1
|
Duan R, Xu X, Qiu L, Zhang S, Zou X. Performance of Hybrid Strategies Combining MDockPP and AlphaFold2 in CAPRI Rounds 47-55. Proteins 2025. [PMID: 39902622 DOI: 10.1002/prot.26805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
CAPRI challenges offer a range of blind tests for biomolecule interaction prediction. This study evaluates the performance of our prediction protocols for the human group Zou and the server group MDockPP in CAPRI rounds 47-55, highlighting the impact of AlphaFold2 (AF2) and the effectiveness of massive sampling approaches. Prior to AlphaFold2's release, our methods relied on homology modeling and docking-based protocols, achieving limited accuracy due to constraints in structural templates and inherent docking limitations. After AlphaFold2's public release, which demonstrated breakthrough accuracy in protein structure prediction, we integrated its multimer models and massive sampling techniques into our protocols. This integration significantly improved prediction accuracy, with human predictions increasing from 1 correct interface of 19 pre-AlphaFold2 to 4 of 8 post-AlphaFold2. The massive sampling approach further enhanced performance, particularly for targets T231 and T233, yielding medium-quality models that default parameters could not achieve.
Collapse
Affiliation(s)
- Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Shuang Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
- Department of Physics, University of Missouri, Columbia, USA
- Department of Biochemistry, University of Missouri, Columbia, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, USA
| |
Collapse
|
2
|
Gowthaman R, Park M, Yin R, Guest JD, Pierce BG. AlphaFold and Docking Approaches for Antibody-Antigen and Other Targets: Insights From CAPRI Rounds 47-55. Proteins 2025. [PMID: 39831331 DOI: 10.1002/prot.26801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Accurate modeling of the structures of protein-protein complexes and other biomolecular interactions represents a longstanding and important challenge for computational biology. The Critical Assessment of PRedicted Interactions (CAPRI) experiment has served for over two decades as a key means to assess and compare current approaches and methods through blind predictive scenarios, highlighting useful strategies, and new developments. Here we describe the performance of our laboratory's team in recent CAPRI rounds, which included submissions for 10 modeling targets. Our team utilized a range of docking and modeling approaches, including ZDOCK, Rosetta, and ZRANK, to model, refine, and score protein-protein and protein-DNA complexes. For recent targets we utilized adaptations of AlphaFold to generate models, leading to near-native models for an antibody-peptide target, and a highly accurate (but low ranked) model for an antibody-MHC complex. These results underscore the utility of AlphaFold-based protocols for predictive protein complex modeling, including for immune recognition, and highlight considerations regarding the use of AlphaFold confidence metrics in model selection.
Collapse
Affiliation(s)
- Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Minjae Park
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Tran MH, Martina CE, Moretti R, Nagel M, Schey KL, Meiler J. RosettaHDX: Predicting antibody-antigen interaction from hydrogen-deuterium exchange mass spectrometry data. J Struct Biol 2025; 217:108166. [PMID: 39765317 DOI: 10.1016/j.jsb.2025.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function and enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually. By incorporating HDX data as both distance restraints and a scoring term in the RosettaDock algorithm, RosettaHDX successfully generated near-native models (interface root-mean square deviation ≤ 4 Å) for all 9 benchmark complexes examined, averaging 3.6 times more near-native models than Rosetta alone. Near-native models among the top 10 scoring were identified in 3/9 cases, compared to 1/9 with Rosetta alone. Additionally, we developed a predictive metric based on docking results with HDX restraints to identify allosteric peptides in HDX datasets.
Collapse
Affiliation(s)
- Minh H Tran
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Center of Structural Biology, Vanderbilt University, Nashville, TN, USA.
| | - Cristina E Martina
- Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Rocco Moretti
- Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Marcus Nagel
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Kevin L Schey
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| | - Jens Meiler
- Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Institute for Computer Science, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI and School of Embedded Composite Artificial Intelligence SECAI, Dresden/Leipzig, Germany; Department of Pharmacology, Institute of Chemical Biology, Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Reys V, Giulini M, Cojocaru V, Engel A, Xu X, Roel-Touris J, Geng C, Ambrosetti F, Jiménez-García B, Jandova Z, Koukos PI, van Noort C, Teixeira JMC, van Keulen SC, Réau M, Honorato RV, Bonvin AMJJ. Integrative Modeling in the Age of Machine Learning: A Summary of HADDOCK Strategies in CAPRI Rounds 47-55. Proteins 2024. [PMID: 39739354 DOI: 10.1002/prot.26789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The HADDOCK team participated in CAPRI rounds 47-55 as server, manual predictor, and scorers. Throughout these CAPRI rounds, we used a plethora of computational strategies to predict the structure of protein complexes. Of the 10 targets comprising 24 interfaces, we achieved acceptable or better models for 3 targets in the human category and 1 in the server category. Our performance in the scoring challenge was slightly better, with our simple scoring protocol being the only one capable of identifying an acceptable model for Target 234. This result highlights the robustness of the simple, fully physics-based HADDOCK scoring function, especially when applied to highly flexible antibody-antigen complexes. Inspired by the significant advances in machine learning for structural biology and the dramatic improvement in our success rates after the public release of Alphafold2, we identify the integration of classical approaches like HADDOCK with AI-driven structure prediction methods as a key strategy for improving the accuracy of model generation and scoring.
Collapse
Affiliation(s)
- Victor Reys
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Marco Giulini
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Vlad Cojocaru
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Anna Engel
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Xiaotong Xu
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- IBMB, Barcelona, Spain
| | - Cunliang Geng
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Novartis, Switzerland
| | - Brian Jiménez-García
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- ZYMVOL, Barcelona, Spain
| | - Zuzana Jandova
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Boehringer Ingelheim, Vienna, Austria
| | - Panagiotis I Koukos
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Charlotte van Noort
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - João M C Teixeira
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- ZYMVOL, Barcelona, Spain
| | - Siri C van Keulen
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Qubit Pharmaceuticals, Paris, France
| | - Manon Réau
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Qubit Pharmaceuticals, Paris, France
| | - Rodrigo V Honorato
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Su Z, Yin S, Wu Y. Rationalize the Functional Roles of Protein-Protein Interactions in Targeted Protein Degradation by Kinetic Monte Carlo Simulations. J Phys Chem B 2024; 128:12092-12100. [PMID: 39610271 DOI: 10.1021/acs.jpcb.4c06497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Targeted protein degradation is a promising therapeutic strategy to tackle disease-causing proteins that lack binding pockets for traditional small-molecule inhibitors. Its first step is to trigger the proximity between a ubiquitin ligase complex and a target protein through a heterobifunctional molecule, such as proteolysis targeting chimeras (PROTACs), leading to the formation of a ternary complex. The properties of protein-protein interactions play an important regulatory role during this process, which can be reflected by binding cooperativity. Unfortunately, although computer-aided drug design has become a cornerstone of modern drug development, the endeavor to model-targeted protein degradation is still in its infancy. The development of computational tools to understand the impacts of protein-protein interactions on targeted protein degradation, therefore, is highly demanded. To reach this goal, we constructed a nonredundant structural benchmark of the most updated ternary complexes and applied a kinetic Monte Carlo method to simulate the association between ligases and PROTAC-targeted proteins in the benchmark. Our results show that proteins in most complexes with positive cooperativity tend to associate into native-like configurations more often. In contrast, proteins very likely failed to associate into native-like configurations in complexes with negative cooperativity. Moreover, we compared protein-protein association through different interfaces generated from molecular docking. The native-like binding interface shows a higher association probability than all the other alternative interfaces only in the complex with positive cooperativity. These observations support the idea that the formation of ternary complexes is closely regulated by the binary interactions between proteins. Finally, we applied our method to cyclin-dependent kinases 4 and 6 (CDK4/6). We found that their interactions with the ligase are not as similar as their structures. Altogether, our study paves the way for understanding the role of protein-protein interactions in the PROTAC-induced ternary complex formation. It can potentially help in searching for degraders that selectively target specific proteins.
Collapse
Affiliation(s)
- Zhaoqian Su
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, Tennessee 37212, United States
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Le HN, de Freitas MV, Antunes DA. Strengths and limitations of web servers for the modeling of TCRpMHC complexes. Comput Struct Biotechnol J 2024; 23:2938-2948. [PMID: 39104710 PMCID: PMC11298609 DOI: 10.1016/j.csbj.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cellular immunity relies on the ability of a T-cell receptor (TCR) to recognize a peptide (p) presented by a class I major histocompatibility complex (MHC) receptor on the surface of a cell. The TCR-peptide-MHC (TCRpMHC) interaction is a crucial step in activating T-cells, and the structural characteristics of these molecules play a significant role in determining the specificity and affinity of this interaction. Hence, obtaining 3D structures of TCRpMHC complexes offers valuable insights into various aspects of cellular immunity and can facilitate the development of T-cell-based immunotherapies. Here, we aimed to compare three popular web servers for modeling the structures of TCRpMHC complexes, namely ImmuneScape (IS), TCRpMHCmodels, and TCRmodel2, to examine their strengths and limitations. Each method employs a different modeling strategy, including docking, homology modeling, and deep learning. The accuracy of each method was evaluated by reproducing the 3D structures of a dataset of 87 TCRpMHC complexes with experimentally determined crystal structures available on the Protein Data Bank (PDB). All selected structures were limited to human MHC alleles, presenting a diverse set of peptide ligands. A detailed analysis of produced models was conducted using multiple metrics, including Root Mean Square Deviation (RMSD) and standardized assessments from CAPRI and DockQ. Special attention was given to the complementarity-determining region (CDR) loops of the TCRs and to the peptide ligands, which define most of the unique features and specificity of a given TCRpMHC interaction. Our study provides an optimistic view of the current state-of-the-art for TCRpMHC modeling but highlights some remaining challenges that must be addressed in order to support the future application of these tools for TCR engineering and computer-aided design of TCR-based immunotherapies.
Collapse
Affiliation(s)
- Hoa Nhu Le
- University of Houston, Departments of Biology and Biochemistry, Houston, 77204, TX, USA
| | | | - Dinler Amaral Antunes
- University of Houston, Departments of Biology and Biochemistry, Houston, 77204, TX, USA
| |
Collapse
|
7
|
Liang F, Sun M, Xie L, Zhao X, Liu D, Zhao K, Zhang G. Recent advances and challenges in protein complex model accuracy estimation. Comput Struct Biotechnol J 2024; 23:1824-1832. [PMID: 38707538 PMCID: PMC11066466 DOI: 10.1016/j.csbj.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Estimation of model accuracy plays a crucial role in protein structure prediction, aiming to evaluate the quality of predicted protein structure models accurately and objectively. This process is not only key to screening candidate models that are close to the real structure, but also provides guidance for further optimization of protein structures. With the significant advancements made by AlphaFold2 in monomer structure, the problem of single-domain protein structure prediction has been widely solved. Correspondingly, the importance of assessing the quality of single-domain protein models decreased, and the research focus has shifted to estimation of model accuracy of protein complexes. In this review, our goal is to provide a comprehensive overview of the reference and statistical metrics, as well as representative methods, and the current challenges within four distinct facets (Topology Global Score, Interface Total Score, Interface Residue-Wise Score, and Tertiary Residue-Wise Score) in the field of complex EMA.
Collapse
Affiliation(s)
| | | | - Lei Xie
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xuanfeng Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dong Liu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
8
|
Zeng C, Zhuo C, Gao J, Liu H, Zhao Y. Advances and Challenges in Scoring Functions for RNA-Protein Complex Structure Prediction. Biomolecules 2024; 14:1245. [PMID: 39456178 PMCID: PMC11506084 DOI: 10.3390/biom14101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-protein complexes play a crucial role in cellular functions, providing insights into cellular mechanisms and potential therapeutic targets. However, experimental determination of these complex structures is often time-consuming and resource-intensive, and it rarely yields high-resolution data. Many computational approaches have been developed to predict RNA-protein complex structures in recent years. Despite these advances, achieving accurate and high-resolution predictions remains a formidable challenge, primarily due to the limitations inherent in current RNA-protein scoring functions. These scoring functions are critical tools for evaluating and interpreting RNA-protein interactions. This review comprehensively explores the latest advancements in scoring functions for RNA-protein docking, delving into the fundamental principles underlying various approaches, including coarse-grained knowledge-based, all-atom knowledge-based, and machine-learning-based methods. We critically evaluate the strengths and limitations of existing scoring functions, providing a detailed performance assessment. Considering the significant progress demonstrated by machine learning techniques, we discuss emerging trends and propose future research directions to enhance the accuracy and efficiency of scoring functions in RNA-protein complex prediction. We aim to inspire the development of more sophisticated and reliable computational tools in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | | | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China; (C.Z.); (C.Z.); (J.G.); (H.L.)
| |
Collapse
|
9
|
Giulini M, Schneider C, Cutting D, Desai N, Deane CM, Bonvin AMJJ. Towards the accurate modelling of antibody-antigen complexes from sequence using machine learning and information-driven docking. Bioinformatics 2024; 40:btae583. [PMID: 39348157 PMCID: PMC11483107 DOI: 10.1093/bioinformatics/btae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/31/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
MOTIVATION Antibody-antigen complex modelling is an important step in computational workflows for therapeutic antibody design. While experimentally determined structures of both antibody and the cognate antigen are often not available, recent advances in machine learning-driven protein modelling have enabled accurate prediction of both antibody and antigen structures. Here, we analyse the ability of protein-protein docking tools to use machine learning generated input structures for information-driven docking. RESULTS In an information-driven scenario, we find that HADDOCK can generate accurate models of antibody-antigen complexes using an ensemble of antibody structures generated by machine learning tools and AlphaFold2 predicted antigen structures. Targeted docking using knowledge of the complementary determining regions on the antibody and some information about the targeted epitope allows the generation of high-quality models of the complex with reduced sampling, resulting in a computationally cheap protocol that outperforms the ZDOCK baseline. AVAILABILITY AND IMPLEMENTATION The source code of HADDOCK3 is freely available at github.com/haddocking/haddock3. The code to generate and analyse the data is available at github.com/haddocking/ai-antibodies. The full runs, including docking models from all modules of a workflow have been deposited in our lab collection (data.sbgrid.org/labs/32/1139) at the SBGRID data repository.
Collapse
Affiliation(s)
- Marco Giulini
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Utrecht CH 3584, The Netherlands
| | | | | | | | | | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Utrecht CH 3584, The Netherlands
| |
Collapse
|
10
|
Su Z, Yin S, Wu Y. Rationalize the Functional Roles of Protein-Protein Interactions in Targeted Protein Degradation by Kinetic Monte-Carlo Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615190. [PMID: 39386564 PMCID: PMC11463391 DOI: 10.1101/2024.09.26.615190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Targeted protein degradation is a promising therapeutic strategy to tackle disease-causing proteins that lack binding pockets for traditional small-molecule inhibitors. Its first step is to trigger the proximity between a ubiquitin ligase complex and a target protein through a heterobifunctional molecule, such as proteolysis targeting chimeras (PROTACs), leading to the formation of a ternary complex. The properties of protein-protein interactions play an important regulatory role during this process, which can be reflected by binding cooperativity. Unfortunately, although computer-aided drug design has become a cornerstone of modern drug development, the endeavor to model targeted protein degradation is still in its infancy. The development of computational tools to understand the impacts of protein-protein interactions on targeted protein degradation, therefore, is highly demanded. To reach this goal, we constructed a non-redundant structural benchmark of the most updated ternary complexes and applied a kinetic Monte-Carlo method to simulate the association between ligases and PROTAC-targeted proteins in the benchmark. Our results show that proteins in most complexes with positive cooperativity tend to associate into native-like configurations more often. In contrast, proteins very likely failed to associate into native-like configurations in complexes with negative cooperativity. Moreover, we compared the protein-protein association through different interfaces generated from molecular docking. The native-like binding interface shows a higher association probability than all the other alternative interfaces only in the complex with positive cooperativity. These observations support the idea that the formation of ternary complexes is closely regulated by the binary interactions between proteins. Finally, we applied our method to cyclin-dependent kinases 4 and 6 (CDK4/6). We found that their interactions with the ligase are not as similar as their structures. Altogether, our study paves the way for understanding the role of protein-protein interactions in PROTACE-induced ternary complex formation. It can potentially help in searching for degraders that selectively target specific proteins.
Collapse
Affiliation(s)
- Zhaoqian Su
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461
| |
Collapse
|
11
|
Benavides TL, Montelione GT. Integrative Modeling of Protein-Polypeptide Complexes by Bayesian Model Selection using AlphaFold and NMR Chemical Shift Perturbation Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613999. [PMID: 39345459 PMCID: PMC11430059 DOI: 10.1101/2024.09.19.613999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Protein-polypeptide interactions, including those involving intrinsically-disordered peptides and intrinsically-disordered regions of protein binding partners, are crucial for many biological functions. However, experimental structure determination of protein-peptide complexes can be challenging. Computational methods, while promising, generally require experimental data for validation and refinement. Here we present CSP_Rank, an integrated modeling approach to determine the structures of protein-peptide complexes. This method combines AlphaFold2 (AF2) enhanced sampling methods with a Bayesian conformational selection process based on experimental Nuclear Magnetic Resonance (NMR) Chemical Shift Perturbation (CSP) data and AF2 confidence metrics. Using a curated dataset of 108 protein-peptide complexes from the Biological Magnetic Resonance Data Bank (BMRB), we observe that while AF2 typically yields models with excellent consistency with experimental CSP data, applying enhanced sampling followed by data-guided conformational selection routinely results in ensembles of structures with improved agreement with NMR observables. For two systems, we cross-validate the CSP-selected models using independently acquired nuclear Overhauser effect (NOE) NMR data and demonstrate how CSP and NMR can be combined using our Bayesian framework for model selection. CSP_Rank is a novel method for integrative modeling of protein-peptide complexes and has broad implications for studies of protein-peptide interactions and aiding in understanding their biological functions.
Collapse
Affiliation(s)
- Tiburon L. Benavides
- Department of Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
12
|
Collins KW, Copeland MM, Brysbaert G, Wodak SJ, Bonvin AMJJ, Kundrotas PJ, Vakser IA, Lensink MF. CAPRI-Q: The CAPRI resource evaluating the quality of predicted structures of protein complexes. J Mol Biol 2024; 436:168540. [PMID: 39237205 PMCID: PMC11458157 DOI: 10.1016/j.jmb.2024.168540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 09/07/2024]
Abstract
Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the Dockground database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and l-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q and its web interface through the Dockground resource at https://dockground.compbio.ku.edu/assessment/.
Collapse
Affiliation(s)
- Keeley W Collins
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Matthew M Copeland
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Guillaume Brysbaert
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | | | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, The Netherlands
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA.
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA; Department of Molecular Biology, The University of Kansas, Lawrence, KS 66045, USA.
| | - Marc F Lensink
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France.
| |
Collapse
|
13
|
Wang J, Koirala K, Do HN, Miao Y. PepBinding: A Workflow for Predicting Peptide Binding Structures by Combining Peptide Docking and Peptide Gaussian Accelerated Molecular Dynamics Simulations. J Phys Chem B 2024; 128:7332-7340. [PMID: 39041172 DOI: 10.1021/acs.jpcb.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Predicting protein-peptide interactions is crucial for understanding peptide binding processes and designing peptide drugs. However, traditional computational modeling approaches face challenges in accurately predicting peptide-protein binding structures due to the slow dynamics and high flexibility of the peptides. Here, we introduce a new workflow termed "PepBinding" for predicting peptide binding structures, which combines peptide docking, all-atom enhanced sampling simulations using the Peptide Gaussian accelerated Molecular Dynamics (Pep-GaMD) method, and structural clustering. PepBinding has been demonstrated on seven distinct model peptides. In peptide docking using HPEPDOCK, the peptide backbone root-mean-square deviations (RMSDs) of their bound conformations relative to X-ray structures ranged from 3.8 to 16.0 Å, corresponding to the medium to inaccurate quality models according to the Critical Assessment of PRediction of Interactions (CAPRI) criteria. The Pep-GaMD simulations performed for only 200 ns significantly improved the docking models, resulting in five medium and two acceptable quality models. Therefore, PepBinding is an efficient workflow for predicting peptide binding structures and is publicly available at https://github.com/MiaoLab20/PepBinding.
Collapse
Affiliation(s)
- Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kushal Koirala
- Computational Medicine Program and Department of Pharmacology, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hung N Do
- Computational Biology Program, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Zhou Y, Myung Y, Rodrigues CM, Ascher D. DDMut-PPI: predicting effects of mutations on protein-protein interactions using graph-based deep learning. Nucleic Acids Res 2024; 52:W207-W214. [PMID: 38783112 PMCID: PMC11223791 DOI: 10.1093/nar/gkae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Protein-protein interactions (PPIs) play a vital role in cellular functions and are essential for therapeutic development and understanding diseases. However, current predictive tools often struggle to balance efficiency and precision in predicting the effects of mutations on these complex interactions. To address this, we present DDMut-PPI, a deep learning model that efficiently and accurately predicts changes in PPI binding free energy upon single and multiple point mutations. Building on the robust Siamese network architecture with graph-based signatures from our prior work, DDMut, the DDMut-PPI model was enhanced with a graph convolutional network operated on the protein interaction interface. We used residue-specific embeddings from ProtT5 protein language model as node features, and a variety of molecular interactions as edge features. By integrating evolutionary context with spatial information, this framework enables DDMut-PPI to achieve a robust Pearson correlation of up to 0.75 (root mean squared error: 1.33 kcal/mol) in our evaluations, outperforming most existing methods. Importantly, the model demonstrated consistent performance across mutations that increase or decrease binding affinity. DDMut-PPI offers a significant advancement in the field and will serve as a valuable tool for researchers probing the complexities of protein interactions. DDMut-PPI is freely available as a web server and an application programming interface at https://biosig.lab.uq.edu.au/ddmut_ppi.
Collapse
Affiliation(s)
- Yunzhuo Zhou
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - YooChan Myung
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Carlos H M Rodrigues
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - David B Ascher
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
15
|
Zhao N, Wu T, Wang W, Zhang L, Gong X. Review and Comparative Analysis of Methods and Advancements in Predicting Protein Complex Structure. Interdiscip Sci 2024; 16:261-288. [PMID: 38955920 DOI: 10.1007/s12539-024-00626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 07/04/2024]
Abstract
Protein complexes perform diverse biological functions, and obtaining their three-dimensional structure is critical to understanding and grasping their functions. In many cases, it's not just two proteins interacting to form a dimer; instead, multiple proteins interact to form a multimer. Experimentally resolving protein complex structures can be quite challenging. Recently, there have been efforts and methods that build upon prior predictions of dimer structures to attempt to predict multimer structures. However, in comparison to monomeric protein structure prediction, the accuracy of protein complex structure prediction remains relatively low. This paper provides an overview of recent advancements in efficient computational models for predicting protein complex structures. We introduce protein-protein docking methods in detail and summarize their main ideas, applicable modes, and related information. To enhance prediction accuracy, other critical protein-related information is also integrated, such as predicting interchain residue contact, utilizing experimental data like cryo-EM experiments, and considering protein interactions and non-interactions. In addition, we comprehensively review computational approaches for end-to-end prediction of protein complex structures based on artificial intelligence (AI) technology and describe commonly used datasets and representative evaluation metrics in protein complexes. Finally, we analyze the formidable challenges faced in current protein complex structure prediction tasks, including the structure prediction of heteromeric complex, disordered regions in complex, antibody-antigen complex, and RNA-related complex, as well as the evaluation metrics for complex assessment. We hope that this work will provide comprehensive knowledge of complex structure predictions to contribute to future advanced predictions.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Tong Wu
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Wenda Wang
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Lunchuan Zhang
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
| | - Xinqi Gong
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China.
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
- Beijing Academy of Artificial Intelligence, Beijing, 100084, China.
| |
Collapse
|
16
|
Zhao H, Petrey D, Murray D, Honig B. ZEPPI: Proteome-scale sequence-based evaluation of protein-protein interaction models. Proc Natl Acad Sci U S A 2024; 121:e2400260121. [PMID: 38743624 PMCID: PMC11127014 DOI: 10.1073/pnas.2400260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to evaluate structural models of a complex based on sequence coevolution and conservation involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing metrics for an interface to those obtained from randomly chosen residues. Since contacting residues are defined by the structural model, this obviates the need to account for indirect interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI can be implemented on a proteome-wide scale and is applied here to millions of structural models of dimeric complexes in the Escherichia coli and human interactomes found in the PrePPI database. PrePPI's scoring function is based primarily on the evaluation of protein-protein interfaces, and ZEPPI adds a new feature to this analysis through the incorporation of evolutionary information. ZEPPI performance is evaluated through applications to experimentally determined complexes and to decoys from the CASP-CAPRI experiment. As we discuss, the standard CAPRI scores used to evaluate docking models are based on model quality and not on the ability to give yes/no answers as to whether two proteins interact. ZEPPI is able to detect weak signals from PPI models that the CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low confidence by the current PrePPI scoring function. A number of examples that illustrate how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.
Collapse
Affiliation(s)
- Haiqing Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Donald Petrey
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Diana Murray
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Barry Honig
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY10032
- Department of Medicine, Columbia University, New York, NY10032
- Zuckerman Institute, Columbia University, New York, NY10027
| |
Collapse
|
17
|
Ovek D, Keskin O, Gursoy A. ProInterVal: Validation of Protein-Protein Interfaces through Learned Interface Representations. J Chem Inf Model 2024; 64:2979-2987. [PMID: 38526504 PMCID: PMC11040718 DOI: 10.1021/acs.jcim.3c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
Proteins are vital components of the biological world and serve a multitude of functions. They interact with other molecules through their interfaces and participate in crucial cellular processes. Disruption of these interactions can have negative effects on organisms, highlighting the importance of studying protein-protein interfaces for developing targeted therapies for diseases. Therefore, the development of a reliable method for investigating protein-protein interactions is of paramount importance. In this work, we present an approach for validating protein-protein interfaces using learned interface representations. The approach involves using a graph-based contrastive autoencoder architecture and a transformer to learn representations of protein-protein interaction interfaces from unlabeled data and then validating them through learned representations with a graph neural network. Our method achieves an accuracy of 0.91 for the test set, outperforming existing GNN-based methods. We demonstrate the effectiveness of our approach on a benchmark data set and show that it provides a promising solution for validating protein-protein interfaces.
Collapse
Affiliation(s)
- Damla Ovek
- KUIS
AI Center, Koç University, Istanbul 34450, Turkey
- Computer
Engineering, Koç University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Chemical
and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Attila Gursoy
- Computer
Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
18
|
Go YJ, Kalathingal M, Rhee YM. An Ensemble Docking Approach for Analyzing and Designing Aptamer Heterodimers Targeting VEGF 165. Int J Mol Sci 2024; 25:4066. [PMID: 38612876 PMCID: PMC11012306 DOI: 10.3390/ijms25074066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Vascular endothelial growth factor 165 (VEGF165) is a prominent isoform of the VEGF-A protein that plays a crucial role in various angiogenesis-related diseases. It is homodimeric, and each of its monomers is composed of two domains connected by a flexible linker. DNA aptamers, which have emerged as potent therapeutic molecules for many proteins with high specificity and affinity, can also work for VEGF165. A DNA aptamer heterodimer composed of monomers of V7t1 and del5-1 connected by a flexible linker (V7t1:del5-1) exhibits a greater binding affinity with VEGF165 compared to either of the two monomers alone. Although the structure of the complex formed between the aptamer heterodimer and VEGF165 is unknown due to the highly flexible linkers, gaining structural information will still be valuable for future developments. Toward this end of accessing structural information, we adopt an ensemble docking approach here. We first obtain an ensemble of structures for both VEGF165 and the aptamer heterodimer by considering both small- and large-scale motions. We then proceed through an extraction process based on ensemble docking, molecular dynamics simulations, and binding free energy calculations to predict the structures of the VEGF165/V7t1:del5-1 complex. Through the same procedures, we reach a new aptamer heterodimer that bears a locked nucleic acid-modified counterpart of V7t1, namely RNV66:del5-1, which also binds well with VEGF165. We apply the same protocol to the monomeric units V7t1, RNV66, and del5-1 to target VEGF165. We observe that V7t1:del5-1 and RNV66:del5-1 show higher binding affinities with VEGF165 than any of the monomers, consistent with experiments that support the notion that aptamer heterodimers are more effective anti-VEGF165 aptamers than monomeric aptamers. Among the five different aptamers studied here, the newly designed RNV66:del5-1 shows the highest binding affinity with VEGF165. We expect that our ensemble docking approach can help in de novo designs of homo/heterodimeric anti-angiogenic drugs to target the homodimeric VEGF165.
Collapse
Affiliation(s)
- Yeon Ju Go
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea;
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mahroof Kalathingal
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea;
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea;
| |
Collapse
|
19
|
Lin P, Li H, Huang SY. Deep learning in modeling protein complex structures: From contact prediction to end-to-end approaches. Curr Opin Struct Biol 2024; 85:102789. [PMID: 38402744 DOI: 10.1016/j.sbi.2024.102789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Protein-protein interactions play crucial roles in many biological processes. Traditionally, protein complex structures are normally built by protein-protein docking. With the rapid development of artificial intelligence and its great success in monomer protein structure prediction, deep learning has widely been applied to modeling protein-protein complex structures through inter-protein contact prediction and end-to-end approaches in the past few years. This article reviews the recent advances of deep-learning-based approaches in modeling protein-protein complex structures as well as their advantages and limitations. Challenges and possible future directions are also briefly discussed in applying deep learning for the prediction of protein complex structures.
Collapse
Affiliation(s)
- Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
20
|
Jones SJ, Perez A. Molecular Modeling of Self-Assembling Peptides. ACS APPLIED BIO MATERIALS 2024; 7:543-552. [PMID: 36795608 DOI: 10.1021/acsabm.2c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Peptide epitopes mediate as many as 40% of protein-protein interactions and fulfill signaling, inhibition, and activation roles within the cell. Beyond protein recognition, some peptides can self- or coassemble into stable hydrogels, making them a readily available source of biomaterials. While these 3D assemblies are routinely characterized at the fiber level, there are missing atomistic details about the assembly scaffold. Such atomistic detail can be useful in the rational design of more stable scaffold structures and with improved accessibility to functional motifs. Computational approaches can in principle reduce the experimental cost of such an endeavor by predicting the assembly scaffold and identifying novel sequences that adopt said structure. Yet, inaccuracies in physical models and inefficient sampling have limited atomistic studies to short (two or three amino acid) peptides. Given recent developments in machine learning and advances in sampling strategies, we revisit the suitability of physical models for this task. We use the MELD (Modeling Employing Limited Data) approach to drive self-assembly in combination with generic data in cases where conventional MD is unsuccessful. Finally, despite recent developments in machine learning algorithms for protein structure and sequence predictions, we find the algorithms are not yet suited for studying the assembly of short peptides.
Collapse
Affiliation(s)
- Stephen J Jones
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
21
|
McCoy KM, Ackerman ME, Grigoryan G. A significance score for protein-protein interaction models through random docking. Protein Sci 2024; 33:e4853. [PMID: 38078680 PMCID: PMC10806930 DOI: 10.1002/pro.4853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024]
Abstract
Comparing accuracies of structural protein-protein interaction (PPI) models for different complexes on an absolute scale is a challenge, requiring normalization of scores across structures of different sizes and shapes. To help address this challenge, we have developed a statistical significance metric for docking models, called random-docking (RD) p-value. This score evaluates a PPI model based on how likely a random docking process is to produce a model of better or equal accuracy. The binding partners are randomly docked against each other a large number of times, and the probability of sampling a model of equal or greater accuracy from this reference distribution is the RD p-value. Using a subset of top predicted models from CAPRI (Critical Assessment of PRediction of Interactions) rounds over 2017-2020, we find that the ease of achieving a given root mean squared deviation or DOCKQ score varies considerably by target; achieving the same relative metric can be thousands of times easier for one complex compared to another. In contrast, RD p-values inherently normalize scores for models of different complexes, making them globally comparable. Furthermore, one can calculate RD p-values after generating a reference distribution that accounts for prior information about the interface geometry, such as residues involved in binding, by giving the random-docking process access the same information. Thus, one can decouple improvements in prediction accuracy that arise solely from basic modeling constraints from those due to the rest of the method. We provide efficient code for computing RD p-values at https://github.com/Grigoryanlab/RDP.
Collapse
Affiliation(s)
| | - Margaret E. Ackerman
- Department of Biological SciencesDartmouth CollegeHanoverNew HampshireUSA
- Thayer School of EngineeringDartmouth CollegeHanoverNew HampshireUSA
| | - Gevorg Grigoryan
- Department of Biological SciencesDartmouth CollegeHanoverNew HampshireUSA
- Department of Computer ScienceDartmouth CollegeHanoverNew HampshireUSA
| |
Collapse
|
22
|
Chu L, Ruffolo JA, Harmalkar A, Gray JJ. Flexible protein-protein docking with a multitrack iterative transformer. Protein Sci 2024; 33:e4862. [PMID: 38148272 PMCID: PMC10804679 DOI: 10.1002/pro.4862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Conventional protein-protein docking algorithms usually rely on heavy candidate sampling and reranking, but these steps are time-consuming and hinder applications that require high-throughput complex structure prediction, for example, structure-based virtual screening. Existing deep learning methods for protein-protein docking, despite being much faster, suffer from low docking success rates. In addition, they simplify the problem to assume no conformational changes within any protein upon binding (rigid docking). This assumption precludes applications when binding-induced conformational changes play a role, such as allosteric inhibition or docking from uncertain unbound model structures. To address these limitations, we present GeoDock, a multitrack iterative transformer network to predict a docked structure from separate docking partners. Unlike deep learning models for protein structure prediction that input multiple sequence alignments, GeoDock inputs just the sequences and structures of the docking partners, which suits the tasks when the individual structures are given. GeoDock is flexible at the protein residue level, allowing the prediction of conformational changes upon binding. On the Database of Interacting Protein Structures (DIPS) test set, GeoDock achieves a 43% top-1 success rate, outperforming all other tested methods. However, in the standard DIPS train/test splits, we discovered contamination of close homologs in the training set. After decontaminating the training set, the success rate is 31%. On the DB5.5 test set and a benchmark dataset of antibody-antigen complexes, GeoDock outperforms the deep learning models trained using the same dataset but falls behind most of the conventional methods and AlphaFold-Multimer. GeoDock attains an average inference speed of under 1 s on a single GPU, enabling its application in large-scale structure screening. Although binding-induced conformational changes are still a challenge owing to limited training and evaluation data, our architecture sets up the foundation to capture this backbone flexibility. Code and a demonstration Jupyter notebook are available at https://github.com/Graylab/GeoDock.
Collapse
Affiliation(s)
- Lee‐Shin Chu
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jeffrey A. Ruffolo
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ameya Harmalkar
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
23
|
Chica RA, Ferruz N. What does it take for an 'AlphaFold Moment' in functional protein engineering and design? Nat Biotechnol 2024; 42:173-174. [PMID: 38361055 DOI: 10.1038/s41587-023-02120-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Affiliation(s)
- Roberto A Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada.
| | - Noelia Ferruz
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, Barcelona, Spain.
| |
Collapse
|
24
|
Peng CX, Liang F, Xia YH, Zhao KL, Hou MH, Zhang GJ. Recent Advances and Challenges in Protein Structure Prediction. J Chem Inf Model 2024; 64:76-95. [PMID: 38109487 DOI: 10.1021/acs.jcim.3c01324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Artificial intelligence has made significant advances in the field of protein structure prediction in recent years. In particular, DeepMind's end-to-end model, AlphaFold2, has demonstrated the capability to predict three-dimensional structures of numerous unknown proteins with accuracy levels comparable to those of experimental methods. This breakthrough has opened up new possibilities for understanding protein structure and function as well as accelerating drug discovery and other applications in the field of biology and medicine. Despite the remarkable achievements of artificial intelligence in the field, there are still some challenges and limitations. In this Review, we discuss the recent progress and some of the challenges in protein structure prediction. These challenges include predicting multidomain protein structures, protein complex structures, multiple conformational states of proteins, and protein folding pathways. Furthermore, we highlight directions in which further improvements can be conducted.
Collapse
Affiliation(s)
- Chun-Xiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Fang Liang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yu-Hao Xia
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kai-Long Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ming-Hua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
25
|
Jarończyk M, Abagyan R, Totrov M. Software and Databases for Protein-Protein Docking. Methods Mol Biol 2024; 2780:129-138. [PMID: 38987467 DOI: 10.1007/978-1-0716-3985-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Protein-protein interactions (PPIs) provide valuable insights for understanding the principles of biological systems and for elucidating causes of incurable diseases. One of the techniques used for computational prediction of PPIs is protein-protein docking calculations, and a variety of software has been developed. This chapter is a summary of software and databases used for protein-protein docking.
Collapse
Affiliation(s)
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
26
|
Kiani YS, Jabeen I. Challenges of Protein-Protein Docking of the Membrane Proteins. Methods Mol Biol 2024; 2780:203-255. [PMID: 38987471 DOI: 10.1007/978-1-0716-3985-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Despite the recent advances in the determination of high-resolution membrane protein (MP) structures, the structural and functional characterization of MPs remains extremely challenging, mainly due to the hydrophobic nature, low abundance, poor expression, purification, and crystallization difficulties associated with MPs. Whereby the major challenges/hurdles for MP structure determination are associated with the expression, purification, and crystallization procedures. Although there have been significant advances in the experimental determination of MP structures, only a limited number of MP structures (approximately less than 1% of all) are available in the Protein Data Bank (PDB). Therefore, the structures of a large number of MPs still remain unresolved, which leads to the availability of widely unplumbed structural and functional information related to MPs. As a result, recent developments in the drug discovery realm and the significant biological contemplation have led to the development of several novel, low-cost, and time-efficient computational methods that overcome the limitations of experimental approaches, supplement experiments, and provide alternatives for the characterization of MPs. Whereby the fine tuning and optimizations of these computational approaches remains an ongoing endeavor.Computational methods offer a potential way for the elucidation of structural features and the augmentation of currently available MP information. However, the use of computational modeling can be extremely challenging for MPs mainly due to insufficient knowledge of (or gaps in) atomic structures of MPs. Despite the availability of numerous in silico methods for 3D structure determination the applicability of these methods to MPs remains relatively low since all methods are not well-suited or adequate for MPs. However, sophisticated methods for MP structure predictions are constantly being developed and updated to integrate the modifications required for MPs. Currently, different computational methods for (1) MP structure prediction, (2) stability analysis of MPs through molecular dynamics simulations, (3) modeling of MP complexes through docking, (4) prediction of interactions between MPs, and (5) MP interactions with its soluble partner are extensively used. Towards this end, MP docking is widely used. It is notable that the MP docking methods yet few in number might show greater potential in terms of filling the knowledge gap. In this chapter, MP docking methods and associated challenges have been reviewed to improve the applicability, accuracy, and the ability to model macromolecular complexes.
Collapse
Affiliation(s)
- Yusra Sajid Kiani
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
27
|
Sonawani A, Naglekar A, Kharche S, Sengupta D. Assessing Protein-Protein Docking Protocols: Case Studies of G-Protein-Coupled Receptor Interactions. Methods Mol Biol 2024; 2780:257-280. [PMID: 38987472 DOI: 10.1007/978-1-0716-3985-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The interactions of G-protein-coupled receptors (GPCRs) with other proteins are critical in several cellular processes but resolving their structural dynamics remains challenging. An increasing number of GPCR complexes have been experimentally resolved but others including receptor variants are yet to be characterized, necessitating computational predictions of their interactions. Although integrative approaches with multi-scale simulations would provide rigorous estimates of their conformational dynamics, protein-protein docking remains a first tool of choice of many researchers due to the availability of open-source programs and easy to use web servers with reasonable predictive power. Protein-protein docking algorithms have limited ability to consider protein flexibility, environment effects, and entropy contributions and are usually a first step towards more integrative approaches. The two critical steps of docking: the sampling and scoring algorithms have improved considerably and their performance has been validated against experimental data. In this chapter, we provide an overview and generalized protocol of a few docking protocols using GPCRs as test cases. In particular, we demonstrate the interactions of GPCRs with extracellular protein ligands and an intracellular protein effectors (G-protein) predicted from docking approaches and test their limitations. The current chapter will help researchers critically assess docking protocols and predict experimentally testable structures of GPCR complexes.
Collapse
Affiliation(s)
- Archana Sonawani
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, India
| | - Amit Naglekar
- CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Durba Sengupta
- CSIR-National Chemical Laboratory, Pune, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
28
|
Zeng C, Jian Y, Zhuo C, Li A, Zeng C, Zhao Y. Evaluation of DNA-protein complex structures using the deep learning method. Phys Chem Chem Phys 2023; 26:130-143. [PMID: 38063012 DOI: 10.1039/d3cp04980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Biological processes such as transcription, repair, and regulation require interactions between DNA and proteins. To unravel their functions, it is imperative to determine the high-resolution structures of DNA-protein complexes. However, experimental methods for this purpose are costly and technically demanding. Consequently, there is an urgent need for computational techniques to identify the structures of DNA-protein complexes. Despite technological advancements, accurately identifying DNA-protein complexes through computational methods still poses a challenge. Our team has developed a cutting-edge deep-learning approach called DDPScore that assesses DNA-protein complex structures. DDPScore utilizes a 4D convolutional neural network to overcome limited training data. This approach effectively captures local and global features while comprehensively considering the conformational changes arising from the flexibility during the DNA-protein docking process. DDPScore consistently outperformed the available methods in comprehensive DNA-protein complex docking evaluations, even for the flexible docking challenges. DDPScore has a wide range of applications in predicting and designing structures of DNA-protein complexes.
Collapse
Affiliation(s)
- Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China.
| | - Yiren Jian
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China.
| | - Anbang Li
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China.
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
29
|
Choi S, Son SH, Kim MY, Na I, Uversky VN, Kim CG. Improved prediction of protein-protein interactions by a modified strategy using three conventional docking software in combination. Int J Biol Macromol 2023; 252:126526. [PMID: 37633550 DOI: 10.1016/j.ijbiomac.2023.126526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Proteins play a crucial role in many biological processes, where their interaction with other proteins are integral. Abnormal protein-protein interactions (PPIs) have been linked to various diseases including cancer, and thus targeting PPIs holds promise for drug development. However, experimental confirmation of the peculiarities of PPIs is challenging due to their dynamic and transient nature. As a complement to experimental technologies, multiple computational molecular docking (MD) methods have been developed to predict the structures of protein-protein complexes and their dynamics, still requiring further improvements in several issues. Here, we report an improved MD method, namely three-software docking (3SD), by employing three popular protein-peptide docking software (CABS-dock, HPEPDOCK, and HADDOCK) in combination to ensure constant quality for most targets. We validated our 3SD performance in known protein-peptide interactions (PpIs). We also enhanced MD performance in proteins having intrinsically disordered regions (IDRs) by applying the modified 3SD strategy, the three-software docking after removing random coiled IDR (3SD-RR), to the comparable crystal PpI structures. At the end, we applied 3SD-RR to the AlphaFold2-predicted receptors, yielding an efficient prediction of PpI pose with high relevance to the experimental data regardless of the presence of IDRs or the availability of receptor structures. Our study provides an improved solution to the challenges in studying PPIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery. SIGNIFICANCE STATEMENT: Protein-protein interactions (PPIs) are integral to life, and abnormal PPIs are associated with diseases such as cancer. Studying protein-peptide interactions (PpIs) is challenging due to their dynamic and transient nature. Here we developed improved docking methods (3SD and 3SD-RR) to predict the PpI poses, ensuring constant quality in most targets and also addressing issues like intrinsically disordered regions (IDRs) and artificial intelligence-predicted structures. Our study provides an improved solution to the challenges in studying PpIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery.
Collapse
Affiliation(s)
- Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Insung Na
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida; Tampa, FL 33612, USA.
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; CGK Biopharma Co. Ltd., 222 Wangshipri-ro, Sungdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
30
|
Ozden B, Kryshtafovych A, Karaca E. The impact of AI-based modeling on the accuracy of protein assembly prediction: Insights from CASP15. Proteins 2023; 91:1636-1657. [PMID: 37861057 PMCID: PMC10873090 DOI: 10.1002/prot.26598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
In CASP15, 87 predictors submitted around 11 000 models on 41 assembly targets. The community demonstrated exceptional performance in overall fold and interface contact predictions, achieving an impressive success rate of 90% (compared to 31% in CASP14). This remarkable accomplishment is largely due to the incorporation of DeepMind's AF2-Multimer approach into custom-built prediction pipelines. To evaluate the added value of participating methods, we compared the community models to the baseline AF2-Multimer predictor. In over 1/3 of cases, the community models were superior to the baseline predictor. The main reasons for this improved performance were the use of custom-built multiple sequence alignments, optimized AF2-Multimer sampling, and the manual assembly of AF2-Multimer-built subcomplexes. The best three groups, in order, are Zheng, Venclovas, and Wallner. Zheng and Venclovas reached a 73.2% success rate over all (41) cases, while Wallner attained 69.4% success rate over 36 cases. Nonetheless, challenges remain in predicting structures with weak evolutionary signals, such as nanobody-antigen, antibody-antigen, and viral complexes. Expectedly, modeling large complexes also remains challenging due to their high memory compute demands. In addition to the assembly category, we assessed the accuracy of modeling interdomain interfaces in the tertiary structure prediction targets. Models on seven targets featuring 17 unique interfaces were analyzed. Best predictors achieved a 76.5% success rate, with the UM-TBM group being the leader. In the interdomain category, we observed that the predictors faced challenges, as in the case of the assembly category, when the evolutionary signal for a given domain pair was weak or the structure was large. Overall, CASP15 witnessed unprecedented improvement in interface modeling, reflecting the AI revolution seen in CASP14.
Collapse
Affiliation(s)
- Burcu Ozden
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Andriy Kryshtafovych
- Protein Structure Prediction Center, Genome and Biomedical Sciences Facilities, University of California, Davis, California, USA
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| |
Collapse
|
31
|
Chen J, Gu Z, Lai L, Pei J. In silico protein function prediction: the rise of machine learning-based approaches. MEDICAL REVIEW (2021) 2023; 3:487-510. [PMID: 38282798 PMCID: PMC10808870 DOI: 10.1515/mr-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.
Collapse
Affiliation(s)
- Jiaxiao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhonghui Gu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| |
Collapse
|
32
|
Kouba P, Kohout P, Haddadi F, Bushuiev A, Samusevich R, Sedlar J, Damborsky J, Pluskal T, Sivic J, Mazurenko S. Machine Learning-Guided Protein Engineering. ACS Catal 2023; 13:13863-13895. [PMID: 37942269 PMCID: PMC10629210 DOI: 10.1021/acscatal.3c02743] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Indexed: 11/10/2023]
Abstract
Recent progress in engineering highly promising biocatalysts has increasingly involved machine learning methods. These methods leverage existing experimental and simulation data to aid in the discovery and annotation of promising enzymes, as well as in suggesting beneficial mutations for improving known targets. The field of machine learning for protein engineering is gathering steam, driven by recent success stories and notable progress in other areas. It already encompasses ambitious tasks such as understanding and predicting protein structure and function, catalytic efficiency, enantioselectivity, protein dynamics, stability, solubility, aggregation, and more. Nonetheless, the field is still evolving, with many challenges to overcome and questions to address. In this Perspective, we provide an overview of ongoing trends in this domain, highlight recent case studies, and examine the current limitations of machine learning-based methods. We emphasize the crucial importance of thorough experimental validation of emerging models before their use for rational protein design. We present our opinions on the fundamental problems and outline the potential directions for future research.
Collapse
Affiliation(s)
- Petr Kouba
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
- Faculty of
Electrical Engineering, Czech Technical
University in Prague, Technicka 2, 166 27 Prague 6, Czech Republic
| | - Pavel Kohout
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Faraneh Haddadi
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Anton Bushuiev
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
| | - Raman Samusevich
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jiri Sedlar
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Tomas Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Josef Sivic
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
| | - Stanislav Mazurenko
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
33
|
Larrea-Sebal A, Jebari-Benslaiman S, Galicia-Garcia U, Jose-Urteaga AS, Uribe KB, Benito-Vicente A, Martín C. Predictive Modeling and Structure Analysis of Genetic Variants in Familial Hypercholesterolemia: Implications for Diagnosis and Protein Interaction Studies. Curr Atheroscler Rep 2023; 25:839-859. [PMID: 37847331 PMCID: PMC10618353 DOI: 10.1007/s11883-023-01154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia (FH) is a hereditary condition characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C), which increases the risk of cardiovascular disease if left untreated. This review aims to discuss the role of bioinformatics tools in evaluating the pathogenicity of missense variants associated with FH. Specifically, it highlights the use of predictive models based on protein sequence, structure, evolutionary conservation, and other relevant features in identifying genetic variants within LDLR, APOB, and PCSK9 genes that contribute to FH. RECENT FINDINGS In recent years, various bioinformatics tools have emerged as valuable resources for analyzing missense variants in FH-related genes. Tools such as REVEL, Varity, and CADD use diverse computational approaches to predict the impact of genetic variants on protein function. These tools consider factors such as sequence conservation, structural alterations, and receptor binding to aid in interpreting the pathogenicity of identified missense variants. While these predictive models offer valuable insights, the accuracy of predictions can vary, especially for proteins with unique characteristics that might not be well represented in the databases used for training. This review emphasizes the significance of utilizing bioinformatics tools for assessing the pathogenicity of FH-associated missense variants. Despite their contributions, a definitive diagnosis of a genetic variant necessitates functional validation through in vitro characterization or cascade screening. This step ensures the precise identification of FH-related variants, leading to more accurate diagnoses. Integrating genetic data with reliable bioinformatics predictions and functional validation can enhance our understanding of the genetic basis of FH, enabling improved diagnosis, risk stratification, and personalized treatment for affected individuals. The comprehensive approach outlined in this review promises to advance the management of this inherited disorder, potentially leading to better health outcomes for those affected by FH.
Collapse
Affiliation(s)
- Asier Larrea-Sebal
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
- Fundación Biofisika Bizkaia, 48940, Leioa, Spain
| | - Shifa Jebari-Benslaiman
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - Unai Galicia-Garcia
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - Ane San Jose-Urteaga
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
| | - Kepa B Uribe
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
| | - Asier Benito-Vicente
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - César Martín
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain.
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain.
| |
Collapse
|
34
|
Ozden B, Kryshtafovych A, Karaca E. The Impact of AI-Based Modeling on the Accuracy of Protein Assembly Prediction: Insights from CASP15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548341. [PMID: 37503072 PMCID: PMC10369898 DOI: 10.1101/2023.07.10.548341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In CASP15, 87 predictors submitted around 11,000 models on 41 assembly targets. The community demonstrated exceptional performance in overall fold and interface contact prediction, achieving an impressive success rate of 90% (compared to 31% in CASP14). This remarkable accomplishment is largely due to the incorporation of DeepMind's AF2-Multimer approach into custom-built prediction pipelines. To evaluate the added value of participating methods, we compared the community models to the baseline AF2-Multimer predictor. In over 1/3 of cases the community models were superior to the baseline predictor. The main reasons for this improved performance were the use of custom-built multiple sequence alignments, optimized AF2-Multimer sampling, and the manual assembly of AF2-Multimer-built subcomplexes. The best three groups, in order, are Zheng, Venclovas and Wallner. Zheng and Venclovas reached a 73.2% success rate over all (41) cases, while Wallner attained 69.4% success rate over 36 cases. Nonetheless, challenges remain in predicting structures with weak evolutionary signals, such as nanobody-antigen, antibody-antigen, and viral complexes. Expectedly, modeling large complexes remains also challenging due to their high memory compute demands. In addition to the assembly category, we assessed the accuracy of modeling interdomain interfaces in the tertiary structure prediction targets. Models on seven targets featuring 17 unique interfaces were analyzed. Best predictors achieved the 76.5% success rate, with the UM-TBM group being the leader. In the interdomain category, we observed that the predictors faced challenges, as in the case of the assembly category, when the evolutionary signal for a given domain pair was weak or the structure was large. Overall, CASP15 witnessed unprecedented improvement in interface modeling, reflecting the AI revolution seen in CASP14.
Collapse
Affiliation(s)
- Burcu Ozden
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Andriy Kryshtafovych
- Protein Structure Prediction Center, Genome and Biomedical Sciences Facilities, University of California, Davis, California, USA
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| |
Collapse
|
35
|
Schweke H, Xu Q, Tauriello G, Pantolini L, Schwede T, Cazals F, Lhéritier A, Fernandez-Recio J, Rodríguez-Lumbreras LÁ, Schueler-Furman O, Varga JK, Jiménez-García B, Réau MF, Bonvin A, Savojardo C, Martelli PL, Casadio R, Tubiana J, Wolfson H, Oliva R, Barradas-Bautista D, Ricciardelli T, Cavallo L, Venclovas Č, Olechnovič K, Guerois R, Andreani J, Martin J, Wang X, Kihara D, Marchand A, Correia B, Zou X, Dey S, Dunbrack R, Levy E, Wodak S. Discriminating physiological from non-physiological interfaces in structures of protein complexes: A community-wide study. Proteomics 2023; 23:e2200323. [PMID: 37365936 PMCID: PMC10937251 DOI: 10.1002/pmic.202200323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Julia K. Varga
- Hebrew University of Jerusalem Institute for Medical Research Israel-Canada
| | | | | | | | | | | | | | - Jérôme Tubiana
- Tel Aviv University Blavatnik School of Computer Science
| | - Haim Wolfson
- Tel Aviv University Blavatnik School of Computer Science
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, Institute for Data Science and Informatics, University of Missouri
| | | | | | | | | |
Collapse
|
36
|
Chu LS, Ruffolo JA, Harmalkar A, Gray JJ. Flexible Protein-Protein Docking with a Multi-Track Iterative Transformer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547134. [PMID: 37425754 PMCID: PMC10327054 DOI: 10.1101/2023.06.29.547134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Conventional protein-protein docking algorithms usually rely on heavy candidate sampling and re-ranking, but these steps are time-consuming and hinder applications that require high-throughput complex structure prediction, e.g., structure-based virtual screening. Existing deep learning methods for protein-protein docking, despite being much faster, suffer from low docking success rates. In addition, they simplify the problem to assume no conformational changes within any protein upon binding (rigid docking). This assumption precludes applications when binding-induced conformational changes play a role, such as allosteric inhibition or docking from uncertain unbound model structures. To address these limitations, we present GeoDock, a multi-track iterative transformer network to predict a docked structure from separate docking partners. Unlike deep learning models for protein structure prediction that input multiple sequence alignments (MSAs), GeoDock inputs just the sequences and structures of the docking partners, which suits the tasks when the individual structures are given. GeoDock is flexible at the protein residue level, allowing the prediction of conformational changes upon binding. For a benchmark set of rigid targets, GeoDock obtains a 41% success rate, outperforming all the other tested methods. For a more challenging benchmark set of flexible targets, GeoDock achieves a similar number of top-model successes as the traditional method ClusPro [1], but fewer than ReplicaDock2 [2]. GeoDock attains an average inference speed of under one second on a single GPU, enabling its application in large-scale structure screening. Although binding-induced conformational changes are still a challenge owing to limited training and evaluation data, our architecture sets up the foundation to capture this backbone flexibility. Code and a demonstration Jupyter notebook are available at https://github.com/Graylab/GeoDock.
Collapse
Affiliation(s)
- Lee-Shin Chu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey A Ruffolo
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ameya Harmalkar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
37
|
Zhu W, Shenoy A, Kundrotas P, Elofsson A. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes. Bioinformatics 2023; 39:btad424. [PMID: 37405868 PMCID: PMC10348836 DOI: 10.1093/bioinformatics/btad424] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/25/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
MOTIVATION Despite near-experimental accuracy on single-chain predictions, there is still scope for improvement among multimeric predictions. Methods like AlphaFold-Multimer and FoldDock can accurately model dimers. However, how well these methods fare on larger complexes is still unclear. Further, evaluation methods of the quality of multimeric complexes are not well established. RESULTS We analysed the performance of AlphaFold-Multimer on a homology-reduced dataset of homo- and heteromeric protein complexes. We highlight the differences between the pairwise and multi-interface evaluation of chains within a multimer. We describe why certain complexes perform well on one metric (e.g. TM-score) but poorly on another (e.g. DockQ). We propose a new score, Predicted DockQ version 2 (pDockQ2), to estimate the quality of each interface in a multimer. Finally, we modelled protein complexes (from CORUM) and identified two highly confident structures that do not have sequence homology to any existing structures. AVAILABILITY AND IMPLEMENTATION All scripts, models, and data used to perform the analysis in this study are freely available at https://gitlab.com/ElofssonLab/afm-benchmark.
Collapse
Affiliation(s)
- Wensi Zhu
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Solna 171 21, Sweden
| | - Aditi Shenoy
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Solna 171 21, Sweden
| | - Petras Kundrotas
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Solna 171 21, Sweden
- Center for Computational Biology, The University of Kansas, Lawrence, KS 66047, United States
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Solna 171 21, Sweden
| |
Collapse
|
38
|
Choi J. Narrow funnel-like interaction energy distribution is an indicator of specific protein interaction partner. iScience 2023; 26:106911. [PMID: 37305691 PMCID: PMC10250834 DOI: 10.1016/j.isci.2023.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Protein interaction networks underlie countless biological mechanisms. However, most protein interaction predictions are based on biological evidence that are biased to well-known protein interaction or physical evidence that exhibits low accuracy for weak interactions and requires high computational power. In this study, a novel method has been suggested to predict protein interaction partners by investigating narrow funnel-like interaction energy distribution. In this study, it was demonstrated that various protein interactions including kinases and E3 ubiquitin ligases have narrow funnel-like interaction energy distribution. To analyze protein interaction distribution, modified scores of iRMS and TM-score are introduced. Then, using these scores, algorithm and deep learning model for prediction of protein interaction partner and substrate of kinase and E3 ubiquitin ligase were developed. The prediction accuracy was similar to or even better than that of yeast two-hybrid screening. Ultimately, this knowledge-free protein interaction prediction method will broaden our understanding of protein interaction networks.
Collapse
Affiliation(s)
- Juyoung Choi
- Department of Life Science, Sogang University, Seoul 04017, South Korea
| |
Collapse
|
39
|
Kellogg GE, Marabotti A, Spyrakis F, Mozzarelli A. HINT, a code for understanding the interaction between biomolecules: a tribute to Donald J. Abraham. Front Mol Biosci 2023; 10:1194962. [PMID: 37351551 PMCID: PMC10282649 DOI: 10.3389/fmolb.2023.1194962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
A long-lasting goal of computational biochemists, medicinal chemists, and structural biologists has been the development of tools capable of deciphering the molecule-molecule interaction code that produces a rich variety of complex biomolecular assemblies comprised of the many different simple and biological molecules of life: water, small metabolites, cofactors, substrates, proteins, DNAs, and RNAs. Software applications that can mimic the interactions amongst all of these species, taking account of the laws of thermodynamics, would help gain information for understanding qualitatively and quantitatively key determinants contributing to the energetics of the bimolecular recognition process. This, in turn, would allow the design of novel compounds that might bind at the intermolecular interface by either preventing or reinforcing the recognition. HINT, hydropathic interaction, was a model and software code developed from a deceptively simple idea of Donald Abraham with the close collaboration with Glen Kellogg at Virginia Commonwealth University. HINT is based on a function that scores atom-atom interaction using LogP, the partition coefficient of any molecule between two phases; here, the solvents are water that mimics the cytoplasm milieu and octanol that mimics the protein internal hydropathic environment. This review summarizes the results of the extensive and successful collaboration between Abraham and Kellogg at VCU and the group at the University of Parma for testing HINT in a variety of different biomolecular interactions, from proteins with ligands to proteins with DNA.
Collapse
Affiliation(s)
- Glen E. Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Anna Marabotti
- Department of Chemistry and Biology “A Zambelli”, University of Salerno, Fisciano (SA), Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma and Institute of Biophysics, Parma, Italy
| |
Collapse
|
40
|
Mohanty M, Mohanty PS. Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. MONATSHEFTE FUR CHEMIE 2023; 154:1-25. [PMID: 37361694 PMCID: PMC10243279 DOI: 10.1007/s00706-023-03076-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
Molecular docking simulation is a very popular and well-established computational approach and has been extensively used to understand molecular interactions between a natural organic molecule (ideally taken as a receptor) such as an enzyme, protein, DNA, RNA and a natural or synthetic organic/inorganic molecule (considered as a ligand). But the implementation of docking ideas to synthetic organic, inorganic, or hybrid systems is very limited with respect to their use as a receptor despite their huge popularity in different experimental systems. In this context, molecular docking can be an efficient computational tool for understanding the role of intermolecular interactions in hybrid systems that can help in designing materials on mesoscale for different applications. The current review focuses on the implementation of the docking method in organic, inorganic, and hybrid systems along with examples from different case studies. We describe different resources, including databases and tools required in the docking study and applications. The concept of docking techniques, types of docking models, and the role of different intermolecular interactions involved in the docking process to understand the binding mechanisms are explained. Finally, the challenges and limitations of dockings are also discussed in this review. Graphical abstract
Collapse
Affiliation(s)
- Madhuchhanda Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024 India
| | - Priti S. Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024 India
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024 India
| |
Collapse
|
41
|
Wodak SJ, Vajda S, Lensink MF, Kozakov D, Bates PA. Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes. Annu Rev Biophys 2023; 52:183-206. [PMID: 36626764 PMCID: PMC10885158 DOI: 10.1146/annurev-biophys-102622-084607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.
Collapse
Affiliation(s)
- Shoshana J Wodak
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium;
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA;
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Marc F Lensink
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France;
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA;
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, United Kingdom;
| |
Collapse
|
42
|
Chang L, Mondal A, MacCallum JL, Perez A. CryoFold 2.0: Cryo-EM Structure Determination with MELD. J Phys Chem A 2023; 127:3906-3913. [PMID: 37084537 DOI: 10.1021/acs.jpca.3c01731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Cryo-electron microscopy data are becoming more prevalent and accessible at higher resolution levels, leading to the development of new computational tools to determine the atomic structure of macromolecules. However, while existing tools adapted from X-ray crystallography are suitable for the highest-resolution maps, new tools are needed for lower-resolution levels and to account for map heterogeneity. In this article, we introduce CryoFold 2.0, an integrative physics-based approach that combines Bayesian inference and the ability to handle multiple data sources with the molecular dynamics flexible fitting (MDFF) approach to determine the structures of macromolecules by using cryo-EM data. CryoFold 2.0 is incorporated into the MELD (modeling employing limited data) plugin, resulting in a pipeline that is more computationally efficient and accurate than running MELD or MDFF alone. The approach requires fewer computational resources and shorter simulation times than the original CryoFold, and it minimizes manual intervention. We demonstrate the effectiveness of the approach on eight different systems, highlighting its various benefits.
Collapse
Affiliation(s)
- Liwei Chang
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Justin L MacCallum
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
43
|
Zeng C, Jian Y, Vosoughi S, Zeng C, Zhao Y. Evaluating native-like structures of RNA-protein complexes through the deep learning method. Nat Commun 2023; 14:1060. [PMID: 36828844 PMCID: PMC9958188 DOI: 10.1038/s41467-023-36720-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
RNA-protein complexes underlie numerous cellular processes, including basic translation and gene regulation. The high-resolution structure determination of the RNA-protein complexes is essential for elucidating their functions. Therefore, computational methods capable of identifying the native-like RNA-protein structures are needed. To address this challenge, we thus develop DRPScore, a deep-learning-based approach for identifying native-like RNA-protein structures. DRPScore is tested on representative sets of RNA-protein complexes with various degrees of binding-induced conformation change ranging from fully rigid docking (bound-bound) to fully flexible docking (unbound-unbound). Out of the top 20 predictions, DRPScore selects native-like structures with a success rate of 91.67% on the testing set of bound RNA-protein complexes and 56.14% on the unbound complexes. DRPScore consistently outperforms existing methods with a roughly 10.53-15.79% improvement, even for the most difficult unbound cases. Furthermore, DRPScore significantly improves the accuracy of the native interface interaction predictions. DRPScore should be broadly useful for modeling and designing RNA-protein complexes.
Collapse
Affiliation(s)
- Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Yiren Jian
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Soroush Vosoughi
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
44
|
Nagaraju M, Liu H. A scoring function for the prediction of protein complex interfaces based on the neighborhood preferences of amino acids. Acta Crystallogr D Struct Biol 2023; 79:31-39. [PMID: 36601805 DOI: 10.1107/s2059798322011858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Proteins often assemble into functional complexes, the structures of which are more difficult to obtain than those of the individual protein molecules. Given the structures of the subunits, it is possible to predict plausible complex models via computational methods such as molecular docking. Assessing the quality of the predicted models is crucial to obtain correct complex structures. Here, an energy-scoring function was developed based on the interfacial residues of structures in the Protein Data Bank. The statistically derived energy function (Nepre) imitates the neighborhood preferences of amino acids, including the types and relative positions of neighboring residues. Based on the preference statistics, a program iNepre was implemented and its performance was evaluated with several benchmarking decoy data sets. The results show that iNepre scores are powerful in model ranking to select the best protein complex structures.
Collapse
Affiliation(s)
- Mulpuri Nagaraju
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| |
Collapse
|
45
|
Standley DM, Nakanishi T, Xu Z, Haruna S, Li S, Nazlica SA, Katoh K. The evolution of structural genomics. Biophys Rev 2022; 14:1247-1253. [PMID: 36536641 PMCID: PMC9753067 DOI: 10.1007/s12551-022-01031-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Structural genomics began as a global effort in the 1990s to determine the tertiary structures of all protein families as a response to large-scale genome sequencing projects. The immediate outcome was an influx of tens of thousands of protein structures, many of which had unknown functions. At the time, the value of structural genomics was controversial. However, the structures themselves were only the most obvious output. In addition, these newly solved structures motivated the emergence of huge data science and infrastructure efforts, which, together with advances in Deep Learning, have brought about a revolution in computational molecular biology. Here, we review some of the computational research carried out at the Protein Data Bank Japan (PDBj) during the Protein 3000 project under the leadership of Haruki Nakamura, much of which continues to flourish today.
Collapse
Affiliation(s)
- Daron M. Standley
- grid.136593.b0000 0004 0373 3971Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Japan
| | - Tokuichiro Nakanishi
- grid.136593.b0000 0004 0373 3971Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Japan
| | - Zichang Xu
- grid.136593.b0000 0004 0373 3971Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Japan
| | - Soichiro Haruna
- grid.136593.b0000 0004 0373 3971Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Japan
| | - Songling Li
- grid.136593.b0000 0004 0373 3971Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Japan
| | - Sedat Aybars Nazlica
- grid.136593.b0000 0004 0373 3971Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Japan
| | - Kazutaka Katoh
- grid.136593.b0000 0004 0373 3971Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Japan
| |
Collapse
|
46
|
Chang L, Mondal A, Perez A. Towards rational computational peptide design. FRONTIERS IN BIOINFORMATICS 2022; 2:1046493. [PMID: 36338806 PMCID: PMC9634169 DOI: 10.3389/fbinf.2022.1046493] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Peptides are prevalent in biology, mediating as many as 40% of protein-protein interactions, and involved in other cellular functions such as transport and signaling. Their ability to bind with high specificity make them promising therapeutical agents with intermediate properties between small molecules and large biologics. Beyond their biological role, peptides can be programmed to self-assembly, and they are already being used for functions as diverse as oligonuclotide delivery, tissue regeneration or as drugs. However, the transient nature of their interactions has limited the number of structures and knowledge of binding affinities available-and their flexible nature has limited the success of computational pipelines that predict the structures and affinities of these molecules. Fortunately, recent advances in experimental and computational pipelines are creating new opportunities for this field. We are starting to see promising predictions of complex structures, thermodynamic and kinetic properties. We believe in the following years this will lead to robust rational peptide design pipelines with success similar to those applied for small molecule drug discovery.
Collapse
Affiliation(s)
- Liwei Chang
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Quantum Theory Project, University of Florida, Gainesville, FL, United States
| | - Arup Mondal
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Quantum Theory Project, University of Florida, Gainesville, FL, United States
| | - Alberto Perez
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Quantum Theory Project, University of Florida, Gainesville, FL, United States
| |
Collapse
|
47
|
Rodríguez-Lumbreras LA, Jiménez-García B, Giménez-Santamarina S, Fernández-Recio J. pyDockDNA: A new web server for energy-based protein-DNA docking and scoring. Front Mol Biosci 2022; 9:988996. [PMID: 36275623 PMCID: PMC9582769 DOI: 10.3389/fmolb.2022.988996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins and nucleic acids are essential biological macromolecules for cell life. Indeed, interactions between proteins and DNA regulate many biological processes such as protein synthesis, signal transduction, DNA storage, or DNA replication and repair. Despite their importance, less than 4% of total structures deposited in the Protein Data Bank (PDB) correspond to protein-DNA complexes, and very few computational methods are available to model their structure. We present here the pyDockDNA web server, which can successfully model a protein-DNA complex with a reasonable predictive success rate (as benchmarked on a standard dataset of protein-DNA complex structures, where DNA is in B-DNA conformation). The server implements the pyDockDNA program, as a module of pyDock suite, thus including third-party programs, modules, and previously developed tools, as well as new modules and parameters to handle the DNA properly. The user is asked to enter Protein Data Bank files for protein and DNA input structures (or suitable models) and select the chains to be docked. The server calculations are mainly divided into three steps: sampling by FTDOCK, scoring with new energy-based parameters and the possibility of applying external restraints. The user can select different options for these steps. The final output screen shows a 3D representation of the top 10 models and a table sorting the model according to the scoring function selected previously. All these output files can be downloaded, including the top 100 models predicted by pyDockDNA. The server can be freely accessed for academic use (https://model3dbio.csic.es/pydockdna).
Collapse
Affiliation(s)
| | - Brian Jiménez-García
- Barcelona Supercomputing Center, Barcelona, Spain
- Zymvol Biomodeling SL, Barcelona, Spain
| | | | - Juan Fernández-Recio
- Barcelona Supercomputing Center, Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, Spain
- *Correspondence: Juan Fernández-Recio,
| |
Collapse
|
48
|
Pilus NSM, Muhamad A, Shahidan MA, Yusof NYM. Potential of Epidermal Growth Factor-like Peptide from the Sea Cucumber Stichopus horrens to Increase the Growth of Human Cells: In Silico Molecular Docking Approach. Mar Drugs 2022; 20:md20100596. [PMID: 36286420 PMCID: PMC9605497 DOI: 10.3390/md20100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The sea cucumber is prominent as a traditional remedy among Asians for wound healing due to its high capacity for regeneration after expulsion of its internal organs. A short peptide consisting of 45 amino acids from transcriptome data of Stichopus horrens (Sh-EGFl-1) shows a convincing capability to promote the growth of human melanoma cells. Molecular docking of Sh-EGFl-1 peptide with human epidermal growth factor receptor (hEGFR) exhibited a favorable intermolecular interaction, where most of the Sh-EGFl-1 residues interacted with calcium binding-like domains. A superimposed image of the docked structure against a human EGF–EGFR crystal model also gave an acceptable root mean square deviation (RMSD) value of less than 1.5 Å. Human cell growth was significantly improved by Sh-EGFl-1 peptide at a lower concentration in a cell proliferation assay. Gene expression profiling of the cells indicated that Sh-EGFl-1 has activates hEGFR through five epidermal growth factor signaling pathways; phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), phospholipase C gamma (PLC-gamma), Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Ras homologous (Rho) pathways. All these pathways triggered cells’ proliferation, differentiation, survival and re-organization of the actin cytoskeleton. Overall, this marine-derived, bioactive peptide has the capability to promote proliferation and could be further explored as a cell-growth-promoting agent for biomedical and bioprocessing applications.
Collapse
Affiliation(s)
- Nur Shazwani Mohd Pilus
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (N.S.M.P.); (N.Y.M.Y.)
| | - Azira Muhamad
- Department of Structural Biology and Functional Omics, Malaysia Genome and Vaccine Institute (MGVI), National Institutes of Biotechnology Malaysia (NIBM), Kajang 43000, Selangor, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (N.S.M.P.); (N.Y.M.Y.)
| |
Collapse
|
49
|
Tao H, Zhao X, Zhang K, Lin P, Huang SY. Docking cyclic peptides formed by a disulfide bond through a hierarchical strategy. Bioinformatics 2022; 38:4109-4116. [PMID: 35801933 DOI: 10.1093/bioinformatics/btac486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Cyclization is a common strategy to enhance the therapeutic potential of peptides. Many cyclic peptide drugs have been approved for clinical use, in which the disulfide-driven cyclic peptide is one of the most prevalent categories. Molecular docking is a powerful computational method to predict the binding modes of molecules. For protein-cyclic peptide docking, a big challenge is considering the flexibility of peptides with conformers constrained by cyclization. RESULTS Integrating our efficient peptide 3D conformation sampling algorithm MODPEP2.0 and knowledge-based scoring function ITScorePP, we have proposed an extended version of our hierarchical peptide docking algorithm, named HPEPDOCK2.0, to predict the binding modes of the peptide cyclized through a disulfide against a protein. Our HPEPDOCK2.0 approach was extensively evaluated on diverse test sets and compared with the state-of-the-art cyclic peptide docking program AutoDock CrankPep (ADCP). On a benchmark dataset of 18 cyclic peptide-protein complexes, HPEPDOCK2.0 obtained a native contact fraction of above 0.5 for 61% of the cases when the top prediction was considered, compared with 39% for ADCP. On a larger test set of 25 cyclic peptide-protein complexes, HPEPDOCK2.0 yielded a success rate of 44% for the top prediction, compared with 20% for ADCP. In addition, HPEPDOCK2.0 was also validated on two other test sets of 10 and 11 complexes with apo and predicted receptor structures, respectively. HPEPDOCK2.0 is computationally efficient and the average running time for docking a cyclic peptide is about 34 min on a single CPU core, compared with 496 min for ADCP. HPEPDOCK2.0 will facilitate the study of the interaction between cyclic peptides and proteins and the development of therapeutic cyclic peptide drugs. AVAILABILITY AND IMPLEMENTATION http://huanglab.phys.hust.edu.cn/hpepdock/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuejun Zhao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Keqiong Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
50
|
Aktaş E, Özdemir Özgentürk N. Revealing In Silico that Bacteria's Outer Membrane Proteins may Help our Bodies Replicate and Carry Severe Acute Respiratory Syndrome Coronavirus 2. Bioinform Biol Insights 2022; 16:11779322221116320. [PMID: 35966808 PMCID: PMC9364190 DOI: 10.1177/11779322221116320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/10/2022] [Indexed: 10/31/2022] Open
Abstract
Some studies in the literature show that viruses can affect bacteria directly or indirectly, and viruses use their own specific ways to do these interactions. Furthermore, it is said that bacteria are prone to attachment mammalian cells during a viral illness using their surface proteins that bind to host extracellular matrix proteins such as fibronectin, fibrinogen, vitronectin, and elastin. A recent study identified the cooperation between bacteria and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in silico, in vitro, and in vivo. Like this study, we hypothesized that more bacteria protein might help SARS-CoV-2 transport and attach to angiotensin-converting enzyme 2 (ACE2). The bacteria's outer membrane proteins (OMPs) we chose were not random; they had to be on the outer surface of the bacteria because these proteins on the outer surface should have a high probability of interacting with both the spike protein and ACE2. We obtained by using bioinformatics tools that there may be binding between both ACE2 and spike protein of these bacteria's OMPs. Protein-protein interaction results also supported our hypothesis. Therefore, based on our predicted results, these bacteria OMPs may help SARS-CoV-2 move in our body, and both find and attach to ACE2. It is expected that these inferences obtained from the bioinformatics results may play a role in the SARS-CoV-2 virus reaching host cells. Thus, it may bring a different perspective to studies on how the virus can infect host cells.
Collapse
Affiliation(s)
- Emre Aktaş
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - Nehir Özdemir Özgentürk
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|