1
|
Kase AM, Gleba J, Miller JL, Miller E, Petit J, Barrett MT, Zhou Y, Parent EE, Cai H, Knight JA, Orme J, Reynolds J, Durham WF, Metz TM, Meurice N, Edenfield B, Alasonyalilar Demirer A, Bilgili A, Hickman PG, Pawlush ML, Marlow L, Wickland DP, Tan W, Copland JA. Patient-Derived Tumor Xenograft Study with CDK4/6 Inhibitor Plus AKT Inhibitor for the Management of Metastatic Castration-Resistant Prostate Cancer. Mol Cancer Ther 2024; 23:823-835. [PMID: 38442920 DOI: 10.1158/1535-7163.mct-23-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive malignancy with poor outcomes. To investigate novel therapeutic strategies, we characterized three new metastatic prostate cancer patient derived-tumor xenograft (PDTX) models and developed 3D spheroids from each to investigate molecular targeted therapy combinations including CDK4/6 inhibitors (CDK4/6i) with AKT inhibitors (ATKi). Metastatic prostate cancer tissue was collected and three PDTX models were established and characterized using whole-exome sequencing. PDTX 3D spheroids were developed from these three PDTXs to show resistance patterns and test novel molecular-targeted therapies. CDK4/6i's were combined with AKTi's to assess synergistic antitumor response to prove our hypothesis that blockade of AKT overcomes drug resistance to CDK4/6i. This combination was evaluated in PDTX three-dimensional (3D) spheroids and in vivo experiments with responses measured by tumor volumes, PSA, and Ga-68 PSMA-11 PET-CT imaging. We demonstrated CDK4/6i's with AKTi's possess synergistic antitumor activity in three mCRPC PDTX models. These models have multiple unique pathogenic and deleterious genomic alterations with resistance to single-agent CDK4/6i's. Despite this, combination therapy with AKTi's was able to overcome resistance mechanisms. The IHC and Western blot analysis confirmed on target effects, whereas tumor volume, serum PSA ELISA, and radionuclide imaging demonstrated response to therapy with statistically significant SUV differences seen with Ga-68 PSMA-11 PET-CT. These preclinical data demonstrating antitumor synergy by overcoming single-agent CDK 4/6i as well as AKTi drug resistance provide the rational for a clinical trial combining a CDK4/6i with an AKTi in patients with mCRPC whose tumor expresses wild-type retinoblastoma 1.
Collapse
Affiliation(s)
- Adam M Kase
- Division of Hematology-Oncology, Mayo Clinic Jacksonville, Florida
| | - Justyna Gleba
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - James L Miller
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Erin Miller
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Joachim Petit
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | - Yumei Zhou
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | - Hancheng Cai
- Radiology Department, Mayo Clinic Jacksonville, Florida
| | - Joshua A Knight
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Jacob Orme
- Division of Hematology-Oncology, Mayo Clinic Rochester, Minnesota
| | - Jordan Reynolds
- Department of Laboratory Medicine and Pathology, Mayo Clinic Jacksonville, Florida
| | | | - Thomas M Metz
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Nathalie Meurice
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | | | - Ahmet Bilgili
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | | | | | - Laura Marlow
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Daniel P Wickland
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic Jacksonville, Florida
| | - Winston Tan
- Division of Hematology-Oncology, Mayo Clinic Jacksonville, Florida
| | - John A Copland
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| |
Collapse
|
2
|
Bigot L, Sabio J, Poiraudeau L, Annereau M, Menssouri N, Helissey C, Déas O, Aglave M, Ibrahim T, Pobel C, Nobre C, Nicotra C, Ngo-Camus M, Lacroix L, Rouleau E, Tselikas L, Judde JG, Chauchereau A, Bernard-Tessier A, Patrikidou A, Naoun N, Flippot R, Colomba E, Fuerea A, Albiges L, Lavaud P, Massard C, Friboulet L, Fizazi K, Besse B, Scoazec JY, Loriot Y. Development of Novel Models of Aggressive Variants of Castration-resistant Prostate Cancer. Eur Urol Oncol 2024; 7:527-536. [PMID: 38433714 DOI: 10.1016/j.euo.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genomic studies have identified new subsets of aggressive prostate cancer (PCa) with poor prognosis (eg, neuroendocrine prostate cancer [NEPC], PCa with DNA damage response [DDR] alterations, or PCa resistant to androgen receptor pathway inhibitors [ARPIs]). Development of novel therapies relies on the availability of relevant preclinical models. OBJECTIVE To develop new preclinical models (patient-derived xenograft [PDX], PDX-derived organoid [PDXO], and patient-derived organoid [PDO]) representative of the most aggressive variants of PCa and to develop a new drug evaluation strategy. DESIGN, SETTING, AND PARTICIPANTS NEPC (n = 5), DDR (n = 7), and microsatellite instability (MSI)-high (n = 1) PDXs were established from 51 patients with metastatic PCa; PDXOs (n = 16) and PDOs (n = 6) were developed to perform drug screening. Histopathology and treatment response were characterized. Molecular profiling was performed by whole-exome sequencing (WES; n = 13), RNA sequencing (RNA-seq; n = 13), and single-cell RNA-seq (n = 14). WES and RNA-seq data from patient tumors were compared with the models. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Relationships with outcome were analyzed using the multivariable chi-square test and the tumor growth inhibition test. RESULTS AND LIMITATIONS Our PDXs captured both common and rare molecular phenotypes and their molecular drivers, including alterations of BRCA2, CDK12, MSI-high status, and NEPC. RNA-seq profiling demonstrated broad representation of PCa subtypes. Single-cell RNA-seq indicates that PDXs reproduce cellular and molecular intratumor heterogeneity. WES of matched patient tumors showed preservation of most genetic driver alterations. PDXOs and PDOs preserve drug sensitivity of the matched tissue and can be used to determine drug sensitivity. CONCLUSIONS Our models reproduce the phenotypic and genomic features of both common and aggressive PCa variants and capture their molecular heterogeneity. Successfully developed aggressive-variant PCa preclinical models provide an important tool for predicting tumor response to anticancer therapy and studying resistance mechanisms. PATIENT SUMMARY In this report, we looked at the outcomes of preclinical models from patients with metastatic prostate cancer enrolled in the MATCH-R trial (NCT02517892).
Collapse
Affiliation(s)
- Ludovic Bigot
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | - Jonathan Sabio
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | - Loic Poiraudeau
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | - Maxime Annereau
- Pharmacy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Naoual Menssouri
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | - Carole Helissey
- Clinical Research Unit, Department of Oncology, Military Hospital Begin, Saint-Mandé, France
| | | | - Marine Aglave
- Plateforme de Bioinformatique, Gustave Roussy, Villejuif, France
| | - Tony Ibrahim
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | - Cédric Pobel
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | - Catline Nobre
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | - Claudio Nicotra
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Maud Ngo-Camus
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Ludovic Lacroix
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform - Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM, Villejuif, France; Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Etienne Rouleau
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform - Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM, Villejuif, France; Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lambros Tselikas
- Department of Interventional Radiology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Anne Chauchereau
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | | | - Anna Patrikidou
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ronan Flippot
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Emeline Colomba
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alina Fuerea
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pernelle Lavaud
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Massard
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | - Luc Friboulet
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France
| | - Karim Fizazi
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France; Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Besse
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France; Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jean-Yves Scoazec
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform - Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM, Villejuif, France; Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Yohann Loriot
- Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Inserm U981, Gustave Roussy Cancer, Université Paris-Saclay, Villejuif, France; Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
3
|
Choo N, Keerthikumar S, Ramm S, Ashikari D, Teng L, Niranjan B, Hedwards S, Porter LH, Goode DL, Simpson KJ, Taylor RA, Risbridger GP, Lawrence MG. Co-targeting BET, CBP, and p300 inhibits neuroendocrine signalling in androgen receptor-null prostate cancer. J Pathol 2024; 263:242-256. [PMID: 38578195 DOI: 10.1002/path.6280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
There are diverse phenotypes of castration-resistant prostate cancer, including neuroendocrine disease, that vary in their sensitivity to drug treatment. The efficacy of BET and CBP/p300 inhibitors in prostate cancer is attributed, at least in part, to their ability to decrease androgen receptor (AR) signalling. However, the activity of BET and CBP/p300 inhibitors in prostate cancers that lack the AR is unclear. In this study, we showed that BRD4, CBP, and p300 were co-expressed in AR-positive and AR-null prostate cancer. A combined inhibitor of these three proteins, NEO2734, reduced the growth of both AR-positive and AR-null organoids, as measured by changes in viability, size, and composition. NEO2734 treatment caused consistent transcriptional downregulation of cell cycle pathways. In neuroendocrine models, NEO2734 treatment reduced ASCL1 levels and other neuroendocrine markers, and reduced tumour growth in vivo. Collectively, these results show that epigenome-targeted inhibitors cause decreased growth and phenotype-dependent disruption of lineage regulators in neuroendocrine prostate cancer, warranting further development of compounds with this activity in the clinic. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Shivakumar Keerthikumar
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susanne Ramm
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daisaku Ashikari
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Linda Teng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Birunthi Niranjan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Shelley Hedwards
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| |
Collapse
|
4
|
Anselmino N, Labanca E, Shepherd PD, Dong J, Yang J, Song X, Nandakumar S, Kundra R, Lee C, Schultz N, Zhang J, Araujo JC, Aparicio AM, Subudhi SK, Corn PG, Pisters LL, Ward JF, Davis JW, Vazquez ES, Gueron G, Logothetis CJ, Futreal A, Troncoso P, Chen Y, Navone NM. Integrative Molecular Analyses of the MD Anderson Prostate Cancer Patient-derived Xenograft (MDA PCa PDX) Series. Clin Cancer Res 2024; 30:2272-2285. [PMID: 38488813 PMCID: PMC11094415 DOI: 10.1158/1078-0432.ccr-23-2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Develop and deploy a robust discovery platform that encompasses heterogeneity, clinical annotation, and molecular characterization and overcomes the limited availability of prostate cancer models. This initiative builds on the rich MD Anderson (MDA) prostate cancer (PCa) patient-derived xenograft (PDX) resource to complement existing publicly available databases by addressing gaps in clinically annotated models reflecting the heterogeneity of potentially lethal and lethal prostate cancer. EXPERIMENTAL DESIGN We performed whole-genome, targeted, and RNA sequencing in representative samples of the same tumor from 44 PDXs derived from 38 patients linked to donor tumor metadata and corresponding organoids. The cohort includes models derived from different morphologic groups, disease states, and involved organ sites (including circulating tumor cells), as well as paired samples representing heterogeneity or stages before and after therapy. RESULTS The cohort recapitulates clinically reported alterations in prostate cancer genes, providing a data resource for clinical and molecular interrogation of suitable experimental models. Paired samples displayed conserved molecular alteration profiles, suggesting the relevance of other regulatory mechanisms (e.g., epigenomic) influenced by the microenvironment and/or treatment. Transcriptomically, models were grouped on the basis of morphologic classification. DNA damage response-associated mechanisms emerged as differentially regulated between adenocarcinoma and neuroendocrine prostate cancer in a cross-interrogation of PDX/patient datasets. CONCLUSIONS We addressed the gap in clinically relevant prostate cancer models through comprehensive molecular characterization of MDA PCa PDXs, providing a discovery platform that integrates with patient data and benchmarked to therapeutically relevant consensus clinical groupings. This unique resource supports robust hypothesis generation and testing from basic, translational, and clinical perspectives.
Collapse
Affiliation(s)
- Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter D.A. Shepherd
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofei Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subhiksha Nandakumar
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John C. Araujo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana M. Aparicio
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F. Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John W. Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elba S. Vazquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Geraldine Gueron
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Brennen WN, Le Magnen C, Karkampouna S, Anselmino N, Bock N, Choo N, Clark AK, Coleman IM, Dolgos R, Ferguson AM, Goode DL, Krutihof-de Julio M, Navone NM, Nelson PS, O'Neill E, Porter LH, Ranasinghe W, Sunada T, Williams ED, Butler LM, Corey E, van Weerden WM, Taylor RA, Risbridger GP, Lawrence MG. Defining the challenges and opportunities for using patient-derived models in prostate cancer research. Prostate 2024; 84:623-635. [PMID: 38450798 PMCID: PMC11014775 DOI: 10.1002/pros.24682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND There are relatively few widely used models of prostate cancer compared to other common malignancies. This impedes translational prostate cancer research because the range of models does not reflect the diversity of disease seen in clinical practice. In response to this challenge, research laboratories around the world have been developing new patient-derived models of prostate cancer, including xenografts, organoids, and tumor explants. METHODS In May 2023, we held a workshop at the Monash University Prato Campus for researchers with expertise in establishing and using a variety of patient-derived models of prostate cancer. This review summarizes our collective ideas on how patient-derived models are currently being used, the common challenges, and future opportunities for maximizing their usefulness in prostate cancer research. RESULTS An increasing number of patient-derived models for prostate cancer are being developed. Despite their individual limitations and varying success rates, these models are valuable resources for exploring new concepts in prostate cancer biology and for preclinical testing of potential treatments. Here we focus on the need for larger collections of models that represent the changing treatment landscape of prostate cancer, robust readouts for preclinical testing, improved in vitro culture conditions, and integration of the tumor microenvironment. Additional priorities include ensuring model reproducibility, standardization, and replication, and streamlining the exchange of models and data sets among research groups. CONCLUSIONS There are several opportunities to maximize the impact of patient-derived models on prostate cancer research. We must develop large, diverse and accessible cohorts of models and more sophisticated methods for emulating the intricacy of patient tumors. In this way, we can use the samples that are generously donated by patients to advance the outcomes of patients in the future.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nathalie Bock
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Robin Dolgos
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alison M Ferguson
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, Division of Research and Enterprise, University of New South Wales, Sydney, NSW, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marianna Krutihof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Translational Organoid Resource, University of Bern, Bern, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Edward O'Neill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Weranja Ranasinghe
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Department of Surgery, Monash University, Melbourne, VIC, Australia
- Department of Urology, Monash Health, Melbourne, VIC, Australia
- Department of Urology, Austin Health, Melbourne, VIC, Australia
| | - Takuro Sunada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Elizabeth D Williams
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Paindelli C, Parietti V, Barrios S, Shepherd P, Pan T, Wang WL, Satcher RL, Logothetis CJ, Navone N, Campbell MT, Mikos AG, Dondossola E. Bone mimetic environments support engineering, propagation, and analysis of therapeutic response of patient-derived cells, ex vivo and in vivo. Acta Biomater 2024; 178:83-92. [PMID: 38387748 DOI: 10.1016/j.actbio.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. STATEMENT OF SIGNIFICANCE: Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.
Collapse
Affiliation(s)
- Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Vanessa Parietti
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Sergio Barrios
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Rice University, Department of Bioengineering, Houston, TX, 77030, United States
| | - Peter Shepherd
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Tianhong Pan
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Robert L Satcher
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Nora Navone
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Antonios G Mikos
- Rice University, Department of Bioengineering, Houston, TX, 77030, United States
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
7
|
Giafaglione JM, Crowell PD, Delcourt AML, Hashimoto T, Ha SM, Atmakuri A, Nunley NM, Dang RMA, Tian M, Diaz JA, Tika E, Payne MC, Burkhart DL, Li D, Navone NM, Corey E, Nelson PS, Lin NYC, Blanpain C, Ellis L, Boutros PC, Goldstein AS. Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment. Nat Cell Biol 2023; 25:1821-1832. [PMID: 38049604 PMCID: PMC10709144 DOI: 10.1038/s41556-023-01274-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 12/06/2023]
Abstract
Lineage transitions are a central feature of prostate development, tumourigenesis and treatment resistance. While epigenetic changes are well known to drive prostate lineage transitions, it remains unclear how upstream metabolic signalling contributes to the regulation of prostate epithelial identity. To fill this gap, we developed an approach to perform metabolomics on primary prostate epithelial cells. Using this approach, we discovered that the basal and luminal cells of the prostate exhibit distinct metabolomes and nutrient utilization patterns. Furthermore, basal-to-luminal differentiation is accompanied by increased pyruvate oxidation. We establish the mitochondrial pyruvate carrier and subsequent lactate accumulation as regulators of prostate luminal identity. Inhibition of the mitochondrial pyruvate carrier or supplementation with exogenous lactate results in large-scale chromatin remodelling, influencing both lineage-specific transcription factors and response to antiandrogen treatment. These results establish reciprocal regulation of metabolism and prostate epithelial lineage identity.
Collapse
Affiliation(s)
- Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amelie M L Delcourt
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aishwarya Atmakuri
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas M Nunley
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel M A Dang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mao Tian
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johnny A Diaz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elisavet Tika
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie C Payne
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Deborah L Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dapei Li
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nora M Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Eva Corey
- University of Washington, Seattle, WA, USA
| | | | - Neil Y C Lin
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cedric Blanpain
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Leigh Ellis
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Thomas PB, Alinezhad S, Joshi A, Sweeney K, Tse BWC, Tevz G, McPherson S, Nelson CC, Williams ED, Vela I. Introduction of Androgen Receptor Targeting shRNA Inhibits Tumor Growth in Patient-Derived Prostate Cancer Xenografts. Curr Oncol 2023; 30:9437-9447. [PMID: 37999103 PMCID: PMC10670201 DOI: 10.3390/curroncol30110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
Patient-derived xenograft (PDX) models have been established as important preclinical cancer models, overcoming some of the limitations associated with the use of cancer cell lines. The utility of prostate cancer PDX models has been limited by an inability to genetically manipulate them in vivo and difficulties sustaining PDX-derived cancer cells in culture. Viable, short-term propagation of PDX models would allow in vitro transfection with traceable reporters or manipulation of gene expression relevant to different studies within the prostate cancer field. Here, we report an organoid culture system that supports the growth of prostate cancer PDX cells in vitro and permits genetic manipulation, substantially increasing the scope to use PDXs to study the pathobiology of prostate cancer and define potential therapeutic targets. We have established a short-term PDX-derived in vitro cell culture system which enables genetic manipulation of prostate cancer PDXs LuCaP35 and BM18. Genetically manipulated cells could be re-established as viable xenografts when re-implanted subcutaneously in immunocompromised mice and were able to be serially passaged. Tumor growth of the androgen-dependent LuCaP35 PDX was significantly inhibited following depletion of the androgen receptor (AR) in vivo. Taken together, this system provides a method to generate novel preclinical models to assess the impact of controlled genetic perturbations and allows for targeting specific genes of interest in the complex biological setting of solid tumors.
Collapse
Affiliation(s)
- Patrick B. Thomas
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD 4102, Australia
| | - Saeid Alinezhad
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
| | - Andre Joshi
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Katrina Sweeney
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
| | - Brian W. C. Tse
- Preclinical Imaging Facility, Translational Research Institute (TRI), Brisbane, QLD 4102, Australia;
| | - Gregor Tevz
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
| | - Stephen McPherson
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
| | - Colleen C. Nelson
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Elizabeth D. Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD 4102, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Ian Vela
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| |
Collapse
|
9
|
Landon‐Brace N, Li NT, McGuigan AP. Exploring New Dimensions of Tumor Heterogeneity: The Application of Single Cell Analysis to Organoid-Based 3D In Vitro Models. Adv Healthc Mater 2023; 12:e2300903. [PMID: 37589373 PMCID: PMC11468421 DOI: 10.1002/adhm.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Indexed: 08/18/2023]
Abstract
Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.
Collapse
Affiliation(s)
- Natalie Landon‐Brace
- Institute of Biomedical EngineeringUniversity of Toronto200 College StreetTorontoM5S3E5Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StTorontoM5S3E5Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied ChemistryInstitute of Biomedical EngineeringUniversity of Toronto200 College StTorontoM5S3E5Canada
| |
Collapse
|
10
|
Cimino J, Braun C. Design a Clinical Research Protocol: Influence of Real-World Setting. Healthcare (Basel) 2023; 11:2254. [PMID: 37628452 PMCID: PMC10454664 DOI: 10.3390/healthcare11162254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The design of a clinical research protocol to evaluate new therapies, devices, patient quality of life, and medical practices from scratch is probably one of the greatest challenges for the majority of novice researchers. This is especially true since a high-quality methodology is required to achieve success and effectiveness in academic and hospital research centers. This review discusses the concrete steps and necessary guidelines needed to create and structure a research protocol. Along with the methodology, some administrative challenges (ethics, regulatory and people-management barriers) and possible time-saving recommendations (standardized procedures, collaborative training, and centralization) are discussed.
Collapse
Affiliation(s)
- Jonathan Cimino
- Clinical Research Unit, Fondation Hôpitaux Robert Schuman, 44 Rue d’Anvers, 1130 Luxembourg, Luxembourg;
- Hôpitaux Robert Schuman, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg
| | - Claude Braun
- Clinical Research Unit, Fondation Hôpitaux Robert Schuman, 44 Rue d’Anvers, 1130 Luxembourg, Luxembourg;
- Hôpitaux Robert Schuman, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg
| |
Collapse
|
11
|
Lawrence MG, Taylor RA, Cuffe GB, Ang LS, Clark AK, Goode DL, Porter LH, Le Magnen C, Navone NM, Schalken JA, Wang Y, van Weerden WM, Corey E, Isaacs JT, Nelson PS, Risbridger GP. The future of patient-derived xenografts in prostate cancer research. Nat Rev Urol 2023; 20:371-384. [PMID: 36650259 PMCID: PMC10789487 DOI: 10.1038/s41585-022-00706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Patient-derived xenografts (PDXs) are generated by engrafting human tumours into mice. Serially transplantable PDXs are used to study tumour biology and test therapeutics, linking the laboratory to the clinic. Although few prostate cancer PDXs are available in large repositories, over 330 prostate cancer PDXs have been established, spanning broad clinical stages, genotypes and phenotypes. Nevertheless, more PDXs are needed to reflect patient diversity, and to study new treatments and emerging mechanisms of resistance. We can maximize the use of PDXs by exchanging models and datasets, and by depositing PDXs into biorepositories, but we must address the impediments to accessing PDXs, such as institutional, ethical and legal agreements. Through collaboration, researchers will gain greater access to PDXs representing diverse features of prostate cancer.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia.
| | - Renea A Taylor
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Georgia B Cuffe
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Lisa S Ang
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia.
| |
Collapse
|
12
|
Sablatura LK, Bircsak KM, Shepherd P, Bathina M, Queiroz K, Farach-Carson MC, Kittles RA, Constantinou PE, Saleh A, Navone NM, Harrington DA. A 3D Perfusable Platform for In Vitro Culture of Patient Derived Xenografts. Adv Healthc Mater 2023; 12:e2201434. [PMID: 36461624 PMCID: PMC10235208 DOI: 10.1002/adhm.202201434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/07/2022] [Indexed: 12/04/2022]
Abstract
Many advanced cancer models, such as patient-derived xenografts (PDXs), offer significant benefits in their preservation of the native tumor's heterogeneity and susceptibility to treatments, but face significant barriers to use in their reliance on a rodent host for propagation and screening. PDXs remain difficult to implement in vitro, particularly in configurations that enable both detailed cellular analysis and high-throughput screening (HTS). Complex multilineage co-cultures with stromal fibroblasts, endothelium, and other cellular and structural components of the tumor microenvironment (TME) further complicate ex vivo implementation. Herein, the culture of multiple prostate cancer (PCa)-derived PDX models as 3D clusters within engineered biomimetic hydrogel matrices, in a HTS-compatible multiwell microfluidic format, alongside bone marrow-derived stromal cells and a perfused endothelial channel. Polymeric hydrogel matrices are customized for each cell type, enabling cell survival in vitro and facile imaging across all conditions. PCa PDXs demonstrate unique morphologies and reliance on TME partners, retention of known phenotype, and expected sensitivity or resistance to standard PCa therapeutics. This novel integration of technologies provides a fully human model, and expands the information to be gathered from each specimen, while avoiding the time and labor involved with animal-based testing.
Collapse
Affiliation(s)
| | | | - Peter Shepherd
- Department of Genitourinary Medical Oncology Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Madhavi Bathina
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | | | - Mary C Farach-Carson
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center, Houston, TX, 77054, USA
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Pamela E Constantinou
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Nora M Navone
- Department of Genitourinary Medical Oncology Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel A Harrington
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center, Houston, TX, 77054, USA
| |
Collapse
|
13
|
Béraud C, Bidan N, Lassalle M, Lang H, Lindner V, Krucker C, Masliah-Planchon J, Potiron E, Lluel P, Massfelder T, Allory Y, Misseri Y. A new tumorgraft panel to accelerate precision medicine in prostate cancer. Front Oncol 2023; 13:1130048. [PMID: 37305585 PMCID: PMC10250751 DOI: 10.3389/fonc.2023.1130048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Despite the significant advances in the management of advanced prostate cancer (PCa), metastatic PCa is currently considered incurable. For further investigations in precision treatment, the development of preclinical models representing the complex prostate tumor heterogeneity are mandatory. Accordingly, we aimed to establish a resource of patient-derived xenograft (PDX) models that exemplify each phase of this multistage disease for accurate and rapid evaluation of candidate therapies. Methods Fresh tumor samples along with normal corresponding tissues were obtained directly from patients at surgery. To ensure that the established models reproduce the main features of patient's tumor, both PDX tumors at multiple passages and patient's primary tumors, were processed for histological characteristics. STR profile analyses were also performed to confirm patient identity. Finally, the responses of the PDX models to androgen deprivation, PARP inhibitors and chemotherapy were also evaluated. Results In this study, we described the development and characterization of 5 new PDX models of PCa. Within this collection, hormone-naïve, androgen-sensitive and castration-resistant (CRPC) primary tumors as well as prostate carcinoma with neuroendocrine differentiation (CRPC-NE) were represented. Interestingly, the comprehensive genomic characterization of the models identified recurrent cancer driver alterations in androgen signaling, DNA repair and PI3K, among others. Results were supported by expression patterns highlighting new potential targets among gene drivers and the metabolic pathway. In addition, in vivo results showed heterogeneity of response to androgen deprivation and chemotherapy, like the responses of patients to these treatments. Importantly, the neuroendocrine model has been shown to be responsive to PARP inhibitor. Conclusion We have developed a biobank of 5 PDX models from hormone-naïve, androgen-sensitive to CRPC primary tumors and CRPC-NE. Increased copy-number alterations and accumulation of mutations within cancer driver genes as well as the metabolism shift are consistent with the increased resistance mechanisms to treatment. The pharmacological characterization suggested that the CRPC-NE could benefit from the PARP inhibitor treatment. Given the difficulties in developing such models, this relevant panel of PDX models of PCa will provide the scientific community with an additional resource for the further development of PDAC research.
Collapse
Affiliation(s)
| | | | | | - Hervé Lang
- Department of Urology, Nouvel Hopital Civil, Strasbourg, France
| | | | - Clémentine Krucker
- Department of Pathology, Institut Curie, Paris, France
- Institut Curie, PSL Research University, CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | - Eric Potiron
- Department of Urology, Clinique Urologique, Nantes, France
| | | | - Thierry Massfelder
- UMR 1260 INSERM/Université de Strasbourg, Regenerative Nanomedicine (RNM), FMTS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Yves Allory
- Department of Pathology, Institut Curie, Paris, France
- Institut Curie, PSL Research University, CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | | |
Collapse
|
14
|
Beshiri M, Agarwal S, Yin JJ, Kelly K. Prostate organoids: emerging experimental tools for translational research. J Clin Invest 2023; 133:169616. [PMID: 37183816 PMCID: PMC10178834 DOI: 10.1172/jci169616] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Organoid technology has provided new translational research opportunities in oncology, in part by enabling the development of patient-representative living biobanks. Prostate cancer research historically has been constrained to a small number of in vitro models, limiting the ability to translate experimental conclusions for contemporary, heterogeneous patient populations. The facility of organoid culture methods to maintain luminal prostate epithelia, the common lineage of prostate cancers, has greatly expanded the phenotypic and genotypic diversity of available tractable models, including luminal stem/progenitor cells and progressive patient-derived cancers. Biobanks of patient prostate cancer organoids enable increased accuracy in predicting therapeutic efficacy and informative clinical trial designs. Here, we discuss how prostate organoid technology is currently being used, the promising areas of future therapeutic applications, and the current obstacles to be overcome.
Collapse
|
15
|
DiNatale A, Worrede A, Iqbal W, Marchioli M, Toth A, Sjöström M, Zhu X, Corey E, Feng FY, Zhou W, Fatatis A. IL-1β expression driven by androgen receptor absence or inactivation promotes prostate cancer bone metastasis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1545-1557. [PMID: 36561929 PMCID: PMC9770512 DOI: 10.1158/2767-9764.crc-22-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
We report the inverse association between the expression of androgen receptor (AR) and interleukin-1beta (IL-1β) in a cohort of patients with metastatic castration resistant prostate cancer (mCRPC). We also discovered that AR represses the IL-1β gene by binding an androgen response element (ARE) half-site located within the promoter, which explains the IL-1β expression in AR-negative (ARNEG) cancer cells. Consistently, androgen-depletion or AR-pathway inhibitors (ARIs) de-repressed IL-1β in ARPOS cancer cells, both in vitro and in vivo. The AR transcriptional repression is sustained by histone de-acetylation at the H3K27 mark in the IL-1β promoter. Notably, patients' data suggest that DNA methylation prevents IL-1β expression, even if the AR-signaling axis is inactive. Our previous studies show that secreted IL-1β supports metastatic progression in mice by altering the transcriptome of tumor-associated bone stroma. Thus, in prostate cancer patients harboring ARNEG tumor cells or treated with ADT/ARIs, and with the IL-1β gene unmethylated, IL-1β could condition the metastatic microenvironment to sustain disease progression.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Janssen Oncology, Spring House, Pennsylvania
| | - Asurayya Worrede
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- AstraZeneca, Baltimore, Maryland
| | - Waleed Iqbal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Marchioli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Allison Toth
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Martin Sjöström
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Xiaolin Zhu
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Felix Y. Feng
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Van Hemelryk A, Tomljanovic I, de Ridder CMA, Stuurman DC, Teubel WJ, Erkens-Schulze S, Verhoef EI, Remmers S, Mahes AJ, van Leenders GJLH, van Royen ME, van de Werken HJG, Grudniewska M, Jenster GW, van Weerden WM. Patient-Derived Xenografts and Organoids Recapitulate Castration-Resistant Prostate Cancer with Sustained Androgen Receptor Signaling. Cells 2022; 11:cells11223632. [PMID: 36429059 PMCID: PMC9688335 DOI: 10.3390/cells11223632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains an incurable and lethal malignancy. The development of new CRPC treatment strategies is strongly impeded by the scarcity of representative, scalable and transferable preclinical models of advanced, androgen receptor (AR)-driven CRPC. Here, we present contemporary patient-derived xenografts (PDXs) and matching PDX-derived organoids (PDXOs) from CRPC patients who had undergone multiple lines of treatment. These models were comprehensively profiled at the morphologic, genomic (n = 8) and transcriptomic levels (n = 81). All are high-grade adenocarcinomas that exhibit copy number alterations and transcriptomic features representative of CRPC patient cohorts. We identified losses of PTEN and RB1, MYC amplifications, as well as genomic alterations in TP53 and in members of clinically actionable pathways such as AR, PI3K and DNA repair pathways. Importantly, the clinically observed continued reliance of CRPC tumors on AR signaling is preserved across the entire set of models, with AR amplification identified in four PDXs. We demonstrate that PDXs and PDXOs faithfully reflect donor tumors and mimic matching patient drug responses. In particular, our models predicted patient responses to subsequent treatments and captured sensitivities to previously received therapies. Collectively, these PDX-PDXO pairs constitute a reliable new resource for in-depth studies of treatment-induced, AR-driven resistance mechanisms. Moreover, PDXOs can be leveraged for large-scale tumor-specific drug response profiling critical for accelerating therapeutic advances in CRPC.
Collapse
Affiliation(s)
- Annelies Van Hemelryk
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Ingrid Tomljanovic
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands
| | - Corrina M. A. de Ridder
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Debra C. Stuurman
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wilma J. Teubel
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Esther I. Verhoef
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sebastiaan Remmers
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Amrish J. Mahes
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands
| | - Geert J. L. H. van Leenders
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Harmen J. G. van de Werken
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | | | - Guido W. Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wytske M. van Weerden
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-107-043-674
| |
Collapse
|
17
|
Basak D, Gregori L, Johora F, Deb S. Preclinical and Clinical Research Models of Prostate Cancer: A Brief Overview. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101607. [PMID: 36295041 PMCID: PMC9605520 DOI: 10.3390/life12101607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major public health concern worldwide. In this narrative review, we have summarized the characteristics of major in vitro and in vivo PCa models including their utility in developing treatment strategies. Androgens, particularly, testosterone and dihydrotestosterone (DHT) activate the androgen receptor (AR) signaling pathway that facilitates the development and progression of castration resistant PCa. Several enzymes namely, CYP17A1, HSD17B, and SRD5A are essential to furnishing DHT from dehydroepiandrosterone in the classical pathway while DHT is formed from androstanediol in the backdoor pathway. The advancement in delineating the molecular heterogeneity of PCa has been possible through the development of several in vitro and in vivo research models. Generally, tissue culture models are advantageous to understand PCa biology and investigate the efficacy and toxicity of novel agents; nevertheless, animal models are indispensable to studying the PCa etiology and treatment since they can simulate the tumor microenvironment that plays a central role in initiation and progression of the disease. Moreover, the availability of several genetically engineered mouse models has made it possible to study the metastasis process. However, the conventional models are not devoid of limitations. For example, the lack of heterogeneity in tissue culture models and the variation of metastatic characteristics in xenograft models are obviously challenging. Additionally, due to the racial and ethnic disparities in PCa pathophysiology, a new model that can represent PCa encompassing different ethnicities is urgently needed. New models should continue to evolve to address the genetic and molecular complexities as well as to further elucidate the finer details of the steroidogenic pathway associated with PCa.
Collapse
|
18
|
Patierno BM, Foo WC, Allen T, Somarelli JA, Ware KE, Gupta S, Wise S, Wise JP, Qin X, Zhang D, Xu L, Li Y, Chen X, Inman BA, McCall SJ, Huang J, Kittles RA, Owzar K, Gregory S, Armstrong AJ, George DJ, Patierno SR, Hsu DS, Freedman JA. Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry. Prostate Cancer Prostatic Dis 2022; 25:513-523. [PMID: 34645983 PMCID: PMC9005588 DOI: 10.1038/s41391-021-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer is a clinically and molecularly heterogeneous disease, with highest incidence and mortality among men of African ancestry. To date, prostate cancer patient-derived xenograft (PCPDX) models to study this disease have been difficult to establish because of limited specimen availability and poor uptake rates in immunodeficient mice. Ancestrally diverse PCPDXs are even more rare, and only six PCPDXs from self-identified African American patients from one institution were recently made available. METHODS In the present study, we established a PCPDX from prostate cancer tissue from a patient of estimated 90% West African ancestry with metastatic castration resistant disease, and characterized this model's pathology, karyotype, hotspot mutations, copy number, gene fusions, gene expression, growth rate in normal and castrated mice, therapeutic response, and experimental metastasis. RESULTS This PCPDX has a mutation in TP53 and loss of PTEN and RB1. We have documented a 100% take rate in mice after thawing the PCPDX tumor from frozen stock. The PCPDX is castrate- and docetaxel-resistant and cisplatin-sensitive, and has gene expression patterns associated with such drug responses. After tail vein injection, the PCPDX tumor cells can colonize the lungs of mice. CONCLUSION This PCPDX, along with others that are established and characterized, will be useful pre-clinically for studying the heterogeneity of prostate cancer biology and testing new therapeutics in models expected to be reflective of the clinical setting.
Collapse
Affiliation(s)
- Brendon M Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wen-Chi Foo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tyler Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason A Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kathryn E Ware
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Santosh Gupta
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sandra Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John P Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dadong Zhang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yanjing Li
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xufeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brant A Inman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shannon J McCall
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, 91010, CA, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Simon Gregory
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David S Hsu
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
19
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
20
|
Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 2022; 20:206. [PMID: 35538576 PMCID: PMC9088152 DOI: 10.1186/s12967-022-03405-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
The establishing of the first cancer models created a new perspective on the identification and evaluation of new anti-cancer therapies in preclinical studies. Patient-derived xenograft models are created by tumor tissue engraftment. These models accurately represent the biology and heterogeneity of different cancers and recapitulate tumor microenvironment. These features have made it a reliable model along with the development of humanized models. Therefore, they are used in many studies, such as the development of anti-cancer drugs, co-clinical trials, personalized medicine, immunotherapy, and PDX biobanks. This review summarizes patient-derived xenograft models development procedures, drug development applications in various cancers, challenges and limitations.
Collapse
Affiliation(s)
- Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Hassan S, Blick T, Wood J, Thompson EW, Williams ED. Circulating Tumour Cells Indicate the Presence of Residual Disease Post-Castration in Prostate Cancer Patient-Derived Xenograft Models. Front Cell Dev Biol 2022; 10:858013. [PMID: 35493092 PMCID: PMC9043137 DOI: 10.3389/fcell.2022.858013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the lethal form of prostate cancer. Epithelial mesenchymal plasticity (EMP) has been associated with disease progression to CRPC, and prostate cancer therapies targeting the androgen signalling axis, including androgen deprivation therapy (ADT), promote EMP. We explored effects of castration on EMP in the tumours and circulating tumour cells (CTCs) of patient-derived xenograft (PDX)-bearing castrated mice using human-specific RT-qPCR assays and immunocytochemistry. Expression of prostate epithelial cell marker KLK3 was below detection in most tumours from castrated mice (62%, 23/37 mice), consistent with its known up-regulation by androgens. Endpoint tumour size after castration varied significantly in a PDX model-specific pattern; while most tumours were castration-sensitive (BM18, LuCaP70), the majority of LuCaP105 tumours continued to grow following castration. By contrast, LuCaP96 PDX showed a mixed response to castration. CTCs were detected in 33% of LuCaP105, 43% of BM18, 47% of LuCaP70, and 54% of LuCaP96 castrated mice using RPL32 mRNA measurement in plasma. When present, CTC numbers estimated using human RPL32 expression ranged from 1 to 458 CTCs per ml blood, similar to our previous observations in non-castrated mice. In contrast to their non-castrated counterparts, there was no relationship between tumour size and CTC burden in castrated mice. Unsupervised hierarchical clustering of the gene expression profiles of CTCs collected from castrated and non-castrated mice revealed distinct CTC sub-groups within the pooled population that were classified as having mesenchymal, epithelial, or EMP hybrid gene expression profiles. The epithelial signature was only found in CTCs from non-castrated mice. Hybrid and mesenchymal signatures were detected in CTCs from both castrated and non-castrated mice, with an emphasis towards mesenchymal phenotypes in castrated mice. Post-castration serum PSA levels were either below detection or very low for all the CTC positive samples highlighting the potential usefulness of CTCs for disease monitoring after androgen ablation therapy. In summary, our study of castration effects on prostate cancer PDX CTCs showed that CTCs were often detected in the castrate setting, even in mice with no palpable tumours, and demonstrated the superior ability of CTCs to reveal residual disease over the conventional clinical biomarker serum PSA.
Collapse
Affiliation(s)
- Sara Hassan
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Tony Blick
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Jack Wood
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Erik W. Thompson
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- *Correspondence: Elizabeth D. Williams,
| |
Collapse
|
22
|
Han H, Wang Y, Curto J, Gurrapu S, Laudato S, Rumandla A, Chakraborty G, Wang X, Chen H, Jiang Y, Kumar D, Caggiano EG, Capogiri M, Zhang B, Ji Y, Maity SN, Hu M, Bai S, Aparicio AM, Efstathiou E, Logothetis CJ, Navin N, Navone NM, Chen Y, Giancotti FG. Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Rep 2022; 39:110595. [PMID: 35385726 PMCID: PMC9414743 DOI: 10.1016/j.celrep.2022.110595] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/18/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Bioinformatic analysis of 94 patient-derived xenografts (PDXs), cell lines, and organoids (PCOs) identifies three intrinsic transcriptional subtypes of metastatic castration-resistant prostate cancer: androgen receptor (AR) pathway + prostate cancer (PC) (ARPC), mesenchymal and stem-like PC (MSPC), and neuroendocrine PC (NEPC). A sizable proportion of castration-resistant and metastatic stage PC (M-CRPC) cases are admixtures of ARPC and MSPC. Analysis of clinical datasets and mechanistic studies indicates that MSPC arises from ARPC as a consequence of therapy-induced lineage plasticity. AR blockade with enzalutamide induces (1) transcriptional silencing of TP53 and hence dedifferentiation to a hybrid epithelial and mesenchymal and stem-like state and (2) inhibition of BMP signaling, which promotes resistance to AR inhibition. Enzalutamide-tolerant LNCaP cells re-enter the cell cycle in response to neuregulin and generate metastasis in mice. Combined inhibition of HER2/3 and AR or mTORC1 exhibits efficacy in models of ARPC and MSPC or MSPC, respectively. These results define MSPC, trace its origin to therapy-induced lineage plasticity, and reveal its sensitivity to HER2/3 inhibition.
Collapse
Affiliation(s)
- Hyunho Han
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yan Wang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Josue Curto
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sreeharsha Gurrapu
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sara Laudato
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Alekya Rumandla
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | | | - Xiaobo Wang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hong Chen
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Yan Jiang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Dhiraj Kumar
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emily G Caggiano
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Monica Capogiri
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Boyu Zhang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Yan Ji
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Sankar N Maity
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | - Min Hu
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Shanshan Bai
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Ana M Aparicio
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | | | | | - Nicholas Navin
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Nora M Navone
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program and Department of Medicine, MSKCC, New York, NY 10065, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
23
|
Lee S, Mendoza TR, Burner DN, Muldong MT, Wu CCN, Arreola-Villanueva C, Zuniga A, Greenburg O, Zhu WY, Murtadha J, Koutouan E, Pineda N, Pham H, Kang SG, Kim HT, Pineda G, Lennon KM, Cacalano NA, Jamieson CHM, Kane CJ, Kulidjian AA, Gaasterland T, Jamieson CAM. Novel Dormancy Mechanism of Castration Resistance in Bone Metastatic Prostate Cancer Organoids. Int J Mol Sci 2022; 23:ijms23063203. [PMID: 35328625 PMCID: PMC8952299 DOI: 10.3390/ijms23063203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.
Collapse
MESH Headings
- Androgens/pharmacology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Benzamides/pharmacology
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Male
- Mice
- Nitriles/pharmacology
- Organoids/metabolism
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Transplantation, Heterologous
- Virus Internalization
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Theresa R. Mendoza
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Danielle N. Burner
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Michelle T. Muldong
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Christina C. N. Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Catalina Arreola-Villanueva
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Abril Zuniga
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Olga Greenburg
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - William Y. Zhu
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Jamillah Murtadha
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Evodie Koutouan
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Naomi Pineda
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Hao Pham
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Sung-Gu Kang
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Gabriel Pineda
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Kathleen M. Lennon
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Nicholas A. Cacalano
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA;
| | - Catriona H. M. Jamieson
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Christopher J. Kane
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | | | - Terry Gaasterland
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina A. M. Jamieson
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Correspondence: ; Tel.: +1-858-534-2921
| |
Collapse
|
24
|
Koushyar S, Meniel VS, Phesse TJ, Pearson HB. Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer. Biomolecules 2022; 12:309. [PMID: 35204808 PMCID: PMC8869457 DOI: 10.3390/biom12020309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of the Wnt pathway is emerging as a frequent event during prostate cancer that can facilitate tumor formation, progression, and therapeutic resistance. Recent discoveries indicate that targeting the Wnt pathway to treat prostate cancer may be efficacious. However, the functional consequence of activating the Wnt pathway during the different stages of prostate cancer progression remains unclear. Preclinical work investigating the efficacy of targeting Wnt signaling for the treatment of prostate cancer, both in primary and metastatic lesions, and improving our molecular understanding of treatment responses is crucial to identifying effective treatment strategies and biomarkers that help guide treatment decisions and improve patient care. In this review, we outline the type of genetic alterations that lead to activated Wnt signaling in prostate cancer, highlight the range of laboratory models used to study the role of Wnt genetic drivers in prostate cancer, and discuss new mechanistic insights into how the Wnt cascade facilitates prostate cancer growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Sarah Koushyar
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| | - Valerie S. Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
| | - Toby J. Phesse
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
| |
Collapse
|
25
|
Racial disparities in prostate cancer: A complex interplay between socioeconomic inequities and genomics. Cancer Lett 2022; 531:71-82. [PMID: 35122875 DOI: 10.1016/j.canlet.2022.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
The largest US cancer health disparity exists in prostate cancer, with Black men having more than a two-fold increased risk of dying from prostate cancer compared to all other races. This disparity is a result of a complex network of factors including socioeconomic status (SES), environmental exposures, and genetics/biology. Inequity in the US healthcare system has emerged as a major driver of disparity in prostate cancer outcomes and has raised concerns that the actual incidence rates may be higher than current estimates. However, emerging studies argue that equalizing healthcare access will not fully eliminate racial health disparities and highlight the important role of biology. Significant differences have been observed in prostate cancer biology between various ancestral groups that may contribute to prostate cancer health disparities. These differences include enhanced androgen receptor signaling, increased genomic instability, metabolic dysregulation, and enhanced inflammatory and cytokine signaling. Immediate actions are needed to increase the establishment of adequate infrastructure and multi-center, interdisciplinary research to bridge the gap between social and biological determinants of prostate cancer health disparities.
Collapse
|
26
|
Chakrabarty S, Quiros-Solano WF, Kuijten MM, Haspels B, Mallya S, Lo CSY, Othman A, Silvestri C, van de Stolpe A, Gaio N, Odijk H, van de Ven M, de Ridder CM, van Weerden WM, Jonkers J, Dekker R, Taneja N, Kanaar R, van Gent DC. A Microfluidic Cancer-on-Chip Platform Predicts Drug Response Using Organotypic Tumor Slice Culture. Cancer Res 2022; 82:510-520. [PMID: 34872965 PMCID: PMC9397621 DOI: 10.1158/0008-5472.can-21-0799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Optimal treatment of cancer requires diagnostic methods to facilitate therapy choice and prevent ineffective treatments. Direct assessment of therapy response in viable tumor specimens could fill this diagnostic gap. Therefore, we designed a microfluidic platform for assessment of patient treatment response using tumor tissue slices under precisely controlled growth conditions. The optimized Cancer-on-Chip (CoC) platform maintained viability and sustained proliferation of breast and prostate tumor slices for 7 days. No major changes in tissue morphology or gene expression patterns were observed within this time frame, suggesting that the CoC system provides a reliable and effective way to probe intrinsic chemotherapeutic sensitivity of tumors. The customized CoC platform accurately predicted cisplatin and apalutamide treatment response in breast and prostate tumor xenograft models, respectively. The culture period for breast cancer could be extended up to 14 days without major changes in tissue morphology and viability. These culture characteristics enable assessment of treatment outcomes and open possibilities for detailed mechanistic studies. SIGNIFICANCE: The Cancer-on-Chip platform with a 6-well plate design incorporating silicon-based microfluidics can enable optimal patient-specific treatment strategies through parallel culture of multiple tumor slices and diagnostic assays using primary tumor material.
Collapse
Affiliation(s)
- Sanjiban Chakrabarty
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - William F. Quiros-Solano
- Department of Microelectronics, Electronic Components, Technology and Materials, Delft University of Technology, Delft, the Netherlands.,BIOND Solutions B.V., Delft, the Netherlands
| | - Maayke M.P. Kuijten
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ben Haspels
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Calvin Shun Yu Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Amr Othman
- BIOND Solutions B.V., Delft, the Netherlands
| | | | | | | | - Hanny Odijk
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Corrina M.A. de Ridder
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wytske M. van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jos Jonkers
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ronald Dekker
- Department of Microelectronics, Electronic Components, Technology and Materials, Delft University of Technology, Delft, the Netherlands.,Philips Research, Eindhoven, the Netherlands
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Corresponding Author: Dik C. van Gent, Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, Rotterdam 3015GD, the Netherlands. Phone: 31-10-7043932; E-mail:
| |
Collapse
|
27
|
Shi M, Wang Y, Lin D, Wang Y. Patient-derived xenograft models of neuroendocrine prostate cancer. Cancer Lett 2022; 525:160-169. [PMID: 34767925 DOI: 10.1016/j.canlet.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022]
Abstract
In recent years, patient-derived xenografts (PDXs) have attracted much attention as clinically relevant models for basic and translational cancer research. PDXs retain the principal histopathological and molecular heterogeneity of their donor tumors and remain stable across passages. These characteristics allow PDXs to offer a reliable platform for better understanding cancer biology, discovering biomarkers and therapeutic targets, and developing novel therapies. A growing interest in generating neuroendocrine prostate cancer (NEPC) PDX models has been demonstrated, and such models have proven useful in several areas. This review provides a comprehensive summary of currently available NEPC PDX collections, encompassing 1) primary or secondary sites where patient samples were collected, 2) donor patients' treatment histories, 3) morphological features (i.e., small cell and large cell), and 4) genomic alterations. We also highlight suitable models for various research purposes, including identifying therapeutic targets and evaluating drug responses in models with specific genomic backgrounds. Finally, we provide perspectives on the current knowledge gaps and shed light on future applications and improvements of NEPC PDXs.
Collapse
Affiliation(s)
- Mingchen Shi
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Yu Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
|
29
|
Hidden clues in prostate cancer - Lessons learned from clinical and pre-clinical approaches on diagnosis and risk stratification. Cancer Lett 2022; 524:182-192. [PMID: 34687792 DOI: 10.1016/j.canlet.2021.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
The heterogeneity of prostate cancer is evident at clinical, morphological and molecular levels. To aid clinical decision making, a three-tiered system for risk stratification is used to designate low-, intermediate-, and high-risk of disease progression. Intermediate-risk prostate cancers are the most frequently diagnosed, and even with common diagnostic features, can exhibit vastly different clinical progression. Thus, improved risk stratification methods are needed to better predict patient outcomes. Here, we provide an overview of the improvements in diagnosis/prognosis arising from advances in pathology reporting of prostate cancer, which can improve risk stratification, especially for patients with intermediate-risk disease. This review discusses updates to pathology reporting of morphological growth patterns, and proposes the utility of integrating prognostic biomarkers or innovative imaging techniques to enhance clinical decision-making. To complement clinical studies, experimental approaches using patient-derived tumors have highlighted important cellular and morphological features associated with aggressive disease that may impact treatment response. The intersection of urology, pathology and scientific disciplines is required to work towards a common goal of understanding disease pathogenesis, improving the stratification of patients with intermediate-risk disease and subsequently defining optimal treatment strategies using precision-based approaches.
Collapse
|
30
|
van de Merbel AF, van der Horst G, van der Mark MH, Bots STF, van den Wollenberg DJM, de Ridder CMA, Stuurman D, Aalders T, Erkens-Schulz S, van Montfoort N, Karthaus WR, Mehra N, Smits M, Schalken JA, van Weerden WM, Hoeben RC, van der Pluijm G. Reovirus mutant jin-3 exhibits lytic and immune-stimulatory effects in preclinical human prostate cancer models. Cancer Gene Ther 2022; 29:793-802. [PMID: 34135475 PMCID: PMC9209329 DOI: 10.1038/s41417-021-00360-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/08/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Treatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses. Mammalian Orthoreoviruses are non-pathogenic human viruses with a preference of lytic replication in human tumour cells. In this study, we evaluated the oncolytic efficacy of the bioselected oncolytic reovirus mutant jin-3 in multiple human prostate cancer models. The jin-3 reovirus displayed efficient infection, replication, and anti-cancer responses in 2D and 3D prostate cancer models, as well as in ex vivo cultured human tumour slices. In addition, the jin-3 reovirus markedly reduced the viability and growth of human cancer cell lines and patient-derived xenografts. The infection induced the expression of mediators of immunogenic cell death, interferon-stimulated genes, and inflammatory cytokines. Taken together, our data demonstrate that the reovirus mutant jin-3 displays tumour tropism, and induces potent oncolytic and immunomodulatory responses in human prostate cancer models. Therefore, jin-3 reovirus represents an attractive candidate for further development as oncolytic agent for treatment of patients with aggressive localised or advanced prostate cancer.
Collapse
Affiliation(s)
- Arjanneke F. van de Merbel
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geertje van der Horst
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike H. van der Mark
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Selas T. F. Bots
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana J. M. van den Wollenberg
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corrina M. A. de Ridder
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debra Stuurman
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tilly Aalders
- grid.10417.330000 0004 0444 9382Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sigrun Erkens-Schulz
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nadine van Montfoort
- grid.10419.3d0000000089452978Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter R. Karthaus
- grid.51462.340000 0001 2171 9952Human Pathology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Niven Mehra
- grid.10417.330000 0004 0444 9382Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Minke Smits
- grid.10417.330000 0004 0444 9382Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack A. Schalken
- grid.10417.330000 0004 0444 9382Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wytske M. van Weerden
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rob C. Hoeben
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabri van der Pluijm
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
31
|
Labanca E, Yang J, Shepherd PDA, Wan X, Starbuck MW, Guerra LD, Anselmino N, Bizzotto JA, Dong J, Chinnaiyan AM, Ravoori MK, Kundra V, Broom BM, Corn PG, Troncoso P, Gueron G, Logothethis CJ, Navone NM. Fibroblast Growth Factor Receptor 1 Drives the Metastatic Progression of Prostate Cancer. Eur Urol Oncol 2021; 5:164-175. [PMID: 34774481 DOI: 10.1016/j.euo.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND No curative therapy is currently available for metastatic prostate cancer (PCa). The diverse mechanisms of progression include fibroblast growth factor (FGF) axis activation. OBJECTIVE To investigate the molecular and clinical implications of fibroblast growth factor receptor 1 (FGFR1) and its isoforms (α/β) in the pathogenesis of PCa bone metastases. DESIGN, SETTING, AND PARTICIPANTS In silico, in vitro, and in vivo preclinical approaches were used. RNA-sequencing and immunohistochemical (IHC) studies in human samples were conducted. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS In mice, bone metastases (chi-square/Fisher's test) and survival (Mantel-Cox) were assessed. In human samples, FGFR1 and ladinin 1 (LAD1) analysis associated with PCa progression were evaluated (IHC studies, Fisher's test). RESULTS AND LIMITATIONS FGFR1 isoform expression varied among PCa subtypes. Intracardiac injection of mice with FGFR1-expressing PC3 cells reduced mouse survival (α, p < 0.0001; β, p = 0.032) and increased the incidence of bone metastases (α, p < 0.0001; β, p = 0.02). Accordingly, IHC studies of human castration-resistant PCa (CRPC) bone metastases revealed significant enrichment of FGFR1 expression compared with treatment-naïve, nonmetastatic primary tumors (p = 0.0007). Expression of anchoring filament protein LAD1 increased in FGFR1-expressing PC3 cells and was enriched in human CRPC bone metastases (p = 0.005). CONCLUSIONS FGFR1 expression induces bone metastases experimentally and is significantly enriched in human CRPC bone metastases, supporting its prometastatic effect in PCa. LAD1 expression, found in the prometastatic PCa cells expressing FGFR1, was also enriched in CRPC bone metastases. Our studies support and provide a roadmap for the development of FGFR blockade for advanced PCa. PATIENT SUMMARY We studied the role of fibroblast growth factor receptor 1 (FGFR1) in prostate cancer (PCa) progression. We found that PCa cells with high FGFR1 expression increase metastases and that FGFR1 expression is increased in human PCa bone metastases, and identified genes that could participate in the metastases induced by FGFR1. These studies will help pinpoint PCa patients who use fibroblast growth factor to progress and will benefit by the inhibition of this pathway.
Collapse
Affiliation(s)
- Estefania Labanca
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jun Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter D A Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhai Wan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael W Starbuck
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leah D Guerra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan A Bizzotto
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Murali K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christopher J Logothethis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Sharma M, Arora I, Chen M, Wu H, Crowley MR, Tollefsbol TO, Li Y. Therapeutic Effects of Dietary Soybean Genistein on Triple-Negative Breast Cancer via Regulation of Epigenetic Mechanisms. Nutrients 2021; 13:3944. [PMID: 34836197 PMCID: PMC8623013 DOI: 10.3390/nu13113944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Consumption of dietary natural components such as genistein (GE) found in soy-rich sources is strongly associated with a lower risk of breast cancer. However, bioactive dietary component-based therapeutic strategies are largely understudied in breast cancer treatment. Our investigation sought to elucidate the potential mechanisms linking bioactive dietary GE to its breast cancer chemotherapeutic potential in a special subtype of aggressive breast cancer-triple-negative breast cancer (TNBC)-by utilizing two preclinical patient-derived xenograft (PDX) orthotopic mouse models: BCM-3204 and TM00091. Our study revealed that administration of GE resulted in a delay of tumor growth in both PDX models. With transcriptomics analyses in TNBC tumors isolated from BCM-3204 PDXs, we found that dietary soybean GE significantly influenced multiple tumor-regulated gene expressions. Further validation assessment of six candidate differentially expressed genes (DEGs)-Cd74, Lpl, Ifi44, Fzd9, Sat1 and Wwc1-demonstrated a similar trend at gene transcriptional and protein levels as observed in RNA-sequencing results. Mechanistically, GE treatment-induced Cd74 downregulation regulated the NF-κB/Bcl-xL/TAp63 signal pathway, which may contribute to soybean GE-mediated therapeutic effects on TNBC tumors. Additionally, our findings revealed that GE can modify expression levels of key epigenetic-associated genes such as DNA methyltransferases (Dnmt3b), ten-eleven translocation (Tet3) methylcytosine dioxygenases and histone deacetyltransferase (Hdac2), and their enzymatic activities as well as genomic DNA methylation and histone methylation (H3K9) levels. Collectively, our investigation shows high significance for potential development of a novel therapeutic approach by using bioactive soybean GE for TNBC patients who have few treatment options.
Collapse
Affiliation(s)
- Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.S.); (I.A.); (H.W.)
| | - Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.S.); (I.A.); (H.W.)
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Huixin Wu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.S.); (I.A.); (H.W.)
| | - Michael R. Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.S.); (I.A.); (H.W.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuanyuan Li
- Department of Obstetrics, Gynecology & Women’s Heath, University of Missouri, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
33
|
Haffner MC, Bhamidipati A, Tsai HK, Esopi DM, Vaghasia AM, Low JY, Patel RA, Guner G, Pham MT, Castagna N, Hicks J, Wyhs N, Aebersold R, De Marzo AM, Nelson WG, Guo T, Yegnasubramanian S. Phenotypic characterization of two novel cell line models of castration-resistant prostate cancer. Prostate 2021; 81:1159-1171. [PMID: 34402095 PMCID: PMC8460612 DOI: 10.1002/pros.24210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new preclinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration-resistant prostate cancer. METHODS We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) and proteomic analyses (SWATH-MS) to delineate expression differences between castration-sensitive and castration-resistant cell lines. Furthermore, we characterized the in vivo and in vitro growth characteristics of these novel cell line models. RESULTS The two cell line derivatives LAPC4-CR and VCaP-CR showed castration-resistant growth in vitro and in vivo which was only minimally inhibited by AR antagonists, enzalutamide, and bicalutamide. High-dose androgen treatment resulted in significant growth arrest of VCaP-CR but not in LAPC4-CR cells. Both cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration-resistant LNCaP-abl cells revealed an expression signature of castration resistance. CONCLUSIONS The two novel cell line models LAPC4-CR and VCaP-CR and their comprehensive characterization on the RNA and protein level represent important resources to study the molecular mechanisms of castration resistance.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Akshay Bhamidipati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Harrison K. Tsai
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - David M. Esopi
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Ajay M. Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jin-Yih Low
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Radhika A. Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gunes Guner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Hacettepe University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Minh-Tam Pham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Nicole Castagna
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jessica Hicks
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nicolas Wyhs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zürich, Switzerland
- Faculty of Science, University of Zürich, Zürich. Switzerland
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G. Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tiannan Guo
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zürich, Switzerland
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, MD, Baltimore, USA
| |
Collapse
|
34
|
Wang Y, Wang Y, Ci X, Choi SYC, Crea F, Lin D, Wang Y. Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol 2021; 18:581-596. [PMID: 34290447 PMCID: PMC10802813 DOI: 10.1038/s41585-021-00490-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer. NEPC arises de novo only rarely; the disease predominantly develops from adenocarcinoma in response to drug-induced androgen receptor signalling inhibition, although the mechanisms behind this transdifferentiation are a subject of debate. The survival of patients with NEPC is poor, and few effective treatment options are available. To improve clinical outcomes, understanding of the biology and molecular mechanisms regulating NEPC development is crucial. Various NEPC molecular drivers make temporal contributions during NEPC development, and despite the limited treatment options available, several novel targeted therapeutics are currently under research.
Collapse
Affiliation(s)
- Yong Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Xinpei Ci
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Stephen Y C Choi
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Francesco Crea
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC, Canada.
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada.
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| |
Collapse
|
35
|
Pamarthy S, Sabaawy HE. Patient derived organoids in prostate cancer: improving therapeutic efficacy in precision medicine. Mol Cancer 2021; 20:125. [PMID: 34587953 PMCID: PMC8480086 DOI: 10.1186/s12943-021-01426-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/11/2021] [Indexed: 12/30/2022] Open
Abstract
With advances in the discovery of the clinical and molecular landscapes of prostate cancer (PCa), implementation of precision medicine-guided therapeutic testing in the clinic has become a priority. Patient derived organoids (PDOs) are three-dimensional (3D) tissue cultures that promise to enable the validation of preclinical drug testing in precision medicine and coclinical trials by modeling PCa for predicting therapeutic responses with a reliable efficacy. We evaluate the advances in 3D culture and PDO use to model clonal heterogeneity and screen for effective targeted therapies, with a focus on the technological advances in generating PDOs. Recent innovations include the utilization of PDOs both in original research and/or correlative studies in clinical trials to examine drug effects within the PCa tumor microenvironment (TME). There has also been a significant improvement with the utilization of various extracellular matrices and single cell assays for the generation and long-term propagation of PDOs. Single cell derived PDOs could faithfully recapitulate the original tumor and reflect the heterogeneity features. While most PDO use for precision medicine understandably involved tissues derived from metastatic patients, we envision that the generation of PDOs from localized PCa along with the incorporation of cells of the TME in tissue models would fulfill the great potential of PDOs in predicting drug clinical benefits. We conclude that single cell derived PDOs reiterate the molecular features of the original tumor and represent a reliable pre-clinical PCa model to understand individual tumors and design tailored targeted therapies.
Collapse
Affiliation(s)
- Sahithi Pamarthy
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, Rm 4557, New Brunswick, NJ, 08901, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, Rm 4557, New Brunswick, NJ, 08901, USA.
- Clinical Investigations and Precision Therapeutics Program, Devision of Medical Oncology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Departments of Pathology and Laboratory Medicine, RBHS-Robert Wood Johnson Medical School, New Brunswick, USA.
- Departments of Medicine, RBHS-Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
36
|
Breaking down walls in prostate cancer with the MURAL collection of patient-derived xenografts. Nat Commun 2021; 12:5504. [PMID: 34535657 PMCID: PMC8448875 DOI: 10.1038/s41467-021-25783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
A bank of 59 well-characterised prostate cancer patient-derived xenografts was established, including 17 classed as research-ready covering the disease-spectrum which, plus associated resources (organoids, serum, DNA/RNA profiles, tissue), are available for collaborative projects. This eagerly-anticipated resource will facilitate pre-clinical prostate cancer therapy studies.
Collapse
|
37
|
Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells 2021; 10:cells10092387. [PMID: 34572036 PMCID: PMC8468328 DOI: 10.3390/cells10092387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most common cancer in aging men. Despite recent progress, there are still few effective treatments to cure its aggressive and metastatic stages. A better understanding of the molecular mechanisms driving disease initiation and progression appears essential to support the development of more efficient therapies and improve patient care. To do so, multiple research models, such as cell culture and mouse models, have been developed over the years and have improved our comprehension of the biology of the disease. Recently, a new model has been added with the use of the Drosophila accessory gland. With a high level of conservation of major signaling pathways implicated in human disease, this functional equivalent of the prostate represents a powerful, inexpensive, and rapid in vivo model to study epithelial carcinogenesis. The purpose of this review is to quickly overview the existing prostate cancer models, including their strengths and limitations. In particular, we discuss how the Drosophila accessory gland can be integrated as a convenient complementary model by bringing new understanding in the mechanisms driving prostate epithelial tumorigenesis, from initiation to metastatic formation.
Collapse
|
38
|
Cimino J, Braun C. Building a competitive infrastructure to support clinical research in healthcare institution. Eur J Clin Invest 2021; 51:e13641. [PMID: 34146339 DOI: 10.1111/eci.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Clinical research is becoming increasingly popular in Europe at a growth rate much higher than expected, especially in Benelux. Although traditionally thought to be the purview of academic health centres, clinical research to evaluate new drugs, devices and medical practices is being done more and more in healthcare organizations with little or no academic affiliation. METHODS By managing a new infrastructure and centralizing resources and demands, clinical research unit (CRU) has become an effective mechanism for hospital research. The 'infrastructure' or CRU refers to the necessary resources and how the CRU is organized and communicates operationally to conduct clinical research within the institution. The creation of a new CRU within the Robert Schuman Hospital in Luxembourg is described in this article. RESULTS This article discusses the concrete steps and basic elements such as patient-centric and hospital approaches needed to create and structure a CRU to provide academic or industry-sponsored research support in clinical research. CONCLUSIONS Some infrastructure challenges (insufficient engagement, regulatory and administrative barriers) and possible courses of action (standardized procedures, training and centralization) will be discussed.
Collapse
Affiliation(s)
- Jonathan Cimino
- Clinical Research Unit, Fondation Hôpitaux Robert Schuman, Luxembourg, Luxembourg.,Hôpitaux Robert Schuman, Luxembourg, Luxembourg
| | - Claude Braun
- Clinical Research Unit, Fondation Hôpitaux Robert Schuman, Luxembourg, Luxembourg.,Hôpitaux Robert Schuman, Luxembourg, Luxembourg
| |
Collapse
|
39
|
McGovern JA, Bock N, Shafiee A, Martine LC, Wagner F, Baldwin JG, Landgraf M, Lahr CA, Meinert C, Williams ED, Pollock PM, Denham J, Russell PJ, Risbridger GP, Clements JA, Loessner D, Holzapfel BM, Hutmacher DW. A humanized orthotopic tumor microenvironment alters the bone metastatic tropism of prostate cancer cells. Commun Biol 2021; 4:1014. [PMID: 34462519 PMCID: PMC8405640 DOI: 10.1038/s42003-021-02527-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/25/2021] [Indexed: 01/14/2023] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, and bone is the most frequent site of metastasis. The tumor microenvironment (TME) impacts tumor growth and metastasis, yet the role of the TME in PCa metastasis to bone is not fully understood. We used a tissue-engineered xenograft approach in NOD-scid IL2Rγnull (NSG) mice to incorporate two levels of humanization; the primary tumor and TME, and the secondary metastatic bone organ. Bioluminescent imaging, histology, and immunohistochemistry were used to study metastasis of human PC-3 and LNCaP PCa cells from the prostate to tissue-engineered bone. Here we show pre-seeding scaffolds with human osteoblasts increases the human cellular and extracellular matrix content of bone constructs, compared to unseeded scaffolds. The humanized prostate TME showed a trend to decrease metastasis of PC-3 PCa cells to the tissue-engineered bone, but did not affect the metastatic potential of PCa cells to the endogenous murine bones or organs. On the other hand, the humanized TME enhanced LNCaP tumor growth and metastasis to humanized and murine bone. Together this demonstrates the importance of the TME in PCa bone tropism, although further investigations are needed to delineate specific roles of the TME components in this context.
Collapse
Affiliation(s)
- Jacqui A McGovern
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Mechanical, Medical and Process Engineering (MMPE), Centre for Biomedical Technologies, Faculty of Engineering, QUT, Brisbane, QLD, Australia.,School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Nathalie Bock
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, QUT, Brisbane, QLD, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia
| | - Abbas Shafiee
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia
| | - Laure C Martine
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Ferdinand Wagner
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Musculoskeletal University Centre Munich, Department of Orthopedics and Trauma Surgery, University Hospital Munich, Ludwig-Maximilians University, Campus Großhadern, Munich, Germany.,Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Jeremy G Baldwin
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Marietta Landgraf
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Christoph A Lahr
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Mechanical, Medical and Process Engineering (MMPE), Centre for Biomedical Technologies, Faculty of Engineering, QUT, Brisbane, QLD, Australia.,Musculoskeletal University Centre Munich, Department of Orthopedics and Trauma Surgery, University Hospital Munich, Ludwig-Maximilians University, Campus Großhadern, Munich, Germany
| | - Christoph Meinert
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia
| | - Elizabeth D Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, QUT, Brisbane, QLD, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia.,Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Pamela M Pollock
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Jim Denham
- School of Medicine and Population Health, University of Newcastle, Callaghan, NSW, Australia
| | - Pamela J Russell
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, QUT, Brisbane, QLD, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Judith A Clements
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, QUT, Brisbane, QLD, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia
| | - Daniela Loessner
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Department of Chemical Engineering and Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, VIC, Australia
| | - Boris M Holzapfel
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia.,Musculoskeletal University Centre Munich, Department of Orthopedics and Trauma Surgery, University Hospital Munich, Ludwig-Maximilians University, Campus Großhadern, Munich, Germany
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, Australia. .,School of Mechanical, Medical and Process Engineering (MMPE), Centre for Biomedical Technologies, Faculty of Engineering, QUT, Brisbane, QLD, Australia. .,School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, QUT, Brisbane, QLD, Australia. .,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia. .,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
40
|
Risbridger GP, Clark AK, Porter LH, Toivanen R, Bakshi A, Lister NL, Pook D, Pezaro CJ, Sandhu S, Keerthikumar S, Quezada Urban R, Papargiris M, Kraska J, Madsen HB, Wang H, Richards MG, Niranjan B, O'Dea S, Teng L, Wheelahan W, Li Z, Choo N, Ouyang JF, Thorne H, Devereux L, Hicks RJ, Sengupta S, Harewood L, Iddawala M, Azad AA, Goad J, Grummet J, Kourambas J, Kwan EM, Moon D, Murphy DG, Pedersen J, Clouston D, Norden S, Ryan A, Furic L, Goode DL, Frydenberg M, Lawrence MG, Taylor RA. The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology. Nat Commun 2021; 12:5049. [PMID: 34413304 PMCID: PMC8376965 DOI: 10.1038/s41467-021-25175-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Preclinical testing is a crucial step in evaluating cancer therapeutics. We aimed to establish a significant resource of patient-derived xenografts (PDXs) of prostate cancer for rapid and systematic evaluation of candidate therapies. The PDX collection comprises 59 tumors collected from 30 patients between 2012-2020, coinciding with availability of abiraterone and enzalutamide. The PDXs represent the clinico-pathological and genomic spectrum of prostate cancer, from treatment-naïve primary tumors to castration-resistant metastases. Inter- and intra-tumor heterogeneity in adenocarcinoma and neuroendocrine phenotypes is evident from bulk and single-cell RNA sequencing data. Organoids can be cultured from PDXs, providing further capabilities for preclinical studies. Using a 1 x 1 x 1 design, we rapidly identify tumors with exceptional responses to combination treatments. To govern the distribution of PDXs, we formed the Melbourne Urological Research Alliance (MURAL). This PDX collection is a substantial resource, expanding the capacity to test and prioritize effective treatments for prospective clinical trials in prostate cancer.
Collapse
Affiliation(s)
- Gail P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - Ashlee K Clark
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Laura H Porter
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Roxanne Toivanen
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew Bakshi
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Natalie L Lister
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - David Pook
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Carmel J Pezaro
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Eastern Health and Monash University Eastern Health Clinical School, Box Hill, VIC, Australia.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Cancer Tissue Collection After Death (CASCADE) Program, Melbourne, VIC, Australia
| | - Shivakumar Keerthikumar
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rosalia Quezada Urban
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Melissa Papargiris
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Jenna Kraska
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Heather B Madsen
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Hong Wang
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Michelle G Richards
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Birunthi Niranjan
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Samantha O'Dea
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Linda Teng
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - William Wheelahan
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Zhuoer Li
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Nicholas Choo
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Heather Thorne
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Devereux
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Rodney J Hicks
- Center for Molecular Imaging, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Shomik Sengupta
- Eastern Health and Monash University Eastern Health Clinical School, Box Hill, VIC, Australia.,Department of Urology, Austin Hospital, The University of Melbourne, Heidelberg, VIC, Australia.,Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia.,Epworth Healthcare, Melbourne, VIC, Australia.,Epworth Freemasons, Epworth Health, East Melbourne, VIC, Australia
| | - Laurence Harewood
- Epworth Healthcare, Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Mahesh Iddawala
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Arun A Azad
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jeremy Goad
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Epworth Healthcare, Melbourne, VIC, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy Grummet
- Epworth Healthcare, Melbourne, VIC, Australia.,Department of Surgery, Central Clinical School, Monash University, Clayton, VIC, Australia.,Australian Urology Associates, Melbourne, VIC, Australia
| | - John Kourambas
- Department of Medicine, Monash Health, Casey Hospital, Berwick, VIC, Australia
| | - Edmond M Kwan
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Daniel Moon
- Epworth Healthcare, Melbourne, VIC, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia.,Australian Urology Associates, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Clayton, VIC, Australia.,The Epworth Prostate Centre, Epworth Hospital, Richmond, VIC, Australia
| | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Epworth Healthcare, Melbourne, VIC, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - John Pedersen
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,TissuPath, Mount Waverley, VIC, Australia
| | | | - Sam Norden
- TissuPath, Mount Waverley, VIC, Australia
| | | | - Luc Furic
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - David L Goode
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark Frydenberg
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Epworth Healthcare, Melbourne, VIC, Australia.,Australian Urology Associates, Melbourne, VIC, Australia.,Department of Surgery, Monash University, Clayton, VIC, Australia.,Department of Urology, Cabrini Institute, Cabrini Health, Melbourne, VIC, Australia
| | - Mitchell G Lawrence
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Physiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
41
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
42
|
Hassan S, Blick T, Thompson EW, Williams ED. Diversity of Epithelial-Mesenchymal Phenotypes in Circulating Tumour Cells from Prostate Cancer Patient-Derived Xenograft Models. Cancers (Basel) 2021; 13:cancers13112750. [PMID: 34206049 PMCID: PMC8198708 DOI: 10.3390/cancers13112750] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Spread of prostate cancer to other parts of the body is responsible for the majority of deaths. Tumour cell epithelial mesenchymal plasticity (EMP) increases their metastatic potential and facilitates their survival in the blood as circulating tumour cells (CTCs). The aim of this study was to molecularly characterise CTCs in a panel of prostate cancer patient-derived xenografts using genes associated with epithelial and mesenchymal phenotypes, and to compare the EMP status of CTCs with their matched primary tumours. The study highlights high heterogeneity in CTC enumeration and EMP gene expression between tumour-bearing mice and within individual blood samples, and therefore caution should be taken when interpreting pooled CTC analyses. Critically, tumour cells were present in the epithelial-mesenchymal hybrid state in the circulation. The study also demonstrates that there is high variation in CTC size, which would introduce sample bias to size-based CTC isolation techniques. Abstract Metastasis is the leading cause of cancer-related deaths worldwide. The epithelial-mesenchymal plasticity (EMP) status of primary tumours has relevance to metastatic potential and therapy resistance. Circulating tumour cells (CTCs) provide a window into the metastatic process, and molecular characterisation of CTCs in comparison to their primary tumours could lead to a better understanding of the mechanisms involved in the metastatic cascade. In this study, paired blood and tumour samples were collected from four prostate cancer patient-derived xenograft (PDX) models (BM18, LuCaP70, LuCaP96, LuCaP105) and assessed using an EMP-focused, 42 gene human-specific, nested quantitative RT-PCR assay. CTC burden varied amongst the various xenograft models with LuCaP96 having the highest number of CTCs per mouse (mean: 704; median: 31) followed by BM18 (mean: 101; median: 21), LuCaP70 (mean: 73; median: 16) and LuCaP105 (mean: 57; median: 6). A significant relationship was observed between tumour size and CTC number (p = 0.0058). Decreased levels of kallikrein-related peptidase 3 (KLK3) mRNA (which encodes prostate-specific antigen; PSA) were observed in CTC samples from all four models compared to their primary tumours. Both epithelial- and mesenchymal-associated genes were commonly expressed at higher levels in CTCs compared to the bulk primary tumour, although some common EMT-associated genes (CDH1, VIM, EGFR, EPCAM) remained unchanged. Immunofluorescence co-staining for pan-cytokeratin (KRT) and vimentin (VIM) indicated variable proportions of CTCs across the full EMP axis, even in the same model. EMP hybrids predominated in the BM18 and LuCaP96 models, but were not detected in the LuCaP105 model, and variable numbers of KRT+ and human VIM+ cells were observed in each model. SERPINE1, which encodes plasminogen activator inhibitor-1 (PAI-1), was enriched at the RNA level in CTCs compared to primary tumours and was the most commonly expressed mesenchymal gene in the CTCs. Co-staining for SERPINE1 and KRT revealed SERPINE1+ cells in 7/11 samples, six of which had SERPINE+KRT+ CTCs. Cell size variation was observed in CTCs. The majority of samples (8/11) contained larger CTCs ranging from 15.3 to 37.8 µm, whilst smaller cells (10.7 ± 4.1 µm, similar in size to peripheral blood mononuclear cells (PBMCs)) were identified in 6 of 11 samples. CTC clusters were also identified in 9/11 samples, containing 2–100 CTCs per cluster. Where CTC heterogeneity was observed in the clusters, epithelial-like cells (KRT+VIM−) were located on the periphery of the cluster, forming a layer around hybrid (KRT+VIM+) or mesenchymal-like (KRT−VIM+) cells. The CTC heterogeneity observed in these models emphasises the complexity in CTC isolation and classification and supports the increasingly recognised importance of the epithelial-mesenchymal hybrid state in cancer progression and metastasis.
Collapse
Affiliation(s)
- Sara Hassan
- Faculty of Health and Institute of Health & Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane City, QLD 4000, Australia; (S.H.); (T.B.)
- Translational Research Institute (TRI), Brisbane, QLD 4102, Australia
| | - Tony Blick
- Faculty of Health and Institute of Health & Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane City, QLD 4000, Australia; (S.H.); (T.B.)
- Translational Research Institute (TRI), Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Faculty of Health and Institute of Health & Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane City, QLD 4000, Australia; (S.H.); (T.B.)
- Translational Research Institute (TRI), Brisbane, QLD 4102, Australia
- Correspondence: (E.W.T.); (E.D.W.)
| | - Elizabeth D. Williams
- Faculty of Health and Institute of Health & Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane City, QLD 4000, Australia; (S.H.); (T.B.)
- Translational Research Institute (TRI), Brisbane, QLD 4102, Australia
- Australian Prostate Cancer Research Centre—Queensland (APCRC-Q), Brisbane, QLD 4102, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD 4102, Australia
- Correspondence: (E.W.T.); (E.D.W.)
| |
Collapse
|
43
|
Ruigrok EAM, van Vliet N, Dalm SU, de Blois E, van Gent DC, Haeck J, de Ridder C, Stuurman D, Konijnenberg MW, van Weerden WM, de Jong M, Nonnekens J. Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy. Eur J Nucl Med Mol Imaging 2021; 48:1339-1350. [PMID: 33094433 PMCID: PMC8113296 DOI: 10.1007/s00259-020-05057-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Various radiolabeled prostate-specific membrane antigen (PSMA)-targeting tracers are clinically applied for prostate cancer (PCa) imaging and targeted radionuclide therapy. The PSMA binding affinities, biodistribution, and DNA-damaging capacities of these radiotracers have not yet been compared in detail. A major concern of PSMA-targeting radiotracers is the toxicity in other PSMA-expressing organs, such as the salivary glands, thus demanding careful evaluation of the most optimal and safest radiotracer. In this extensive preclinical study, we evaluated the clinically applied PSMA-targeting small molecule inhibitors DOTA-PSMA-617 (PSMA-617) and DOTAGA-PSMA-I&T (PSMA-I&T) and the PSMA nanobody DOTA-JVZ-007 (JVZ-007) using PSMA-expressing cell lines, a unique set of PCa patient-derived xenografts (PDX) and healthy human tissues. METHODS AND RESULTS In vitro displacement studies on PSMA-expressing cells and cryosections of a PSMA-positive PDX revealed high and specific binding affinity for all three tracers labeled with lutetium-177 with IC50 values in the nanomolar range. Interestingly, [177Lu]Lu-JVZ-007 could not be displaced by PSMA-617 or PSMA-I&T, suggesting that this tracer targets an alternative binding site. Autoradiography assays on cryosections of human salivary and renal tissues revealed [177Lu]Lu-PSMA-617 to have the lowest binding to these healthy organs compared with [177Lu]Lu-PSMA-I&T. In vivo biodistribution assays confirmed the in vitro results with comparable tumor uptake of [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T at all timepoints, resulting in induction of similar levels of DNA double-strand breaks in the tumors. However, [177Lu]Lu-PSMA-I&T demonstrated approximately 40× higher renal uptake at 4 and 8 h post injection resulting in an unfavorable tumor-to-kidney ratio. CONCLUSION [177Lu]Lu-PSMA-617 has the most favorable biodistribution in mice as well as more favorable binding characteristics in vitro in PSMA-positive cells and human kidney and salivary gland specimens compared with [177Lu]Lu-PSMA-I&T and [177Lu]Lu-JVZ-007. Based on our preclinical evaluation, [177Lu]Lu-PSMA-617 is the best performing tracer to be taken further into clinical evaluation for PSMA-targeted radiotherapeutic development although with careful evaluation of the tracer binding to PSMA-expressing organs.
Collapse
Affiliation(s)
- Eline A M Ruigrok
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Simone U Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Joost Haeck
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Debra Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands.
- Erasmus MC, Room Ee757R, PO box 2040, 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Mout L, van Dessel LF, Kraan J, de Jong AC, Neves RPL, Erkens-Schulze S, Beaufort CM, Sieuwerts AM, van Riet J, Woo TLC, de Wit R, Sleijfer S, Hamberg P, Sandberg Y, Te Boekhorst PAW, van de Werken HJG, Martens JWM, Stoecklein NH, van Weerden WM, Lolkema MP. Generating human prostate cancer organoids from leukapheresis enriched circulating tumour cells. Eur J Cancer 2021; 150:179-189. [PMID: 33932725 DOI: 10.1016/j.ejca.2021.03.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Circulating tumour cell (CTC)-derived organoids have the potential to provide a powerful tool for personalised cancer therapy but are restrained by low CTC numbers provided by blood samples. Here, we used diagnostic leukapheresis (DLA) to enrich CTCs from patients with metastatic prostate cancer (mPCa) and explored whether organoids provide a platform for ex vivo treatment modelling. METHODS We prospectively screened 102 patients with mPCa and performed DLA in 40 patients with ≥5 CTCs/7.5 mL blood. We enriched CTCs from DLA using white blood cell (WBC) depletion alone or combined with EpCAM selection. The enriched CTC samples were cultured in 3D to obtain organoids and used for downstream analyses. RESULTS The DLA procedure resulted in a median yield of 5312 CTCs as compared with 22 CTCs in 7.5 mL of blood. Using WBC depletion, we recovered 46% of the CTCs, which reduced to 12% with subsequent EpCAM selection. From the isolated and enriched CTC samples, organoid expansion succeeded in 35%. Successful organoid cultures contained significantly higher CTC numbers at initiation. Moreover, we performed treatment modelling in one organoid cell line and identified substantial tumour heterogeneity in CTCs using single cell DNA sequencing. CONCLUSIONS DLA is an efficient method to enrich CTCs, although the modest success rate of culturing CTCs precludes large scale clinical application. Our data do suggest that DLA and subsequent processing provides a rich source of viable tumour cells. Therefore, DLA offers a promising alternative to biopsy procedures to obtain sufficient number of tumour cells to study sequential samples in patients with mPCa. TRIAL REGISTRATION NUMBER NL6019.
Collapse
Affiliation(s)
- Lisanne Mout
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lisanne F van Dessel
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anouk C de Jong
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rui P L Neves
- Department of General, Visceral and Pediatric Surgery, Heinrich-Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Corine M Beaufort
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Job van Riet
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Thomas L C Woo
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Paul Hamberg
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Yorick Sandberg
- Department of Internal Medicine, Maasstad Hospital, Rotterdam, the Netherlands
| | - Peter A W Te Boekhorst
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Heinrich-Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
45
|
Monterosso ME, Futrega K, Lott WB, Vela I, Williams ED, Doran MR. Using the Microwell-mesh to culture microtissues in vitro and as a carrier to implant microtissues in vivo into mice. Sci Rep 2021; 11:5118. [PMID: 33664329 PMCID: PMC7933425 DOI: 10.1038/s41598-021-84154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022] Open
Abstract
Prostate cancer (PCa) patient-derived xenografts (PDXs) are commonly propagated by serial transplantation of "pieces" of tumour in mice, but the cellular composition of pieces is not standardised. Herein, we optimised a microwell platform, the Microwell-mesh, to aggregate precise numbers of cells into arrays of microtissues, and then implanted the Microwell-mesh into NOD-scid IL2γ-/- (NSG) mice to study microtissue growth. First, mesh pore size was optimised using microtissues assembled from bone marrow-derived stromal cells, with mesh opening dimensions of 100×100 μm achieving superior microtissue vascularisation relative to mesh with 36×36 μm mesh openings. The optimised Microwell-mesh was used to assemble and implant PCa cell microtissue arrays (hereafter microtissues formed from cancer cells are referred to as microtumours) into mice. PCa cells were enriched from three different PDX lines, LuCaP35, LuCaP141, and BM18. 3D microtumours showed greater in vitro viability than 2D cultures, but neither proliferated. Microtumours were successfully established in mice 81% (57 of 70), 67% (4 of 6), 76% (19 of 25) for LuCaP35, LuCaP141, and BM18 PCa cells, respectively. Microtumour growth was tracked using live animal imaging for size or bioluminescence signal. If augmented with further imaging advances and cell bar coding, this microtumour model could enable greater resolution of PCa PDX drug response, and lead to the more efficient use of animals. The concept of microtissue assembly in the Microwell-mesh, and implantation in vivo may also have utility in implantation of islets, hair follicles or other organ-specific cells that self-assemble into 3D structures, providing an important bridge between in vitro assembly of mini-organs and in vivo implantation.
Collapse
Affiliation(s)
- Melissa E Monterosso
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Kathryn Futrega
- Translational Research Institute, Brisbane, Australia.,Centre for Biomedical Technologies (CBT), School of Mechanical, Medical, and Process Engineering (MMPE), Science and Engineering Faculty (SEF), Queensland University of Technology, Brisbane, Australia
| | - William B Lott
- Translational Research Institute, Brisbane, Australia.,Centre for Biomedical Technologies (CBT), School of Mechanical, Medical, and Process Engineering (MMPE), Science and Engineering Faculty (SEF), Queensland University of Technology, Brisbane, Australia
| | - Ian Vela
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia.,Australian Prostate Cancer Research Centre - Queensland (APCRC-Q) and Queensland Bladder Cancer initiative (QBCI), Brisbane, Australia.,Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - Elizabeth D Williams
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia.,Australian Prostate Cancer Research Centre - Queensland (APCRC-Q) and Queensland Bladder Cancer initiative (QBCI), Brisbane, Australia
| | - Michael R Doran
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia. .,Translational Research Institute, Brisbane, Australia. .,Centre for Biomedical Technologies (CBT), School of Mechanical, Medical, and Process Engineering (MMPE), Science and Engineering Faculty (SEF), Queensland University of Technology, Brisbane, Australia. .,Australian Prostate Cancer Research Centre - Queensland (APCRC-Q) and Queensland Bladder Cancer initiative (QBCI), Brisbane, Australia. .,Mater Research Institute - University of Queensland (UQ), Translational Research Institute (TRI), Brisbane, Australia.
| |
Collapse
|
46
|
Patient-derived xenografts and organoids model therapy response in prostate cancer. Nat Commun 2021; 12:1117. [PMID: 33602919 PMCID: PMC7892572 DOI: 10.1038/s41467-021-21300-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/19/2021] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance and metastatic processes in prostate cancer (PCa) remain undefined, due to lack of experimental models that mimic different disease stages. We describe an androgen-dependent PCa patient-derived xenograft (PDX) model from treatment-naïve, soft tissue metastasis (PNPCa). RNA and whole-exome sequencing of the PDX tissue and organoids confirmed transcriptomic and genomic similarity to primary tumor. PNPCa harbors BRCA2 and CHD1 somatic mutations, shows an SPOP/FOXA1-like transcriptomic signature and microsatellite instability, which occurs in 3% of advanced PCa and has never been modeled in vivo. Comparison of the treatment-naïve PNPCa with additional metastatic PDXs (BM18, LAPC9), in a medium-throughput organoid screen of FDA-approved compounds, revealed differential drug sensitivities. Multikinase inhibitors (ponatinib, sunitinib, sorafenib) were broadly effective on all PDX- and patient-derived organoids from advanced cases with acquired resistance to standard-of-care compounds. This proof-of-principle study may provide a preclinical tool to screen drug responses to standard-of-care and newly identified, repurposed compounds.
Collapse
|
47
|
Maitland NJ. Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced? Cancers (Basel) 2021; 13:327. [PMID: 33477370 PMCID: PMC7829888 DOI: 10.3390/cancers13020327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Increasingly sophisticated therapies for chemical castration dominate first-line treatments for locally advanced prostate cancer. However, androgen deprivation therapy (ADT) offers little prospect of a cure, as resistant tumors emerge rather rapidly, normally within 30 months. Cells have multiple mechanisms of resistance to even the most sophisticated drug regimes, and both tumor cell heterogeneity in prostate cancer and the multiple salvage pathways result in castration-resistant disease related genetically to the original hormone-naive cancer. The timing and mechanisms of cell death after ADT for prostate cancer are not well understood, and off-target effects after long-term ADT due to functional extra-prostatic expression of the androgen receptor protein are now increasingly being recorded. Our knowledge of how these widely used treatments fail at a biological level in patients is deficient. In this review, I will discuss whether there are pre-existing drug-resistant cells in a tumor mass, or whether resistance is induced/selected by the ADT. Equally, what is the cell of origin of this resistance, and does it differ from the treatment-naïve tumor cells by differentiation or dedifferentiation? Conflicting evidence also emerges from studies in the range of biological systems and species employed to answer this key question. It is only by improving our understanding of this aspect of treatment and not simply devising another new means of androgen inhibition that we can improve patient outcomes.
Collapse
Affiliation(s)
- Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
48
|
Labanca E, Bizzotto J, Sanchis P, Anselmino N, Yang J, Shepherd PDA, Paez A, Antico-Arciuch V, Lage-Vickers S, Hoang AG, Tang X, Raso MG, Titus M, Efstathiou E, Cotignola J, Araujo J, Logothetis C, Vazquez E, Navone N, Gueron G. Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel. Oncogene 2021; 40:6284-6298. [PMID: 34584218 PMCID: PMC8566229 DOI: 10.1038/s41388-021-02008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Prostate cancer (PCa) that progresses after androgen deprivation therapy (ADT) remains incurable. The underlying mechanisms that account for the ultimate emergence of resistance to ADT, progressing to castrate-resistant prostate cancer (CRPC), include those that reactivate androgen receptor (AR), or those that are entirely independent or cooperate with androgen signaling to underlie PCa progression. The intricacy of metabolic pathways associated with PCa progression spurred us to develop a metabolism-centric analysis to assess the metabolic shift occurring in PCa that progresses with low AR expression. We used PCa patient-derived xenografts (PDXs) to assess the metabolic changes after castration of tumor-bearing mice and subsequently confirmed main findings in human donor tumor that progressed after ADT. We found that relapsed tumors had a significant increase in fatty acids and ketone body (KB) content compared with baseline. We confirmed that critical ketolytic enzymes (ACAT1, OXCT1, BDH1) were dysregulated after castrate-resistant progression. Further, these enzymes are increased in the human donor tissue after progressing to ADT. In an in silico approach, increased ACAT1, OXCT1, BDH1 expression was also observed for a subset of PCa patients that relapsed with low AR and ERG (ETS-related gene) expression. Further, expression of these factors was also associated with decreased time to biochemical relapse and decreased progression-free survival. Our studies reveal the key metabolites fueling castration resistant progression in the context of a partial or complete loss of AR dependence.
Collapse
Affiliation(s)
- Estefania Labanca
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Juan Bizzotto
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Pablo Sanchis
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Nicolas Anselmino
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jun Yang
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Peter D. A. Shepherd
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Alejandra Paez
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina ,grid.7345.50000 0001 0056 1981Unidad de Transferencia Genética, Instituto de Oncología “Angel H Roffo”, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Antico-Arciuch
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Sofia Lage-Vickers
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Anh G. Hoang
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ximing Tang
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Maria Gabriela Raso
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Mark Titus
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Eleni Efstathiou
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Javier Cotignola
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - John Araujo
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Christopher Logothetis
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Elba Vazquez
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Nora Navone
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Geraldine Gueron
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| |
Collapse
|
49
|
Kato M, Sasaki T, Inoue T. Current experimental human tissue-derived models for prostate cancer research. Int J Urol 2020; 28:150-162. [PMID: 33247498 DOI: 10.1111/iju.14441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022]
Abstract
Scientists engaged in prostate cancer research have been conducting experiments using two-dimensional cultures of prostate cancer cell lines for decades. However, these experiments fail to reproduce and reflect the clinical course of individual patients with prostate cancer, or the molecular and genetic characteristics of prostate cancer, the basic requirement for most of the preclinical studies on prostate cancer. The use of human prostate cancer tissues in experiments has enabled the collection and verification of clinically relevant data, including chemical reactions, changes in proteins, and specific gene expression. Tissue recombination models have been employed for studying prostate development, the initiation and progression of prostate cancer, and the tumor microenvironment. Notably, the epithelial-stromal interaction, which might play a critical role in prostate cancer pathogenesis, can be reproduced in this model. Patient-derived xenograft models have been developed as powerful avatars comprising patient-derived prostate cancer tissues implanted in immunocompromised mice and could serve as a precision medicine approach for each prostate cancer patient. Spheroid and organoid assays, representative of modern three-dimensional cultures, can replicate the conditions in human prostate tumors and the prostate organ itself as a miniature model. Although an intact immune system against the tumor is missing from the models aimed at investigating immuno-oncological reagents in various malignancies, all these experimental models can help researchers in developing new drugs and selecting appropriate treatment strategies for prostate cancer patients.
Collapse
Affiliation(s)
- Manabu Kato
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
50
|
Patient-derived tumour models for personalized therapeutics in urological cancers. Nat Rev Urol 2020; 18:33-45. [PMID: 33173206 DOI: 10.1038/s41585-020-00389-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Preclinical knowledge of dysregulated pathways and potential biomarkers for urological cancers has undergone limited translation into the clinic. Moreover, the low approval rate of new anticancer drugs and the heterogeneous drug responses in patients indicate that current preclinical models do not always reflect the complexity of malignant disease. Patient-derived tumour models used in preclinical uro-oncology research include 3D culture systems, organotypic tissue slices and patient-derived xenograft models. Technological innovations have enabled major improvements in the capacity of these tumour models to reproduce the clinical complexity of urological cancers. Each type of patient-derived model has inherent advantages and limitations that can be exploited, either alone or in combination, to gather specific knowledge on clinical challenges and address unmet clinical needs. Nevertheless, few opportunities exist for patients with urological cancers to benefit from personalized therapeutic approaches. Clinical validation of experimental data is needed to facilitate the translation and implementation of preclinical knowledge into treatment decision making.
Collapse
|