1
|
Pereyra AS, Fernandez RF, Amorese A, Castro JN, Lin CT, Spangenburg EE, Ellis JM. Loss of mitochondria long-chain fatty acid oxidation impairs skeletal muscle contractility by disrupting myofibril structure and calcium homeostasis. Mol Metab 2024; 89:102015. [PMID: 39182841 PMCID: PMC11408158 DOI: 10.1016/j.molmet.2024.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Abnormal lipid metabolism in mammalian tissues can be highly deleterious, leading to organ failure. Carnitine Palmitoyltransferase 2 (CPT2) deficiency is an inherited metabolic disorder affecting the liver, heart, and skeletal muscle due to impaired mitochondrial oxidation of long-chain fatty acids (mLCFAO) for energy production. METHODS However, the basis of tissue damage in mLCFAO disorders is not fully understood. Mice lacking CPT2 in skeletal muscle (Cpt2Sk-/-) were generated to investigate the nexus between mFAO deficiency and myopathy. RESULTS Compared to controls, ex-vivo contractile force was reduced by 70% in Cpt2Sk-/- oxidative soleus muscle despite the preserved capacity to couple ATP synthesis to mitochondrial respiration on alternative substrates to long-chain fatty acids. Increased mitochondrial biogenesis, lipid accumulation, and the downregulation of 80% of dystrophin-related and contraction-related proteins severely compromised the structure and function of Cpt2Sk-/- soleus. CPT2 deficiency affected oxidative muscles more than glycolytic ones. Exposing isolated sarcoplasmic reticulum to long-chain acylcarnitines (LCACs) inhibited calcium uptake. In agreement, Cpt2Sk-/- soleus had decreased calcium uptake and significant accumulation of palmitoyl-carnitine, suggesting that LCACs and calcium dyshomeostasis are linked in skeletal muscle. CONCLUSIONS Our data demonstrate that loss of CPT2 and mLCFAO compromise muscle structure and function due to excessive mitochondrial biogenesis, downregulation of the contractile proteome, and disruption of calcium homeostasis.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.
| | - Regina F Fernandez
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Adam Amorese
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Jasmine N Castro
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Chien-Te Lin
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Espen E Spangenburg
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.
| |
Collapse
|
2
|
Tang R, Zhu Y, Chen L, Tong J, Ma X, Sun F, Zheng L, Yu H, Yang J. Lipid metabolites abnormally expressed in pelvic fluid as potential biomarkers for ovarian cancer: A case-control study. J Proteomics 2024; 307:105261. [PMID: 39032862 DOI: 10.1016/j.jprot.2024.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Ovarian cancer is insidious and usually detected in advanced stages of the disease. As the ovaries are pelvic organs, changes in their pelvic fluid metabolites may be associated with ovarian cancer. METHODS Metabolomic changes in the pelvic fluid were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in patients with ovarian cancer, ovarian cysts and uterine fibroids. Area under the curve (AUC) analysis was used to assess the diagnostic performance of lipid metabolites and blood tumor indices. The Pearson correlation algorithm was used to analyze the correlation between clinical characteristics and lipid metabolites in ovarian cancer patients. RESULTS There were 24 lipid metabolites significantly changed in the pelvic fluid of ovarian cancer patients (p < 0.05). Palmitoylcarnitine, lipoamide, lipid metabolites, and blood tumor indices (CA15-3 and CA125) showed AUC > 0.8, with palmitoylcarnitine reaching a high of 0.942. In addition, we found that some lipid metabolites were significantly associated with the clinical stage, abdominal water volume, lymphatic metastasis, and recurrence (p < 0.05, r > 0.5). CONCLUSION Levels of specific lipid metabolites are potential biomarkers of ovarian cancer and may play a key role in the early diagnosis and prognostic assessment of ovarian cancer. SIGNIFICANCE Our results showed that pelvic metabolites, especially some lipid metabolites, play an important role in the diagnosis of ovarian cancer. Meanwhile, partial lipid metabolites were closely associated with the clinical presentation and prognosis of patients with ovarian cancer. We believe that our study makes a significant contribution to the literature because it provides a potential approach that is more effective for ovarian cancer detection.
Collapse
Affiliation(s)
- Rongrong Tang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, PR China; School of Medicine, ShaoXing University, ShaoXing City, Zhejiang Province, China
| | - Yunshan Zhu
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, China
| | - Lingfeng Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, China
| | - Jinfei Tong
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, China
| | - Xudong Ma
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, PR China
| | - Fangying Sun
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, PR China; School of Medicine, ShaoXing University, ShaoXing City, Zhejiang Province, China
| | - Limei Zheng
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, PR China
| | - Hailan Yu
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, PR China
| | - Jianhua Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, China.
| |
Collapse
|
3
|
Li Y, Liu Y, Li Y, Cao Y, Zhang H, Yuan P, Dong B, Shen L. Integrated lipidomics and network pharmacology analysis to determine how Gu Fu Sheng Capsule improves lipid metabolism in rats with steroid-induced osteonecrosis of the femoral head. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
4
|
Ayilam Ramachandran R, Baniasadi H, Robertson DM. Pseudomonas aeruginosa infection increases palmitoyl carnitine release by host-derived extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603378. [PMID: 39026691 PMCID: PMC11257627 DOI: 10.1101/2024.07.13.603378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic gram-negative pathogen, is the most common pathogen identified in all culture positive cases of infectious keratitis. Extracellular vesicles (EVs) are released by most cells in the body and function in intercellular communication. We have previously reported a change in the proteome of host-derived EVs from corneal epithelial cells during PA infection. In the present study, we investigated changes in the metabolome of host-derived EVs from PA infected (PA-C EVs) and non-infected cells (C EVs). We found that one metabolite, palmitoyl carnitine (PAMC), was significantly upregulated in PA-C EVs. To determine the significance of PAMC release, we investigated the effect of PAMC treatment on corneal epithelial cells and neutrophils. EVs were isolated from culture media using size exclusion chromatography. EVs were then characterized using nanoparticle tracking analysis, transmission electron microscopy, and western blot. Metabolomics was performed using an untargeted approach. We found that palmitoyl carnitine (PAMC) was the most abundant metabolite present in PA-C EVs and was increased more than 3 fold compared to C EVs. Treatment of corneal epithelial cells with increasing levels of PAMC increased nuclear translocation of the NF-κB subunit p65. This was associated with an increase in IL-8 production and neutrophil migration. PAMC also increased levels of mitochondrial calcium. Upon inoculation of corneal epithelial cells with PA, 50 μM PAMC completely eradicated intracellular PA, but stimulated growth of extracellular PA. Taken together, these findings suggest that PA exploits EV release by host cells to deplete PAMC from the intracellular environment.
Collapse
|
5
|
Roux A, Winnard PT, Van Voss MH, Muller L, Jackson SN, Hoffer B, Woods AS, Raman V. MALDI-MSI of lipids in a model of breast cancer brain metastasis provides a surrogate measure of ischemia/hypoxia. Mol Cell Biochem 2023; 478:2567-2580. [PMID: 36884151 DOI: 10.1007/s11010-023-04685-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
Breast cancer brain metastasis (BCBM) has an incidence of 10-30%. It is incurable and the biological mechanisms that promote its progression remain largely undefined. Consequently, to gain insights into BCBM processes, we have developed a spontaneous mouse model of BCBM and in this study found a 20% penetrance of macro-metastatic brain lesion formation. Considering that lipid metabolism is indispensable to metastatic progression, our goal was the mapping of lipid distributions throughout the metastatic regions of the brain. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of lipids revealed that, relative to surrounding brain tissue, seven long-chain (13-21 carbons long) fatty acylcarnitines, as well as two phosphatidylcholines, two phosphatidylinositols two diacylglycerols, a long-chain phosphatidylethanolamine, and a long-chain sphingomyelin were highly concentrated in the metastatic brain lesion In broad terms, lipids known to be enriched in brain tissues, such as very long-chain (≥ 22 carbons in length) polyunsaturated fatty acid of phosphatidylcholines, phosphatidylethanolamine, sphingomyelins, sulfatides, phosphatidylinositol phosphates, and galactosylceramides, were not found or only found in trace amounts in the metastatic lesion and instead consistently detected in surrounding brain tissues. The data, from this mouse model, highlights an accumulation of fatty acylcarnitines as possible biological makers of a chaotic inefficient vasculature within the metastasis, resulting in relatively inadequate blood flow and disruption of fatty acid β-oxidation due to ischemia/hypoxia.
Collapse
Affiliation(s)
- Aurelie Roux
- Structural Biology Unit, Cellular Neurobiology Branch, Integrative Neuroscience NIDA-IRP, NIH, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Paul T Winnard
- Division of Cancer Imaging Research, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marise Heerma Van Voss
- Division of Cancer Imaging Research, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ludovic Muller
- Structural Biology Unit, Cellular Neurobiology Branch, Integrative Neuroscience NIDA-IRP, NIH, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Shelley N Jackson
- Structural Biology Unit, Cellular Neurobiology Branch, Integrative Neuroscience NIDA-IRP, NIH, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Barry Hoffer
- Case Western Reserve University, Cleveland, OH, USA
| | - Amina S Woods
- Structural Biology Unit, Cellular Neurobiology Branch, Integrative Neuroscience NIDA-IRP, NIH, 333 Cassell Drive, Baltimore, MD, 21224, USA.
- Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Venu Raman
- Division of Cancer Imaging Research, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Uner B, Ergin AD, Ansari IA, Macit-Celebi MS, Ansari SA, Kahtani HMA. Assessing the In Vitro and In Vivo Performance of L-Carnitine-Loaded Nanoparticles in Combating Obesity. Molecules 2023; 28:7115. [PMID: 37894594 PMCID: PMC10609287 DOI: 10.3390/molecules28207115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Addressing obesity is a critical health concern of the century, necessitating urgent attention. L-carnitine (LC), an essential water-soluble compound, plays a pivotal role in lipid breakdown via β-oxidation and facilitates the transport of long-chain fatty acids across mitochondrial membranes. However, LC's high hydrophilicity poses challenges to its diffusion through bilayers, resulting in limited bioavailability, a short half-life, and a lack of storage within the body, mandating frequent dosing. In our research, we developed LC-loaded nanoparticle lipid carriers (LC-NLCs) using economically viable and tissue-localized nanostructured lipid carriers (NLCs) to address these limitations. Employing the central composite design model, we optimized the formulation, employing the high-pressure homogenization (HPH) method and incorporating Poloxamer® 407 (surfactant), Compritol® 888 ATO (solid lipid), and oleic acid (liquid oil). A comprehensive assessment of nanoparticle physical attributes was performed, and an open-field test (OFT) was conducted on rats. We employed immunofluorescence assays targeting CRP and PPAR-γ, along with an in vivo rat study utilizing an isolated fat cell line to assess adipogenesis. The optimal formulation, with an average size of 76.4 ± 3.4 nm, was selected due to its significant efficacy in activating the PPAR-γ pathway. Our findings from the OFT revealed noteworthy impacts of LC-NLC formulations (0.1 mg/mL and 0.2 mg/mL) on adipocyte cells, surpassing regular L-carnitine formulations' effects (0.1 mg/mL and 0.2 mg/mL) by 169.26% and 156.63%, respectively (p < 0.05).
Collapse
Affiliation(s)
- Burcu Uner
- Department of Administrative and Pharmaceutical Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO 63110, USA
| | - Ahmet Dogan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, 22030 Edirne, Turkey
- Department of Neuroscience, University of Turin, 10124 Turin, Italy
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, 22030 Edirne, Turkey
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| | - Melahat Sedanur Macit-Celebi
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, 55270 Samsun, Turkey;
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.K.)
| | - Hamad M. Al Kahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.K.)
| |
Collapse
|
7
|
Saud Gany SL, Tan JK, Chin KY, Hakimi NH, Ab Rani N, Ihsan N, Makpol S. Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction. Front Mol Biosci 2022; 9:1008908. [PMID: 36310588 PMCID: PMC9616602 DOI: 10.3389/fmolb.2022.1008908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 01/10/2023] Open
Abstract
The greatest significant influence on human life span and health is inevitable ageing. One of the distinguishing characteristics of ageing is the gradual decrease of muscle mass and physical function. There has been growing evidence that tocotrienol can guard against age-associated chronic diseases and metabolic disorders. This study aimed to elucidate the effects of tocotrienol-rich fraction (TRF) on muscle metabolomes and metabolic pathways in ageing Sprague Dawley (SD) rats. Three months, 9 months, and 21 months old male SD rats were divided into control and treated groups with 10 rats per group. Rats in control and treated groups were given 60 mg/kg body weight/day of palm olein and 60 mg/kg body weight/day of TRF, respectively, via oral gavage for 3 months. Muscle performance was assessed at 0 and 3 months of treatment by measuring muscle strength and function. Our results showed that TRF treatment caused a significant increase in the swimming time of the young rats. Comparison in the control groups showed that metabolites involved in lipid metabolisms such as L-palmitoyl carnitine and decanoyl carnitine were increased in ageing. In contrast, several metabolites, such as 3-phosphoglyceric acid, aspartic acid and aspartyl phenylalanine were decreased. These findings indicated that muscle metabolomes involved in lipid metabolism were upregulated in aged rats. In contrast, the metabolites involved in energy and amino acid metabolism were significantly downregulated. Comparison in the TRF-supplemented groups showed an upregulation of metabolites involved in energy and amino acid metabolism. Metabolites such as N6-methyl adenosine, spermine, phenylalanine, tryptophan, aspartic acid, histidine, and N-acetyl neuraminic acid were up-regulated, indicating promotion of amino acid synthesis and muscle regeneration. Energy metabolism was also improved in adult and old rats with TRF supplementation as indicated by the upregulation of nicotinamide adenine dinucleotide and glycerol 3-phosphate compared to the control group. In conclusion, the mechanism underlying the changes in skeletal muscle mass and functions in ageing was related to carbohydrate, lipid and amino acid metabolism. Tocotrienol supplementation showed beneficial effects in alleviating energy and amino acid synthesis that may promote the regeneration and renewal of skeletal muscle in ageing rats.
Collapse
Affiliation(s)
- Siti Liyana Saud Gany
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kok Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nur Haleeda Hakimi
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nazirah Ab Rani
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia,*Correspondence: Suzana Makpol,
| |
Collapse
|
8
|
Hu Y, Zhou X, Chen L, Li R, Jin S, Liu L, Ju M, Luan C, Chen H, Wang Z, Huang D, Chen K, Zhang J. Landscape of circulating metabolic fingerprinting for keloid. Front Immunol 2022; 13:1005366. [PMID: 36248839 PMCID: PMC9559814 DOI: 10.3389/fimmu.2022.1005366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background Keloids are a fibroproliferative disease characterized by unsatisfactory therapeutic effects and a high recurrence rate. Objective This study aimed to investigate keloid-related circulating metabolic signatures. Methods Untargeted metabolomic analysis was performed to compare the metabolic features of 15 keloid patients with those of paired healthy volunteers in the discovery cohort. The circulating metabolic signatures were selected using the least absolute shrinkage. Furthermore, the selection operators were quantified using multiple reaction monitoring-based target metabolite detection methods in the training and test cohorts. Results More than ten thousand metabolic features were consistently observed in all the plasma samples from the discovery cohort, and 30 significantly different metabolites were identified. Four differentially expressed metabolites including palmitoylcarnitine, sphingosine, phosphocholine, and phenylalanylisoleucine, were discovered to be related to keloid risk in the training and test cohorts. In addition, using linear and logistic regression models, the respective risk scores for keloids based on a 4-metabolite fingerprint classifier were established to distinguish keloids from healthy volunteers. Conclusions In summary, our findings show that the characteristics of circulating metabolic fingerprinting manifest phenotypic variation in keloid onset.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dan Huang
- *Correspondence: Dan Huang, ; Kun Chen, ; Jiaan Zhang,
| | - Kun Chen
- *Correspondence: Dan Huang, ; Kun Chen, ; Jiaan Zhang,
| | - Jiaan Zhang
- *Correspondence: Dan Huang, ; Kun Chen, ; Jiaan Zhang,
| |
Collapse
|
9
|
Wang R, Kang H, Zhang X, Nie Q, Wang H, Wang C, Zhou S. Urinary metabolomics for discovering metabolic biomarkers of bladder cancer by UPLC-MS. BMC Cancer 2022; 22:214. [PMID: 35220945 PMCID: PMC8883652 DOI: 10.1186/s12885-022-09318-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is one of the most frequent cancer in the world, and its incidence is rising worldwide, especially in developed countries. Urine metabolomics is a powerful approach to discover potential biomarkers for cancer diagnosis. In this study, we applied an ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) method to profile the metabolites in urine from 29 bladder cancer patients and 15 healthy controls. The differential metabolites were extracted and analyzed by univariate and multivariate analysis methods. Together, 19 metabolites were discovered as differently expressed biomarkers in the two groups, which mainly related to the pathways of phenylacetate metabolism, propanoate metabolism, fatty acid metabolism, pyruvate metabolism, arginine and proline metabolism, glycine and serine metabolism, and bile acid biosynthesis. In addition, a subset of 11 metabolites of those 19 ones were further filtered as potential biomarkers for BC diagnosis by using logistic regression model. The results revealed that the area under the curve (AUC) value, sensitivity and specificity of receiving operator characteristic (ROC) curve were 0.983, 95.3% and 100%, respectively, indicating an excellent discrimination power for BC patients from healthy controls. It was the first time to reveal the potential diagnostic markers of BC by metabolomics, and this will provide a new sight for exploring the biomarkers of the other disease in the future work.
Collapse
Affiliation(s)
- Rui Wang
- Zibo Municipal Hospital, Zibo, Shandong, 255400, China
| | - Huaixing Kang
- Department of clinical laboratory, Central Hospital of Xiangtan, Xiangtan, Hunan, 411100, China
| | - Xu Zhang
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Qing Nie
- Yaneng Bioscience, Co., Ltd, Shenzhen, Guangdong, 518100, China
| | - Hongling Wang
- Zibo Municipal Hospital, Zibo, Shandong, 255400, China.
| | - Chaojun Wang
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Shujun Zhou
- Yaneng Bioscience, Co., Ltd, Shenzhen, Guangdong, 518100, China.
| |
Collapse
|
10
|
Sun Q, Zhao H, Liu Z, Wang F, He Q, Xiu C, Guo L, Tian Q, Fan L, Sun J, Sun D. Identifying potential metabolic tissue biomarkers for papillary thyroid cancer in different iodine nutrient regions. Endocrine 2021; 74:582-591. [PMID: 34075541 DOI: 10.1007/s12020-021-02773-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/19/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the applicability of metabolomics to select thyroid cancer-associated biomarkers and discover the effects of iodine on metabolic changes in thyroid cancer. METHODS In this study, a total of 33 papillary thyroid cancer (PTC) patients from areas with iodine excess and 32 PTC patients from areas with adequate iodine were recruited, and their cancerous tissue and paracancerous tissue were collected. These specimens were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/QTOF/MS) in conjunction with multivariate statistical analysis. RESULTS Good separations were obtained for PTC tissue vs. paracancerous tissue, and 15 metabolites, including L-octanoylcarnitine, N-arachidonoylglycine, and others were found to be disturbed in PTC tissue. Moreover, the metabolic profile presented considerable separation between PTC tissue from different iodine areas, and 15 metabolomic biomarkers were found to be differentially expressed. Among them, 10 metabolites, including arachidonoylcarnitine and LysoPCs, were related to thyroid cancer and excess iodine. These biomarkers play a role in arachidonic acid metabolism pathways and others. In addition, biomarkers such as 3,5-tetradecadiencarnitine and oxidized glutathione were significantly correlated with thyroid function, and biomarkers such as L-octanoylcarnitine and arachidonic acid were significantly correlated with the clinical characteristics of PTC. CONCLUSIONS Distinct differences in metabolic profiles were found to exist between PTCs from areas with different levels of iodine nutrition. The identified biomarkers have significant potential for diagnosing PTC and investigating its underlying mechanisms.
Collapse
Affiliation(s)
- Qihao Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongjian Zhao
- General Surgery Department, People's Hospital of Chengwu County, Heze, Shandong, China
| | - Zhiyong Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fengqian Wang
- Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qian He
- Shandong First Medical University, Tai'an, Shandong, China
| | - Cheng Xiu
- Department of Head and Neck Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lunhua Guo
- Department of Head and Neck Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiushi Tian
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lijun Fan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China.
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Ji Sun
- Department of Head and Neck Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
11
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
12
|
Han C, Yu G, Mao Y, Song S, Li L, Zhou L, Wang Z, Liu Y, Li M, Xu B. LPCAT1 enhances castration resistant prostate cancer progression via increased mRNA synthesis and PAF production. PLoS One 2020; 15:e0240801. [PMID: 33137125 PMCID: PMC7605678 DOI: 10.1371/journal.pone.0240801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Our previously study shown that Lysophosphatidylcholine Acyltransferase1 (LPCAT1) is overexpressed in castration resistant prostate cancer (CRPC) relative to primary prostate cancer (PCa), and androgen controls its expression via the Wnt signaling pathway. While highly expressed in CRPC, the role of LPCAT1 remains unclear. In vitro cell experiments referred to cell transfection, mutagenesis, proliferation, migration, invasion, cell cycle progression and apoptosis, Western blotting, Pulse-chase RNA labeling. BALB/c nude mice were used for in vivo experiments. We found that LPCAT1 overexpression enhanced the proliferation, migration, and invasion of CRPC cells both in vitro and in vivo. Silencing of LPCAT1 reduced the proliferation and the invasive capabilities of CRPC cells. Providing exogenous PAF to LPCAT1 knockdown cells increased their invasive capabilities; however platelet activating factor acetylhydrolase (PAF-AH) and the PAFR antagonist ABT-491 both reversed this phenotype; proliferation of CRPC cells was not affected in either model. LPCAT1 was found to mediate CRPC growth via nuclear re-localization and Histone H4 palmitoylation in an androgen-dependent fashion, increasing mRNA synthesis rates. We also found that LPCAT1 overexpression led to CRPC cell resistance to treatment with paclitaxel. LPCAT1 overexpression in CRPC cells drives tumor progression via increased mRNA synthesis and PAF production. Our results highlight LPCAT1 as a viable therapeutic target in the context of CRPC.
Collapse
Affiliation(s)
- Chao Han
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanshen Mao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shangqing Song
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Zhou
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail: (BX); (YL); (ML)
| | - Minglun Li
- Urologic and Hematologic Oncology, Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- * E-mail: (BX); (YL); (ML)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail: (BX); (YL); (ML)
| |
Collapse
|
13
|
Hou T, Sun X, Zhu J, Hon KL, Jiang P, Chu IMT, Tsang MSM, Lam CWK, Zeng H, Wong CK. IL-37 Ameliorating Allergic Inflammation in Atopic Dermatitis Through Regulating Microbiota and AMPK-mTOR Signaling Pathway-Modulated Autophagy Mechanism. Front Immunol 2020; 11:752. [PMID: 32411145 PMCID: PMC7198885 DOI: 10.3389/fimmu.2020.00752] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Interaction between eosinophils and dermal fibroblasts is essential for provoking allergic inflammation in atopic dermatitis (AD). In vitro co-culture of human eosinophils and dermal fibroblasts upon AD-related IL-31 and IL-33 stimulation, and in vivo MC903-induced AD murine model were employed to investigate the anti-inflammatory mechanism of IL-1 family cytokine IL-37 in AD. Results showed that IL-37b could inhibit the in vitro induction of AD-related pro-inflammatory cytokines IL-6 and TNF-α, and chemokines CXCL8, CCL2 and CCL5, increase autophagosome biogenesis-related LC3B, and decrease autophagy-associated ubiquitinated protein p62 by regulating intracellular AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway. In CRISPR/Cas9 human IL-37b knock-in mice, IL-37b could significantly alleviate MC903-stimulated ear tissue swelling, itching sensation and the level of circulating cytokine IL-6 and ear in situ expression of AD-related TNF-α, CCL5 and transforming growth factor-β. Moreover, IL-37b could significantly upregulate Foxp3+ regulatory T cells (Treg) in spleen and ear together with significantly increased serum Treg cytokine IL-10, and decrease eosinophil infiltration in ear lesion. IL-37b knock-in mice showed a distinct intestinal microbiota metabolic pattern upon MC903 stimulation. Furthermore, IL-37b restored the disordered gut microbiota diversity, through regulating the in vivo autophagy mechanism mediated by intestinal metabolite 3-methyladenine, adenosine monophosphate, 2-hydroxyglutarate, purine and melatonin. In summary, IL-37b could significantly ameliorate eosinophils-mediated allergic inflammation via the regulation of autophagy mechanism, intestinal bacterial diversity and their metabolites in AD. Results therefore suggest that IL-37 is a potential anti-inflammatory cytokine for AD treatment.
Collapse
Affiliation(s)
- Tianheng Hou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Zhu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kam-Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Peiyong Jiang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Huasong Zeng
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
McCoin CS, Gillingham MB, Knotts TA, Vockley J, Ono-Moore KD, Blackburn ML, Norman JE, Adams SH. Blood cytokine patterns suggest a modest inflammation phenotype in subjects with long-chain fatty acid oxidation disorders. Physiol Rep 2020; 7:e14037. [PMID: 30912279 PMCID: PMC6434073 DOI: 10.14814/phy2.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Excessive cellular accumulation or exposure to lipids such as long‐chain acylcarnitines (LCACs), ceramides, and others is implicated in cell stress and inflammation. Such a situation might manifest when there is a significant mismatch between long‐chain fatty acid (LCFA) availability versus storage and oxidative utilization; for example, in cardiac ischemia, increased LCACs may contribute to tissue cell stress and infarct damage. Perturbed LCFAβ‐oxidation is also seen in fatty acid oxidation disorders (FAODs). FAODs typically manifest with fasting‐ or stress‐induced symptoms, and patients can manage many symptoms through control of diet and physical activity. However, episodic clinical events involving cardiac and skeletal muscle myopathies are common and can present without an obvious molecular trigger. We have speculated that systemic or tissue‐specific lipotoxicity and activation of inflammation pathways contribute to long‐chain FAOD pathophysiology. With this in mind, we characterized inflammatory phenotype (14 blood plasma cytokines) in resting, overnight‐fasted (~10 h), or exercise‐challenged subjects with clinically well‐controlled long‐chain FAODs (n = 12; 10 long‐chain 3‐hydroxyacyl‐CoA dehydrogenase [LCHAD]; 2 carnitine palmitoyltransferase 2 [CPT2]) compared to healthy controls (n = 12). Across experimental conditions, concentrations of three cytokines were modestly but significantly increased in FAOD (IFNγ, IL‐8, and MDC), and plasma levels of IL‐10 (considered an inflammation‐dampening cytokine) were significantly decreased. These novel results indicate that while asymptomatic FAOD patients do not display gross body‐wide inflammation even after moderate exercise, β‐oxidation deficiencies might be associated with chronic and subtle activation of “sterile inflammation.” Further studies are warranted to determine if inflammation is more apparent in poorly controlled long‐chain FAOD or when long‐chain FAOD‐associated symptoms are present.
Collapse
Affiliation(s)
- Colin S McCoin
- Department of Molecular and Integrative Physiology, Medical Center, University of Kansas, Kansas City, Kansas
| | - Melanie B Gillingham
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Trina A Knotts
- School of Medicine Department of Anatomy, Physiology and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, California
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer E Norman
- Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
15
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Glucose Favors Lipid Anabolic Metabolism in the Invasive Breast Cancer Cell Line MDA-MB-231. BIOLOGY 2020; 9:biology9010016. [PMID: 31936882 PMCID: PMC7168317 DOI: 10.3390/biology9010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Metabolic reprogramming in tumor cells is considered one of the hallmarks of cancer. Many studies have been carried out in order to elucidate the effects of tumor cell metabolism on invasion and tumor progression. However, little is known about the immediate substrate preference in tumor cells. In this work, we wanted to study this short-time preference using the highly invasive, hormone independent breast cancer cell line MDA-MB-231. By means of Seahorse and uptake experiments, our results point to a preference for glucose. However, although both glucose and glutamine are required for tumor cell proliferation, MDA-MB-231 cells can survive two days in the absence of glucose, but not in the absence of glutamine. On the other hand, the presence of glucose increased palmitate uptake in this cell line, which accumulates in the cytosol instead of going to the plasma membrane. In order to exert this effect, glucose needs to be converted to glycerol-3 phosphate, leading to palmitate metabolism through lipid synthesis, most likely to the synthesis of triacylglycerides. The effect of glucose on the palmitate uptake was also found in other triple-negative, invasive breast cancer cell lines, but not in the non-invasive ones. The results presented in this work suggest an important and specific role of glucose in lipid biosynthesis in triple-negative breast cancer.
Collapse
Affiliation(s)
- Mª Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Ana R. Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
- Correspondence: ; Tel.: +34-952137132
| |
Collapse
|
16
|
Turnbull PC, Dehghani AC, Theriau CF, Connor MK, Perry CGR. Synergistic activation of mitochondrial metabolism and the glutathione redox couple protects HepG2 hepatocarcinoma cells from palmitoylcarnitine-induced stress. Am J Physiol Cell Physiol 2019; 317:C1324-C1329. [PMID: 31618075 DOI: 10.1152/ajpcell.00366.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fatty acid stress can have divergent effects in various cancers. We explored how metabolic and redox flexibility in HepG2 hepatocarcinoma cells mediates protection from palmitoylcarnitine. HepG2 cells, along with HCT 116 and HT29 colorectal cancer cells were incubated with 100 μM palmitoylcarnitine for up to 48 h. Mitochondrial H2O2 emission, glutathione, and cell survival were assessed in HT29 and HepG2 cells. 100 μM palmitoylcarnitine promoted early growth in HepG2 cells by ~8% after 48 h versus decreased cell survival observed in HT29 and HCT 116 cells. Palmitoylcarnitine increased mitochondrial respiration at physiological and maximal concentrations of ADP, while lowering cellular lactate content in HepG2 cells, suggesting a switch to mitochondrial metabolism. HepG2 cell growth was associated with an early increase in H2O2 emission by 10 min, followed by a decrease in H2O2 at 24 h that corresponded with increased glutathione content, suggesting a redox-based compensatory mechanism. In contrast, abrogation of HT29 cell proliferation was related to decreased mitochondrial respiration (likely due to cell death) and decreased glutathione. Concurrent glutathione depletion with BSO prevented palmitoylcarnitine-induced growth in HepG2 cells, indicating that glutathione was critical for promoting growth following palmitoylcarnitine. Inhibiting UCP2 with genipin sensitized HepG2 cells to palmitoylcarnitine, suggesting that activation of UCP2 may be a 2nd redox-based mechanism conferring protection. These findings suggest that HepG2 cells possess inherent metabolic and redox flexibility relative to HT29 cells that confers protection from palmitoylcarnitine-induced stress via adaptive increases in mitochondrial respiratory control, glutathione buffering, and induction of UCP2.
Collapse
Affiliation(s)
- Patrick C Turnbull
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ali C Dehghani
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher F Theriau
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Michael K Connor
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Yoo HJ, Jung KJ, Kim M, Kim M, Kang M, Jee SH, Choi Y, Lee JH. Liver Cirrhosis Patients Who Had Normal Liver Function Before Liver Cirrhosis Development Have the Altered Metabolic Profiles Before the Disease Occurrence Compared to Healthy Controls. Front Physiol 2019; 10:1421. [PMID: 31803070 PMCID: PMC6877605 DOI: 10.3389/fphys.2019.01421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis (LC) is the final usual outcome of liver damage induced by various chronic liver diseases. Because of asymptomatic nature of LC, it is usually diagnosed at late and advanced stages, and patients are easy to miss the best timing for treatment. Thus, the early detection of LC is needed. In the prospective Korean Cancer Prevention Study-II (K-II), we aimed to identify valuable biomarkers for LC using metabolomics to distinguish subjects with incident LC (LC group) from subjects free from LC (control group) during a mean 7-year follow-up period. Metabolic alterations were investigated using baseline serum specimens acquired from 94 subjects with incident LC and 180 age- and sex-matched LC-free subjects via ultra-performance liquid chromatography (UPLC)-linear-trap quardrupole (LTQ)-Orbitrap mass spectrometry (MS). As a result of the metabolic analysis, 46 metabolites were identified. Among them, 11 and 18 metabolite level showed a significant increase and decrease, respectively, in the LC group compared to the control group. Nine metabolic pathways, including glyoxylate and dicarboxylate metabolism, amino acid metabolism, fatty acid metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and arachidonic acid metabolism, were significantly different between the two groups. Logistic regression demonstrated that the LC emergence was independently affected by serum levels of myristic acid, palmitic acid, linoleic acid, eicosapentaenoic acid (EPA), lysophosphatidic acid (LPA) (18:1), glycolic acid, lysophosphatidylcholine (lysoPC) (22:6), and succinylacetone (R 2 = 0.837, P < 0.001). This prospective study revealed that dysregulation of various metabolism had the clinical relevance on the LC development. Moreover, myristic acid, palmitic acid, linoleic acid, EPA, LPA (18:1), glycolic acid, lysoPC (22:6), and succinylacetone were emerged as independent variables influencing the incidence of LC. The results support that the early biomarkers found in this study may useful for predicting and remedying the risk of LC.
Collapse
Affiliation(s)
- Hye Jin Yoo
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, South Korea
| | - Keum Ji Jung
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Minkyung Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, South Korea
| | - Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, South Korea
| | - Minsik Kang
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Sun Ha Jee
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Yoonjeong Choi
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, South Korea
| |
Collapse
|
18
|
Turnbull PC, Hughes MC, Perry CGR. The fatty acid derivative palmitoylcarnitine abrogates colorectal cancer cell survival by depleting glutathione. Am J Physiol Cell Physiol 2019; 317:C1278-C1288. [PMID: 31483701 DOI: 10.1152/ajpcell.00319.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous evidence suggests that palmitoylcarnitine incubations trigger mitochondrial-mediated apoptosis in HT29 colorectal adenocarcinoma cells, yet nontransformed cells appear insensitive. The mechanism by which palmitoylcarnitine induces cancer cell death is unclear. The purpose of this investigation was to examine the relationship between mitochondrial kinetics and glutathione buffering in determining the effect of palmitoylcarnitine on cell survival. HT29 and HCT 116 colorectal adenocarcinoma cells, CCD 841 nontransformed colon cells, and MCF7 breast adenocarcinoma cells were exposed to 0 μM, 50 μM, and 100 μM palmitoylcarnitine for 24-48 h. HCT 116 and HT29 cells showed decreased cell survival following palmitoylcarnitine compared with CCD 841 cells. Palmitoylcarnitine stimulated H2O2 emission in HT29 and CCD 841 cells but increased it to a greater level in HT29 cells due largely to a higher basal H2O2 emission. This greater H2O2 emission was associated with lower glutathione buffering capacity and caspase-3 activation in HT29 cells. The glutathione-depleting agent buthionine sulfoximine sensitized CCD 841 cells and further sensitized HT29 cells to palmitoylcarnitine-induced decreases in cell survival. MCF7 cells did not produce H2O2 when exposed to palmitoylcarnitine and were able to maintain glutathione levels. Furthermore, HT29 cells demonstrated the lowest mitochondrial oxidative kinetics vs. CCD 841 and MCF7 cells. The results demonstrate that colorectal cancer is sensitive to palmitoylcarnitine due in part to an inability to prevent oxidative stress through glutathione-redox coupling, thereby rendering the cells sensitive to elevations in H2O2. These findings suggest that the relationship between inherent metabolic capacities and redox regulation is altered early in response to palmitoylcarnitine.
Collapse
Affiliation(s)
- Patrick C Turnbull
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Meghan C Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Stable Isotope-Labeled Lipidomics to Unravel the Heterogeneous Development Lipotoxicity. Molecules 2018; 23:molecules23112862. [PMID: 30400243 PMCID: PMC6278256 DOI: 10.3390/molecules23112862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) as a global health problem has clinical manifestations ranging from simple non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and cancer. The role of different types of fatty acids in driving the early progression of NAFL to NASH is not understood. Lipid overload causing lipotoxicity and inflammation has been considered as an essential pathogenic factor. To correlate the lipid profiles with cellular lipotoxicity, we utilized palmitic acid (C16:0)- and especially unprecedented palmitoleic acid (C16:1)-induced lipid overload HepG2 cell models coupled with lipidomic technology involving labeling with stable isotopes. C16:0 induced inflammation and cell death, whereas C16:1 induced significant lipid droplet accumulation. Moreover, inhibition of de novo sphingolipid synthesis by myriocin (Myr) aggravated C16:0 induced lipoapoptosis. Lipid profiles are different in C16:0 and C16:1-treated cells. Stable isotope-labeled lipidomics elucidates the roles of specific fatty acids that affect lipid metabolism and cause lipotoxicity or lipid droplet formation. It indicates that not only saturation or monounsaturation of fatty acids plays a role in hepatic lipotoxicity but also Myr inhibition exasperates lipoapoptosis through ceramide in-direct pathway. Using the techniques presented in this study, we can potentially investigate the mechanism of lipid metabolism and the heterogeneous development of NAFLD.
Collapse
|
20
|
Manaf FA, Lawler N, Peiffer JJ, Maker GL, Boyce MC, Fairchild TJ, Broadhurst D. Characterizing the plasma metabolome during and following a maximal exercise cycling test. J Appl Physiol (1985) 2018; 125:1193-1203. [PMID: 30070608 DOI: 10.1152/japplphysiol.00499.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While complex in nature, a number of metabolites have been implicated in the onset of exercise-induced fatigue. The purpose of this study was to identify changes in the plasma-metabolome and specifically, identify candidate-metabolites associated with the onset of fatigue during prolonged cycling. Eighteen healthy and recreationally active men (mean{plus minus}SD age: 24.7{plus minus}4.8 years; mass 67.1{plus minus}6.1 kg; BMI: 22.8{plus minus}2.2; VO2peak: 40.9{plus minus}6.1 ml.kg.min-1) were recruited to this study. Participants performed a prolonged cycling Time-To-Exhaustion (TTE) test at an intensity corresponding to a fixed blood lactate concentration (3 mmol.L-1). Plasma samples collected at 10 min of exercise, prior to fatigue (last sample prior to fatigue; <10 min prior to fatigue), immediately post-fatigue (point of exhaustion) and 20 min post-fatigue were assessed using a liquid chromatography-mass spectrometry based metabolomic approach. Eighty metabolites were putatively identified, with 68 metabolites demonstrating a significant change during the cycling task (duration: ~80.9{plus minus}13.6 min). A clear multivariate structure in the data was revealed, with the first principal component (36% total variance) describing a continuous increase in metabolite concentration throughout the TTE trial and recovery; while the second principal component (14% total variance) showed an increase in metabolite concentration followed by a recovery trajectory, peaking at the point of fatigue. Six clusters of correlated metabolites demonstrating unique metabolite trajectories were identified, including significant separation in the metabolome between pre-fatigue and post-fatigue time-points. In accordance with our hypothesis, free-fatty acids and tryptophan contributed to differences in the plasma metabolome at fatigue.
Collapse
Affiliation(s)
| | | | | | - Garth L Maker
- School of Veterinary and Life Sciences, Murdoch University, Australia
| | | | | | | |
Collapse
|
21
|
Clos-Garcia M, Loizaga-Iriarte A, Zuñiga-Garcia P, Sánchez-Mosquera P, Rosa Cortazar A, González E, Torrano V, Alonso C, Pérez-Cormenzana M, Ugalde-Olano A, Lacasa-Viscasillas I, Castro A, Royo F, Unda M, Carracedo A, Falcón-Pérez JM. Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression. J Extracell Vesicles 2018; 7:1470442. [PMID: 29760869 PMCID: PMC5944373 DOI: 10.1080/20013078.2018.1470442] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Urine contains extracellular vesicles (EVs) that concentrate molecules and protect them from degradation. Thus, isolation and characterisation of urinary EVs could increase the efficiency of biomarker discovery. We have previously identified proteins and RNAs with differential abundance in urinary EVs from prostate cancer (PCa) patients compared to benign prostate hyperplasia (BPH). Here, we focused on the analysis of the metabolites contained in urinary EVs collected from patients with PCa and BPH. Targeted metabolomics analysis of EVs was performed by ultra-high-performance liquid chromatography–mass spectrometry. The correlation between metabolites and clinical parameters was studied, and metabolites with differential abundance in PCa urinary EVs were detected and mapped into cellular pathways. We detected 248 metabolites belonging to different chemical families including amino acids and various lipid species. Among these metabolites, 76 exhibited significant differential abundance between PCa and BPH. Interestingly, urine EVs recapitulated many of the metabolic alterations reported in PCa, including phosphathidylcholines, acyl carnitines, citrate and kynurenine. Importantly, we found elevated levels of the steroid hormone, 3beta-hydroxyandros-5-en-17-one-3-sulphate (dehydroepiandrosterone sulphate) in PCa urinary EVs, in line with the potential elevation of androgen synthesis in this type of cancer. This work supports urinary EVs as a non-invasive source to infer metabolic changes in PCa.
Collapse
Affiliation(s)
| | - Ana Loizaga-Iriarte
- Department of Urology, Basurto University Hospital, Bilbao, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | | | | | - Ana Rosa Cortazar
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | | | - Verónica Torrano
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | | | | | - Aitziber Ugalde-Olano
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC).,Department of Pathology, Basurto University Hospital, Bilbao, Spain
| | - Isabel Lacasa-Viscasillas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC).,Department of Pathology, Basurto University Hospital, Bilbao, Spain
| | | | - Felix Royo
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)
| | - Miguel Unda
- Department of Urology, Basurto University Hospital, Bilbao, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC).,Ikerbasque, Basque foundation for science, Bilbao, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Juan M Falcón-Pérez
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD).,Ikerbasque, Basque foundation for science, Bilbao, Spain
| |
Collapse
|
22
|
Chen L, Zhu Z, Gao W, Jiang Q, Yu J, Fu C. Systemic analysis of different colorectal cancer cell lines and TCGA datasets identified IGF-1R/EGFR-PPAR-CASPASE axis as important indicator for radiotherapy sensitivity. Gene 2017; 627:484-490. [DOI: 10.1016/j.gene.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/28/2017] [Accepted: 07/02/2017] [Indexed: 01/15/2023]
|
23
|
Al Kadhi O, Traka MH, Melchini A, Troncoso-Rey P, Jurkowski W, Defernez M, Pachori P, Mills RD, Ball RY, Mithen RF. Increased transcriptional and metabolic capacity for lipid metabolism in the peripheral zone of the prostate may underpin its increased susceptibility to cancer. Oncotarget 2017; 8:84902-84916. [PMID: 29156692 PMCID: PMC5689582 DOI: 10.18632/oncotarget.17926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
The human prostate gland comprises three distinct anatomical glandular zones, namely the peripheral, central and transitional zones. Although prostate cancer can arise throughout the prostate, it is more frequent in the peripheral zone. In contrast, hyperplasia occurs most frequently in the transitional zone. In this paper, we test the hypothesis that peripheral and transitional zones have distinct metabolic adaptations that may underlie their different inherent predispositions to cancer and hyperplasia. In order to do this, we undertook RNA sequencing and high-throughput metabolic analyses of non-cancerous tissue from the peripheral and transitional zones of patients undergoing prostatectomy. Integrated analysis of RNAseq and metabolomic data revealed that transcription of genes involved in lipid biosynthesis is higher in the peripheral zone, which was mirrored by an increase in fatty acid metabolites, such as lysolipids. The peripheral zone also exhibited increased fatty acid catabolic activity and contained higher level of neurotransmitters. Such increased capacity for de novo lipogenesis and fatty acid oxidation, which is characteristic of prostate cancer, can potentially provide a permissive growth environment within the peripheral zone for cancer growth and also transmit a metabolic growth advantage to newly emerging clones themselves. This lipo-rich priming may explain the observed susceptibility of the peripheral zone to oncogenesis.
Collapse
Affiliation(s)
- Omar Al Kadhi
- Food and Health Programme, Quadram Institute Bioscience, Norwich, UK.,Department of Urology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Maria H Traka
- Food and Health Programme, Quadram Institute Bioscience, Norwich, UK
| | | | | | | | | | - Purnima Pachori
- Platforms and Pipelines Bioinformatics, Earlham Institute, Norwich, UK
| | - Robert D Mills
- Department of Urology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Richard Y Ball
- Norfolk and Waveney Cellular Pathology Service, Norfolk and Norwich University Hospital, Norwich, UK
| | - Richard F Mithen
- Food and Health Programme, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|