct prostate cell lines incubated with sarcosine, but not in cells of nonprostate origin. This phenomenon was further associated with marked upregulation of DNA methyltransferases (Dnmts). Epigenetic changes were recapitulated through blunting of Dnmts using the hypomethylating agent 5‐azacytidine, which was able to inhibit sarcosine‐induced migration of prostate cells. Moreover, spatial mapping revealed concomitant increases in sarcosine, SAMe and Dnmt1 in histologically confirmed malignant prostate tissue, but not in adjacent or nonmalignant tissue, which is in line with the obtained in vitro data. In summary, we show here for the first time that sarcosine acts as an epigenetic modifier of prostate cells and that this may contribute to its oncometabolic role.
Collapse
Affiliation(s)
- Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Zuzana Lackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Lucie Vanickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague 5, Czech Republic
| | - Borivoj Klejdus
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Mendel University in Brno, Czech Republic
| | - Dalibor Pacik
- Department of Urology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eliska Tvrdikova
- Department of Pathology, University Hospital Brno, Czech Republic
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Technical University of Berlin, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technical University of Berlin, Germany
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| |
Collapse
|
22
|
Molecular Mechanisms Related to Hormone Inhibition Resistance in Prostate Cancer. Cells 2019; 8:cells8010043. [PMID: 30642011 PMCID: PMC6356740 DOI: 10.3390/cells8010043] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Management of metastatic or advanced prostate cancer has acquired several therapeutic approaches that have drastically changed the course of the disease. In particular due to the high sensitivity of prostate cancer cells to hormone depletion, several agents able to inhibit hormone production or binding to nuclear receptor have been evaluated and adopted in clinical practice. However, despite several hormonal treatments being available nowadays for the management of advanced or metastatic prostate cancer, the natural history of the disease leads inexorably to the development of resistance to hormone inhibition. Findings regarding the mechanisms that drive this process are of particular and increasing interest as these are potentially related to the identification of new targetable pathways and to the development of new drugs able to improve our patients' clinical outcomes.
Collapse
|
23
|
Li W, Middha M, Bicak M, Sjoberg DD, Vertosick E, Dahlin A, Häggström C, Hallmans G, Rönn AC, Stattin P, Melander O, Ulmert D, Lilja H, Klein RJ. Genome-wide Scan Identifies Role for AOX1 in Prostate Cancer Survival. Eur Urol 2018; 74:710-719. [PMID: 30289108 PMCID: PMC6287611 DOI: 10.1016/j.eururo.2018.06.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Most men diagnosed with prostate cancer have low-risk cancers. How to predict prostate cancer progression at the time of diagnosis remains challenging. OBJECTIVE To identify single nucleotide polymorphisms (SNPs) associated with death from prostate cancer. DESIGN, SETTING, AND PARTICIPANTS Blood samples from 11 506 men in Sweden were collected during 1991-1996. Of these, 1053 men were diagnosed with prostate cancer and 245 died from the disease. Stage and grade at diagnosis and outcome information were obtained, and DNA from all cases was genotyped. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS A total of 6 126 633 SNPs were tested for association with prostate-cancer-specific survival time using a Cox proportional hazard model, adjusted for age, stage, and grade at diagnosis. A value of 1×10-6 was used as suggestive significance threshold. Positive candidate SNPs were tested for association with gene expression using expression quantitative trait locus analysis. RESULTS AND LIMITATIONS We found 12 SNPs at seven independent loci associated with prostate-cancer-specific survival time. One of 6 126 633 SNPs tested reached genome-wide significance (p<5×10-8) and replicated in an independent cohort: rs73055188 (p=5.27×10-9, per-allele hazard ratio [HR]=2.27, 95% confidence interval [CI] 1.72-2.98) in the AOX1 gene. A second SNP reached a suggestive level of significance (p<1×10-6) and replicated in an independent cohort: rs2702185 (p=7.1×10-7, per-allele HR=2.55, 95% CI=1.76-3.69) in the SMG7 gene. The SNP rs73055188 is correlated with AOX1 expression levels, which is associated with biochemical recurrence of prostate cancer in independent cohorts. This association is yet to be validated in other ethnic groups. CONCLUSIONS The SNP rs73055188 at the AOX1 locus is associated with prostate-cancer-specific survival time, and AOX1 gene expression level is correlated with biochemical recurrence of prostate cancer. PATIENT SUMMARY We identify two genetic markers that are associated with prostate-cancer-specific survival time.
Collapse
Affiliation(s)
- Weiqiang Li
- Icahn Institute for Genomics and Multiscale Biology and
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
Sinai, New York, NY USA
| | - Mridu Middha
- Icahn Institute for Genomics and Multiscale Biology and
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
Sinai, New York, NY USA
| | - Mesude Bicak
- Icahn Institute for Genomics and Multiscale Biology and
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
Sinai, New York, NY USA
| | - Daniel D. Sjoberg
- Department of Epidemiology and Biostatistics, Memorial
Sloan Kettering Cancer Center, New York, NY USA
| | - Emily Vertosick
- Department of Epidemiology and Biostatistics, Memorial
Sloan Kettering Cancer Center, New York, NY USA
| | - Anders Dahlin
- Department of Clinical Sciences, Malmö, Lund
University, Malmö, Sweden
| | | | - Göran Hallmans
- Department of Public Health and Clinical Medicine,
Nutritional Research, Umeå University, Umeå, Sweden
| | - Ann-Charlotte Rönn
- Clinical Research Center, Karolinska University Hospital,
Huddinge, Sweden
| | - Pär Stattin
- Department of Surgical Sciences, Uppsala University,
Uppsala, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Malmö, Lund
University, Malmö, Sweden
| | - David Ulmert
- Molecular Pharmacology Program, Sloan Kettering Institute,
New York, NY USA
| | - Hans Lilja
- Departments of Laboratory Medicine, Surgery, and Medicine,
Memorial Sloan Kettering Cancer Center, New York, NY USA; Nuffield Department of
Surgical Sciences, University of Oxford, Oxford, UK; Department of Translational
Medicine, Lund University, Malmö, Sweden
| | - Robert J. Klein
- Icahn Institute for Genomics and Multiscale Biology and
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
Sinai, New York, NY USA
| |
Collapse
|
24
|
Phenotype-independent DNA methylation changes in prostate cancer. Br J Cancer 2018; 119:1133-1143. [PMID: 30318509 PMCID: PMC6219500 DOI: 10.1038/s41416-018-0236-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Human prostate cancers display numerous DNA methylation changes compared to normal tissue samples. However, definitive identification of features related to the cells’ malignant status has been compromised by the predominance of cells with luminal features in prostate cancers. Methods We generated genome-wide DNA methylation profiles of cell subpopulations with basal or luminal features isolated from matched prostate cancer and normal tissue samples. Results Many frequent DNA methylation changes previously attributed to prostate cancers are here identified as differences between luminal and basal cells in both normal and cancer samples. We also identified changes unique to each of the two cancer subpopulations. Those specific to cancer luminal cells were associated with regulation of metabolic processes, cell proliferation and epithelial development. Within the prostate cancer TCGA dataset, these changes were able to distinguish not only cancers from normal samples, but also organ-confined cancers from those with extraprostatic extensions. Using changes present in both basal and luminal cancer cells, we derived a new 17-CpG prostate cancer signature with high predictive power in the TCGA dataset. Conclusions This study demonstrates the importance of comparing phenotypically matched prostate cell populations from normal and cancer tissues to unmask biologically and clinically relevant DNA methylation changes.
Collapse
|
25
|
Potential Epigenetic Biomarkers for Prostate Cancer Screening. Int Neurourol J 2018; 22:142-144. [PMID: 29991236 PMCID: PMC6059910 DOI: 10.5213/inj.1836096.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 11/08/2022] Open
|
26
|
Brikun I, Nusskern D, Decatus A, Harvey E, Li L, Freije D. A panel of DNA methylation markers for the detection of prostate cancer from FV and DRE urine DNA. Clin Epigenetics 2018; 10:91. [PMID: 29988684 PMCID: PMC6029393 DOI: 10.1186/s13148-018-0524-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Background Early screening for prostate cancer (PCA) remains controversial because of overdiagnosis and overtreatment of clinically insignificant cancers. Even though a number of diagnostic tests have been developed to improve on PSA testing, there remains a need for a more informative non-invasive test for PCA. The objective of this study is to identify a panel of DNA methylation markers suitable for a non-invasive diagnostic test from urine DNA collected following a digital rectal exam (DRE) and/or from first morning void (FV). A secondary objective is to determine if the cumulative methylation is indicative of biopsy findings. Methods DRE and FV urine samples were prospectively collected from 94 patients and analyzed using 24 methylation-specific quantitative PCR assays derived from 19 CpG islands. The methylation of individual markers and various combinations of markers was compared to biopsy results. A methylation threshold for cancer classification was determined using a target specificity of 70%. The average methylation and the number of positive markers were also compared to the result of the biopsy, and the area under the receiver operating characteristic curves (AUCs) were calculated. Results Methylation of all 19 markers was detected in FV and DRE DNAs. Combining the methylation of two or more markers improved on individual marker results. Using 6of19 methylated markers as the threshold for cancer classification yielded a specificity of 71% (95% CI, 0.57-0.86) from both DRE and FV and a sensitivity of 89% (95% CI, 0.79-0.97) from DRE and 94% (95% CI, 0.84-1.0) from FV. The negative predictive value at the 6of19 threshold was ≥ 90 for both DNA types. Conclusions PCA-specific methylation was detected in both FV and DRE DNA. There was no significant difference in diagnostic accuracy at the 6of19 threshold between DRE and FV urine DNA. The results support the development of a non-invasive diagnostic test to reduce unnecessary biopsies in men with elevated PSA. The test can also provide patients with personalized recommendations based on their own methylation profile.
Collapse
Affiliation(s)
- Igor Brikun
- Euclid Diagnostics LLC, 9800 Connecticut Dr., Crown Point, IN 46307 USA
| | - Deborah Nusskern
- Euclid Diagnostics LLC, 9800 Connecticut Dr., Crown Point, IN 46307 USA.,Present Address: Luminex Corporation, 4088 Commercial Ave, Northbrook, IL 60062 USA
| | - Andrew Decatus
- BioStat Solutions Inc., 5280 Corporate Dr., Suite C200, Frederick, MD 21703 USA
| | - Eric Harvey
- 3Health Decisions Inc., 2510 Meridian Parkway, Durham, NC 27713 USA
| | - Lin Li
- BioStat Solutions Inc., 5280 Corporate Dr., Suite C200, Frederick, MD 21703 USA
| | - Diha Freije
- Euclid Diagnostics LLC, 9800 Connecticut Dr., Crown Point, IN 46307 USA
| |
Collapse
|
27
|
Aref-Eshghi E, Schenkel LC, Ainsworth P, Lin H, Rodenhiser DI, Cutz JC, Sadikovic B. Genomic DNA Methylation-Derived Algorithm Enables Accurate Detection of Malignant Prostate Tissues. Front Oncol 2018; 8:100. [PMID: 29740534 PMCID: PMC5925605 DOI: 10.3389/fonc.2018.00100] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/21/2018] [Indexed: 01/27/2023] Open
Abstract
Introduction The current methodology involving diagnosis of prostate cancer (PCa) relies on the pathology examination of prostate needle biopsies, a method with high false negative rates partly due to temporospatial, molecular, and morphological heterogeneity of prostate adenocarcinoma. It is postulated that molecular markers have a potential to assign diagnosis to a considerable portion of undetected prostate tumors. This study examines the genome-wide DNA methylation changes in PCa in search of genomic markers for the development of a diagnostic algorithm for PCa screening. Methods Archival PCa and normal tissues were assessed using genomic DNA methylation arrays. Differentially methylated sites and regions (DMRs) were used for functional assessment, gene-set enrichment and protein interaction analyses, and examination of transcription factor-binding patterns. Raw signal intensity data were used for identification of recurrent copy number variations (CNVs). Non-redundant fully differentiating cytosine-phosphate-guanine sites (CpGs), which did not overlap CNV segments, were used in an L1 regularized logistic regression model (LASSO) to train a classification algorithm. Validation of this algorithm was performed using a large external cohort of benign and tumor prostate arrays. Results Approximately 6,000 probes and 600 genomic regions showed significant DNA methylation changes, primarily involving hypermethylation. Gene-set enrichment and protein interaction analyses found an overrepresentation of genes related to cell communications, neurogenesis, and proliferation. Motif enrichment analysis demonstrated enrichment of tumor suppressor-binding sites nearby DMRs. Several of these regions were also found to contain copy number amplifications. Using four non-redundant fully differentiating CpGs, we trained a classification model with 100% accuracy in discriminating tumors from benign samples. Validation of this algorithm using an external cohort of 234 tumors and 92 benign samples yielded 96% sensitivity and 98% specificity. The model was found to be highly sensitive to detect metastatic lesions in bone, lymph node, and soft tissue, while being specific enough to differentiate the benign hyperplasia of prostate from tumor. Conclusion A considerable component of PCa DNA methylation profile represent driver events potentially established/maintained by disruption of tumor suppressor activity. As few as four CpGs from this profile can be used for screening of PCa.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| | - Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| | - Peter Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| | - David I Rodenhiser
- Department of Pediatrics, Western University and Children's Health Research Institute, London, ON, Canada.,Department of Biochemistry, Western University and Children's Health Research Institute, London, ON, Canada.,Department of Oncology, Western University and Children's Health Research Institute, London, ON, Canada
| | - Jean-Claude Cutz
- Department of Pathology and Laboratory Medicine, McMaster University, Hamilton, ON, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| |
Collapse
|
28
|
FitzGerald LM, Jung CH, Wong EM, Joo JE, Gould JA, Vasic V, Bassett JK, O'Callaghan N, Nottle T, Pedersen J, Giles GG, Southey MC. Obtaining high quality transcriptome data from formalin-fixed, paraffin-embedded diagnostic prostate tumor specimens. J Transl Med 2018; 98:537-550. [PMID: 29339835 DOI: 10.1038/s41374-017-0001-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/27/2023] Open
Abstract
Prognostic genomic biomarkers that can be measured at diagnosis to aid choice of treatment options are unavailable for most common cancers. This is due in part to the poor quality and quantity of available diagnostic specimens for discovery research and to limitations in genomic technologies. Recent technical advances now enable high-density molecular analyses using suboptimal biological specimens. Here we describe the optimization of a transcriptome-specific protocol for use with formalin-fixed, paraffin-embedded (FFPE) diagnostic prostate cancer (PrCa) specimens. We applied the Ion AmpliSeq Transcriptome Human Gene Expression Kit (AmpliSeq Kit) to RNA samples extracted from 36 tumor-enriched and 16 adjacent normal tissues (ADJNT) from 37 FFPE PrCa specimens over a series of eight pilot studies, incorporating protocol modifications from Pilots 2 to 5. Data quality were measured by (1) the total number of mapped reads; (2) the percentage of reads that mapped to AmpliSeq target regions (OnTarget%); (3) the percentage of genes on the AmpliSeq panel with a read count ≥10 (TargetsDetected%); and (4) comparing the gene read-count distribution of the prostate tissue samples with the median gene read-count distribution of cell line-derived RNA samples. Modifications incorporated into Pilot study 5 provided gene expression data equivalent to cell line-derived RNA samples. These modifications included the use of freshly cut slides for macrodissection; increased tissue section thickness (8 µm); RNA extraction using the RecoverAll Total Nucleic Acid Isolation Kit for FFPE (ThermoFisher); 18 target amplification cycles; and processing six samples per Ion PI chip. This protocol will facilitate the discovery of prognostic biomarkers for cancer by allowing researchers to exploit previously underutilized diagnostic FFPE specimens.
Collapse
Affiliation(s)
- Liesel M FitzGerald
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, Australia
| | - Ee Ming Wong
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - JiHoon E Joo
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Jodee A Gould
- Monash Health Translation Precinct, Medical Genomics Facility, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Vivien Vasic
- Monash Health Translation Precinct, Medical Genomics Facility, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Julie K Bassett
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Neil O'Callaghan
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Tim Nottle
- TissuPath Specialist Pathology, Mount Waverley, VIC, Australia
| | - John Pedersen
- TissuPath Specialist Pathology, Mount Waverley, VIC, Australia
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, School of Global and Population Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa C Southey
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia. .,Department of Pathology, The University of Melbourne, Parkville, VIC, Australia. .,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
29
|
Rivera-Del Valle N, Cheng T, Irwin ME, Donnella H, Singh MM, Chandra J. Combinatorial effects of histone deacetylase inhibitors (HDACi), vorinostat and entinostat, and adaphostin are characterized by distinct redox alterations. Cancer Chemother Pharmacol 2018; 81:483-495. [PMID: 29313067 DOI: 10.1007/s00280-017-3509-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Amongst the epigenetically targeted therapies, targeting of the histone deacetylases (HDACs) has yielded numerous drugs for clinical use in hematological malignancies, but none as yet for acute lymphocytic leukemia (ALL). Single agent activity of HDAC inhibitors (HDACi) has been elusive in ALL, and has prompted study of combinatorial strategies. Because several HDACi raise levels of intracellular oxidative stress, we evaluated combinations of two structurally distinct HDACi with the redox active compound adaphostin in ALL. METHODS The HDACi vorinostat and entinostat were tested in combination with adaphostin in human ALL cell lines. DNA fragmentation, caspase activation, mitochondrial disruption and levels of intracellular peroxides, superoxide and glutathione were measured in cells treated with the HDACi/adaphostin combinations. Antioxidant blockade of cell death induction and gene expression profiling of cells treated with vorinostat/adaphostin versus entinostat/adaphostin combinations were evaluated. RESULTS Both combinations synergistically induced apoptotic DNA fragmentation, which was preceded by an increase in superoxide levels, a reduction in mitochondrial membrane potential, and an increase in caspase-9 activation. The antioxidant N-acetylcysteine (NAC) blocked superoxide generation and prevented reduction of mitochondrial membrane potential. NAC decreased DNA fragmentation and caspase activity in cells treated with adaphostin and vorinostat, but not in those treated with adaphostin and entinostat. Gene expression arrays revealed differential regulation of several redox genes prior to cell death induction. CONCLUSIONS A redox modulatory agent, adaphostin, enhances efficacy of two HDACi, vorinostat or entinostat, but via different mechanisms indicating a point of divergence in the mechanisms of synergy between the two distinct HDACi and adaphostin.
Collapse
Affiliation(s)
- Nilsa Rivera-Del Valle
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas (UT) M. D. Anderson Cancer Center, 1515 Holcombe Blvd. Unit 853, Houston, TX, 77030, USA.,Center for Cancer Epigenetics, The University of Texas (UT) M. D. Anderson Cancer Center, Houston, TX, 77030, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Tiewei Cheng
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas (UT) M. D. Anderson Cancer Center, 1515 Holcombe Blvd. Unit 853, Houston, TX, 77030, USA.,Center for Cancer Epigenetics, The University of Texas (UT) M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas (UT) M. D. Anderson Cancer Center, 1515 Holcombe Blvd. Unit 853, Houston, TX, 77030, USA.,Center for Cancer Epigenetics, The University of Texas (UT) M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hayley Donnella
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas (UT) M. D. Anderson Cancer Center, 1515 Holcombe Blvd. Unit 853, Houston, TX, 77030, USA.,Center for Cancer Epigenetics, The University of Texas (UT) M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melissa M Singh
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas (UT) M. D. Anderson Cancer Center, 1515 Holcombe Blvd. Unit 853, Houston, TX, 77030, USA.,Center for Cancer Epigenetics, The University of Texas (UT) M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joya Chandra
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas (UT) M. D. Anderson Cancer Center, 1515 Holcombe Blvd. Unit 853, Houston, TX, 77030, USA. .,Center for Cancer Epigenetics, The University of Texas (UT) M. D. Anderson Cancer Center, Houston, TX, 77030, USA. .,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Li W, Su ZY, Guo Y, Zhang C, Wu R, Gao L, Zheng X, Du ZY, Zhang K, Kong AN. Curcumin Derivative Epigenetically Reactivates Nrf2 Antioxidative Stress Signaling in Mouse Prostate Cancer TRAMP C1 Cells. Chem Res Toxicol 2018; 31:88-96. [PMID: 29228771 DOI: 10.1021/acs.chemrestox.7b00248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The carcinogenesis of prostate cancer (PCa) in TRAMP model is highly correlated with hypermethylation in the promoter region of Nrf2 and the accompanying reduced transcription of Nrf2 and its regulated detoxifying genes. We aimed to investigate the effects of (3E,5E)-3,5-bis-(3,4,5-trimethoxybenzylidene)-tetrahydro-thiopyran-4-one (F10) and (3E,5E)-3,5-bis-(3,4,5-trimethoxy-benzylidene)-tetrahydropyran-4-one (E10), two synthetic curcumin derivatives, on restoring Nrf2 activity in TRAMP C1 cells. HepG2-C8 cells transfected with an antioxidant-response element (ARE)-luciferase vector were treated with F10, E10, curcumin, and sulforaphane (SFN) to compare their effects on Nrf2-ARE pathways. We performed real-time quantitative PCR and Western blotting to investigate the effects of F10 and E10 on Nrf2, correlated phase II detoxification genes. We also measured expression and activity of DNMTand HDAC enzymes. Enrichment of H3K27me3 on the promoter region of Nrf2 was explored with a chromatin immunoprecipitation (ChIP) assay. Methylation of the CpG region in Nrf2 promoter was doubly examined by bisulfite genomic sequencing (BGS) and methylation DNA immunoprecipitation (MeDIP). Compared with curcumin and SFN, F10 is more potent in activating Nrf2-ARE pathways. Both F10 and E10 enhanced level of Nrf2 and the correlated phase II detoxifying genes. BGS and MeDIP assays indicated that F10 but not E10 hypomethylated the Nrf2 promoter. F10 also downregulated the protein level of DNMT1, DNMT3a, DNMT3b, HDAC1, HDAC4, and HDAC7 and the activity of DNMTs and HDACs. F10 but not E10 effectively reduced the accumulation of H3k27me3 on the promoter of Nrf2. F10 and E10 can activate the Nrf2-ARE pathway and increase the level of Nrf2 and correlated phase II detoxification genes. The reactivation effect on Nrf2 by F10 in TRAMP C1 may come from demethylation, decrease of HDACs, and inhibition of H3k27me3 accumulation.
Collapse
Affiliation(s)
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University , 200 Chung Pei Road, Chung Li District, Taoyuan City, Taiwan 32023, R.O.C
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tanimoto K. Genetics of the hypoxia-inducible factors in human cancers. Exp Cell Res 2017; 356:166-172. [DOI: 10.1016/j.yexcr.2017.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022]
|
32
|
Vivian CJ, Brinker AE, Graw S, Koestler DC, Legendre C, Gooden GC, Salhia B, Welch DR. Mitochondrial Genomic Backgrounds Affect Nuclear DNA Methylation and Gene Expression. Cancer Res 2017; 77:6202-6214. [PMID: 28663334 DOI: 10.1158/0008-5472.can-17-1473] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations and polymorphisms contribute to many complex diseases, including cancer. Using a unique mouse model that contains nDNA from one mouse strain and homoplasmic mitochondrial haplotypes from different mouse strain(s)-designated Mitochondrial Nuclear Exchange (MNX)-we showed that mtDNA could alter mammary tumor metastasis. Because retrograde and anterograde communication exists between the nuclear and mitochondrial genomes, we hypothesized that there are differential mtDNA-driven changes in nuclear (n)DNA expression and DNA methylation. Genome-wide nDNA methylation and gene expression were measured in harvested brain tissue from paired wild-type and MNX mice. Selective differential DNA methylation and gene expression were observed between strains having identical nDNA, but different mtDNA. These observations provide insights into how mtDNA could be altering epigenetic regulation and thereby contribute to the pathogenesis of metastasis. Cancer Res; 77(22); 6202-14. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn J Vivian
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona
| | - Amanda E Brinker
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Stefan Graw
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | - Bodour Salhia
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas. .,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
33
|
Antognelli C, Ferri I, Bellezza G, Siccu P, Love HD, Talesa VN, Sidoni A. Glyoxalase 2 drives tumorigenesis in human prostate cells in a mechanism involving androgen receptor and p53-p21 axis. Mol Carcinog 2017; 56:2112-2126. [PMID: 28470764 DOI: 10.1002/mc.22668] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022]
Abstract
Glyoxalase 2 (Glo2), a metabolic enzyme, is overexpressed in some human cancers which suggests this enzyme may play a role in human tumorigenesis. In prostate cancer (PCa), the role of Glo2 has been scarcely investigated and there are no studies addressing a causative involvement of this protein in this neoplasia. Here, we examined the immunohistochemical profile of Glo2 in human PCa and benign adjacent tissues and investigated Glo2 involvement in PCa development in human prostate cell lines. PCa and matched adjacent normal tissues were obtained from paraffin sections of primary PCa from 20 patients who had undergone radical prostatectomy. Histopathological diagnosis was confirmed for each sample. Glo2 expression analysis was performed by immunohistochemistry in prostate tissues, and by qRT-PCR and immunoblotting in prostate cell lines. The causative and mechanistic role of Glo2 in prostate tumorigenesis was demonstrated by Glo2 ectopic expression/silencing and employing specific activators/inhibitors. Our results showed that Glo2 was selectively expressed in PCa but not in the luminal compartment of the adjacent benign epithelium consistently in all the examined 20 cases. Glo2 expression in PCa was dependent on androgen receptor (AR) and was aimed at stimulating cell proliferation and eluding apoptosis through a mechanism involving the p53-p21 axis. Glo2 was intensely expressed in the basal cells of benign glands but was not involved in PCa genesis. Our results demonstrate for the first time that Glo2 drives prostate tumorigenesis and suggest that it may represent a novel adjuvant marker in the pathological diagnosis of early PCa.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paola Siccu
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Harold D Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vincenzo N Talesa
- Division of Biosciences and Medical Embryology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
34
|
Keating ST, Plutzky J, El-Osta A. Epigenetic Changes in Diabetes and Cardiovascular Risk. Circ Res 2017; 118:1706-22. [PMID: 27230637 DOI: 10.1161/circresaha.116.306819] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 01/03/2023]
Abstract
Cardiovascular complications remain the leading causes of morbidity and premature mortality in patients with diabetes mellitus. Studies in humans and preclinical models demonstrate lasting gene expression changes in the vasculopathies initiated by previous exposure to high glucose concentrations and the associated overproduction of reactive oxygen species. The molecular signatures of chromatin architectures that sensitize the genome to these and other cardiometabolic risk factors of the diabetic milieu are increasingly implicated in the biological memory underlying cardiovascular complications and now widely considered as promising therapeutic targets. Atherosclerosis is a complex heterocellular disease where the contributing cell types possess distinct epigenomes shaping diverse gene expression. Although the extent that pathological chromatin changes can be manipulated in human cardiovascular disease remains to be established, the clinical applicability of epigenetic interventions will be greatly advanced by a deeper understanding of the cell type-specific roles played by writers, erasers, and readers of chromatin modifications in the diabetic vasculature. This review details a current perspective of epigenetic mechanisms of macrovascular disease in diabetes mellitus and highlights recent key descriptions of chromatinized changes associated with persistent gene expression in endothelial, smooth muscle, and circulating immune cells relevant to atherosclerosis. Furthermore, we discuss the challenges associated with pharmacological targeting of epigenetic networks to correct abnormal or deregulated gene expression as a strategy to alleviate the clinical burden of diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Samuel T Keating
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Jorge Plutzky
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Assam El-Osta
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.).
| |
Collapse
|
35
|
Kirby MK, Ramaker RC, Roberts BS, Lasseigne BN, Gunther DS, Burwell TC, Davis NS, Gulzar ZG, Absher DM, Cooper SJ, Brooks JD, Myers RM. Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns. BMC Cancer 2017; 17:273. [PMID: 28412973 PMCID: PMC5392915 DOI: 10.1186/s12885-017-3252-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/01/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. METHODS We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. RESULTS We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. CONCLUSIONS DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.
Collapse
Affiliation(s)
- Marie K. Kirby
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Present Address: TRM Oncology, 5901-C Peachtree Dunwoody Rd, Suite 200, Atlanta, GA 30328 USA
| | - Ryne C. Ramaker
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Department of Genetics, Kaul Human Genetics Building, Suite 230, 720 20th Street South, Birmingham, AL 35294 USA
| | - Brian S. Roberts
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| | | | - David S. Gunther
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Present Address: University of Southern California, University Park, Los Angeles, CA 90089 USA
| | - Todd C. Burwell
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Present Address: Boeing Co., 499 Boeing Blvd, SW, Huntsville, AL 35824 USA
| | - Nicholas S. Davis
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Present Address: Duke University, 101 Science Drive, Durham, NC 27708 USA
| | - Zulfiqar G. Gulzar
- Department of Urology, Stanford University Medical Center, Room S287, 300 Pasteur Drive, Stanford, CA 94305-5118 USA
- Present Address: NuGEN technologies, 201 Industrial Rd #310, San Carlos, CA 94070 USA
| | - Devin M. Absher
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| | - Sara J. Cooper
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| | - James D. Brooks
- Department of Urology, Stanford University Medical Center, Room S287, 300 Pasteur Drive, Stanford, CA 94305-5118 USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| |
Collapse
|
36
|
Skorodumova LO, Babalyan KA, Sultanov R, Vasiliev AO, Govorov AV, Pushkar DY, Prilepskaya EA, Danilenko SA, Generozov EV, Larin AK, Kostryukova ES, Sharova EI. [GSTP1, APC and RASSF1 gene methylation in prostate cancer samples: comparative analysis of MS-HRM method and Infinium HumanMethylation450 BeadChip beadchiparray diagnostic value]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:708-714. [PMID: 28026816 DOI: 10.18097/pbmc20166206708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is a clear need in molecular markers for prostate cancer (PC) risk stratification. Alteration of DNA methylation is one of processes that occur during ÐÑ progression. Methylation-sensitive PCR with high resolution melting curve analysis (MS-HRM) can be used for gene methylation analysis in routine laboratory practice. This method requires very small amounts of DNA for analysis. Numerous results have been accumulated on DNA methylation in PC samples analyzed by the Infinium HumanMethylation450 BeadChip (HM450). However, the consistency of MS-HRM results with chip hybridization results has not been examined yet. The aim of this study was to assess the consistency of results of GSTP1, APC and RASSF1 gene methylation analysis in ÐÑ biopsy samples obtained by MS-HRM and chip hybridization. The methylation levels of each gene determined by MS-HRM were statistically different in the group of PC tissue samples and the samples without signs of tumor growth. Chip hybridization data analysis confirmed the results obtained with the MS-HRM. Differences in methylation levels between tumor tissue and histologically intact tissue of each sample determined by MS-HRM and chip hybridization, were consistent with each other. Thus, we showed that the assessment of GSTP1, APC and RASSF1 gene methylation analysis using MS-HRM is suitable for the design of laboratory assays that will differentiate the PC tissue from the tissue without signs of tumor growth.
Collapse
Affiliation(s)
- L O Skorodumova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - K A Babalyan
- Moscow Institute of Physics and Technology, Dolgoprudniy, Moscow Region, Russia
| | - R Sultanov
- Moscow Institute of Physics and Technology, Dolgoprudniy, Moscow Region, Russia
| | - A O Vasiliev
- Moscow State Medical Stomatological University, Moscow, Russia
| | - A V Govorov
- Moscow State Medical Stomatological University, Moscow, Russia
| | - D Y Pushkar
- Moscow State Medical Stomatological University, Moscow, Russia
| | - E A Prilepskaya
- Moscow State Medical Stomatological University, Moscow, Russia
| | - S A Danilenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - E V Generozov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - A K Larin
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - E S Kostryukova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudniy, Moscow Region, Russia
| | - E I Sharova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
37
|
Shui IM, Wong CJ, Zhao S, Kolb S, Ebot EM, Geybels MS, Rubicz R, Wright JL, Lin DW, Klotzle B, Bibikova M, Fan JB, Ostrander EA, Feng Z, Stanford JL. Prostate tumor DNA methylation is associated with cigarette smoking and adverse prostate cancer outcomes. Cancer 2016; 122:2168-77. [PMID: 27142338 DOI: 10.1002/cncr.30045] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND DNA methylation has been hypothesized as a mechanism for explaining the association between smoking and adverse prostate cancer (PCa) outcomes. This study was aimed at assessing whether smoking is associated with prostate tumor DNA methylation and whether these alterations may explain in part the association of smoking with PCa recurrence and mortality. METHODS A total of 523 men had radical prostatectomy as their primary treatment, detailed smoking history data, long-term follow-up for PCa outcomes, and tumor tissue profiled for DNA methylation. Ninety percent of the men also had matched tumor gene expression data. A methylome-wide analysis was conducted to identify differentially methylated regions (DMRs) by smoking status. To select potential functionally relevant DMRs, their correlation with the messenger RNA (mRNA) expression of corresponding genes was evaluated. Finally, a smoking-related methylation score based on the top-ranked DMRs was created to assess its association with PCa outcomes. RESULTS Forty DMRs were associated with smoking status, and 10 of these were strongly correlated with mRNA expression (aldehyde oxidase 1 [AOX1], claudin 5 [CLDN5], early B-cell factor 1 [EBF1], homeobox A7 [HOXA7], lectin galactoside-binding soluble 3 [LGALS3], microtubule-associated protein τ [MAPT], protocadherin γ A [PCDHGA]/protocadherin γ B [PCDHGB], paraoxonase 3 [PON3], synaptonemal complex protein 2 like [SYCP2L], and zinc finger and SCAN domain containing 12 [ZSCAN12]). Men who were in the highest tertile for the smoking-methylation score derived from these DMRs had a higher risk of recurrence (odds ratio [OR], 2.29; 95% confidence interval [CI], 1.42-3.72) and lethal disease (OR, 4.21; 95% CI, 1.65-11.78) in comparison with men in the lower 2 tertiles. CONCLUSIONS This integrative molecular epidemiology study supports the hypothesis that smoking-associated tumor DNA methylation changes may explain at least part of the association between smoking and adverse PCa outcomes. Future studies are warranted to confirm these findings and understand the implications for improving patient outcomes. Cancer 2016;122:2168-77. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Irene M Shui
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Chao-Jen Wong
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Milan S Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rohina Rubicz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jonathan L Wright
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Urology, University of Washington School of Medicine, Seattle, Washington
| | - Daniel W Lin
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Urology, University of Washington School of Medicine, Seattle, Washington
| | | | | | | | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ziding Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| |
Collapse
|
38
|
Li W, Pung D, Su ZY, Guo Y, Zhang C, Yang AY, Zheng X, Du ZY, Zhang K, Kong AN. Epigenetics Reactivation of Nrf2 in Prostate TRAMP C1 Cells by Curcumin Analogue FN1. Chem Res Toxicol 2016; 29:694-703. [PMID: 26991801 DOI: 10.1021/acs.chemrestox.6b00016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has previously been shown that curcumin can effectively inhibit prostate cancer proliferation and progression in TRAMP mice, potentially acting through the hypomethylation of the Nrf2 gene promoter and hence activation of the Nrf2 pathway to enhance cell antioxidative defense. FN1 is a synthetic curcumin analogue that shows stronger anticancer activity than curcumin in other reports. We aimed to explore the epigenetic modification of FN1 that restores Nrf2 expression in TRAMP-C1 cells. Stably transfected HepG2-C8 cells were used to investigate the effect of FN1 on the Nrf2- antioxidant response element (ARE) pathway. Real-time quantitative PCR and Western blotting were applied to study the influence of FN1 on endogenous Nrf2 and its downstream genes. Bisulfite genomic sequencing (BGS) and methylated DNA immunoprecipitation (MeDIP) were then performed to examine the methylation profile of the Nrf2 promoter. An anchorage-independent colony-formation analysis was conducted to examine the tumor inhibition activity of FN1. Epigenetic modification enzymes, including DNMTs and HDACs, were investigated by Western blotting. The luciferase reporter assay indicated that FN1 was more potent than curcumin in activating the Nrf2-ARE pathway. FN1 increased the expression of Nrf2 and its downstream detoxifying enzymes. FN1 significantly inhibited the colony formation of TRAMP-C1 cells. BGS and MeDIP assays revealed that FN1 treatment (250 nM for 3 days) reduced the percentage of CpG methylation of the Nrf2 promoter. FN1 also downregulated epigenetic modification enzymes. In conclusion, our results suggest that FN1 is a novel anticancer agent for prostate cancer. In the TRAMP-C1 cell line, FN1 can increase the level of Nrf2 and downstream genes via activating the Nrf2-ARE pathway and inhibit the colony formation potentially through the decreased expression of keap1 coupled with CpG demethylation of the Nrf2 promoter. This CpG demethylation effect may come from decreased epigenetic modification enzymes, such as DNMT1, DNMT3a, DNMT3b, and HDAC4.
Collapse
Affiliation(s)
- Wenji Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Doug Pung
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Zheng-Yuan Su
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Bioscience Technology, Chung Yuan Christian University , Chung Li District, Taoyuan City 32023, Taiwan (R.O.C.)
| | - Yue Guo
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Chengyue Zhang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Anne Yuqing Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Xi Zheng
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , 164 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Zhi-Yun Du
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology , Guangzhou, P.R. China
| | - Kun Zhang
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Guangdong University of Technology , Guangzhou, China
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| |
Collapse
|
39
|
Geybels MS, Alumkal JJ, Luedeke M, Rinckleb A, Zhao S, Shui IM, Bibikova M, Klotzle B, van den Brandt PA, Ostrander EA, Fan JB, Feng Z, Maier C, Stanford JL. Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors. Clin Epigenetics 2015; 7:128. [PMID: 26692910 PMCID: PMC4676897 DOI: 10.1186/s13148-015-0161-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
Background About half of all prostate cancers harbor the TMPRSS2:ERG (T2E) gene fusion. While T2E-positive and T2E-negative tumors represent specific molecular subtypes of prostate cancer (PCa), previous studies have not yet comprehensively investigated how these tumor subtypes differ at the epigenetic level. We therefore investigated epigenome-wide DNA methylation profiles of PCa stratified by T2E status. Results The study included 496 patients with clinically localized PCa who had a radical prostatectomy as primary treatment for PCa. Fluorescence in situ hybridization (FISH) “break-apart” assays were used to determine tumor T2E-fusion status, which showed that 266 patients (53.6 %) had T2E-positive PCa. The study showed global DNA methylation differences between tumor subtypes. A large number of differentially methylated CpG sites were identified (false-discovery rate [FDR] Q-value <0.00001; n = 27,876) and DNA methylation profiles accurately distinguished between tumor T2E subgroups. A number of top-ranked differentially methylated CpGs in genes (FDR Q-values ≤1.53E−29) were identified: C3orf14, CACNA1D, GREM1, KLK10, NT5C, PDE4D, RAB40C, SEPT9, and TRIB2, several of which had a corresponding alteration in mRNA expression. These genes may have various roles in the pathogenesis of PCa, and the calcium-channel gene CACNA1D is a known ERG-target. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. Conclusions This study identified substantial differences in DNA methylation profiles of T2E-positive and T2E-negative tumors, thereby providing further evidence that different underlying oncogenic pathways characterize these molecular subtypes. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0161-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milan S Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Joshi J Alumkal
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR USA
| | - Manuel Luedeke
- Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Antje Rinckleb
- Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Shanshan Zhao
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NC Research Triangle Park, USA
| | - Irene M Shui
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | | | | | - Piet A van den Brandt
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD USA
| | - Jian-Bing Fan
- Illumina, Inc., San Diego, CA USA ; Present Address: AnchorDx Corp., Guangzhou, 510300 People's Republic of China
| | | | - Christiane Maier
- Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA USA
| |
Collapse
|
40
|
Ravenna L, Salvatori L, Russo MA. HIF3α: the little we know. FEBS J 2015; 283:993-1003. [PMID: 26507580 DOI: 10.1111/febs.13572] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/09/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factors (HIFs) are key regulators of the transcriptional response to hypoxic stress. Three inducible isoforms of HIF are present in mammals. HIF1α and HIF2α are the best characterized and structurally similar isoforms, while HIF3α is the most distantly related and is less studied. The HIF3α gene undergoes complex regulation and produces a large number of long and short mRNA splice variants, which are translated into different polypeptides. These molecules primarily act as negative regulators of HIF1α and HIF2α activity and transcriptional activators of target genes, according to the variant and the biological context. The present review provides an overview of the available, fragmented and sometimes contradictory information concerning the structure, expression and distinct roles of the HIF3α variants, in both hypoxic adaptation and in hypoxia-unrelated activities. The pathological consequences of HIF3α deregulation are also illustrated.
Collapse
Affiliation(s)
- Linda Ravenna
- CNR, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Luisa Salvatori
- CNR, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Matteo A Russo
- Laboratory of Molecular and Cellular Pathology, Consorzio MEBIC, San Raffaele University, Rome, Italy
| |
Collapse
|