1
|
Molecular Dynamics Insight into the Lipid II Recognition by Type A Lantibiotics: Nisin, Epidermin, and Gallidermin. MICROMACHINES 2021; 12:mi12101169. [PMID: 34683220 PMCID: PMC8538299 DOI: 10.3390/mi12101169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/21/2023]
Abstract
Lanthionine-containing peptides (lantibiotics) have been considered as pharmaceutical candidates for decades, although their clinical application has been restricted. Most lantibiotics kill bacteria via targeting and segregating of the cell wall precursor—membrane-inserted lipid II molecule—in some cases accompanied by pores formation. Nisin-like lantibiotics specifically bind to pyrophosphate (PPi) moiety of lipid II with their structurally similar N-terminal thioether rings A and B. Although possessing higher pore-forming capability, nisin, in some cases, is 10-fold less efficient in vivo as compared to related epidermin and gallidermin peptides, differing just in a few amino acid residues within their target-binding regions. Here, using molecular dynamics simulations, we investigated atomistic details of intermolecular interactions between the truncated analogues of these peptides (residues 1–12) and lipid II mimic (dimethyl pyrophosphate, DMPPi). The peptides adopt similar conformation upon DMPPi binding with backbone amide protons orienting into a single center capturing PPi moiety via simultaneous formation of up to seven hydrogen bonds. Epidermin and gallidermin adopt the complex-forming conformation twice as frequent as nisin does, enhancing the binding by the lysine 4 side chain. Introduction of the similar residue to nisin in silico improves the binding, providing ideas for further design of prototypic antibiotics.
Collapse
|
2
|
Yu M, Zhang T, Zhang W, Sun Q, Li H, Li JP. Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS-CoV-2-Related Proteins-An Important Strategy for Developing Novel Therapeutics for the COVID-19 Pandemic. Front Mol Biosci 2021; 7:628551. [PMID: 33569392 PMCID: PMC7868326 DOI: 10.3389/fmolb.2020.628551] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the high mortality and the spread rate, the infectious disease caused by SARS-CoV-2 has become a major threat to public health and social economy, leading to over 70 million infections and 1. 6 million deaths to date. Since there are currently no effective therapeutic or widely available vaccines, it is of urgent need to look for new strategies for the treatment of SARS-CoV-2 infection diseases. Binding of a viral protein onto cell surface heparan sulfate (HS) is generally the first step in a cascade of interaction that is required for viral entry and the initiation of infection. Meanwhile, interactions of selectins and cytokines (e.g., IL-6 and TNF-α) with HS expressed on endothelial cells are crucial in controlling the recruitment of immune cells during inflammation. Thus, structurally defined heparin/HS and their mimetics might serve as potential drugs by competing with cell surface HS for the prevention of viral adhesion and modulation of inflammatory reaction. In this review, we will elaborate coronavirus invasion mechanisms and summarize the latest advances in HS-protein interactions, especially proteins relevant to the process of coronavirus infection and subsequent inflammation. Experimental and computational techniques involved will be emphasized.
Collapse
Affiliation(s)
- Mingjia Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Wei Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Qianyun Sun
- Division of Chemistry, Shandong Institute of Metrology, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Jin-ping Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
3
|
Booth MPS, Kosmopoulou M, Poirel L, Nordmann P, Spencer J. Crystal Structure of DIM-1, an Acquired Subclass B1 Metallo-β-Lactamase from Pseudomonas stutzeri. PLoS One 2015; 10:e0140059. [PMID: 26451836 PMCID: PMC4599830 DOI: 10.1371/journal.pone.0140059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/20/2015] [Indexed: 11/18/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze almost all classes of β-lactam antibiotic, including carbapenems—currently first choice drugs for opportunistic infections by Gram-negative bacterial pathogens. MBL inhibitor development is complicated by the diversity within this group of enzymes, and by the appearance of new enzymes that continue to be identified both as chromosomal genes and on mobile genetic elements. One such newly discovered MBL is DIM-1, a mobile enzyme originally discovered in the opportunist pathogen Pseudomonas stutzeri but subsequently identified in other species and locations. DIM-1 is a subclass B1 MBL more closely related to the TMB-1, GIM-1 and IMP enzymes than to other clinically encountered MBLs such as VIM and NDM; and possesses Arg, rather than the more usual Lys, at position 224 in the putative substrate binding site. Here we report the crystallization and structure determination of DIM-1. DIM-1 possesses a binuclear metal center with a 5 (rather than the more usual 4) co-ordinate tri-histidine (Zn1) site and both 4- and 5-co-ordinate Cys-His-Asp- (Zn2) sites observed in the two molecules of the crystallographic asymmetric unit. These data indicate a degree of variability in metal co-ordination geometry in the DIM-1 active site, as well as facilitating inclusion of DIM-1 in structure-based MBL inhibitor discovery programmes.
Collapse
Affiliation(s)
- Michael P. S. Booth
- School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Magda Kosmopoulou
- School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Rue Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Rue Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Godwin RC, Melvin R, Salsbury FR. Molecular Dynamics Simulations and Computer-Aided Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2015. [DOI: 10.1007/7653_2015_41] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
|
6
|
Negureanu L, Salsbury FR. Destabilization of the MutSα's protein-protein interface due to binding to the DNA adduct induced by anticancer agent carboplatin via molecular dynamics simulations. J Mol Model 2013; 19:4969-89. [PMID: 24061854 DOI: 10.1007/s00894-013-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.
Collapse
|
7
|
Negureanu L, Salsbury FR. Non-specificity and synergy at the binding site of the carboplatin-induced DNA adduct via molecular dynamics simulations of the MutSα-DNA recognition complex. J Biomol Struct Dyn 2013; 32:969-92. [PMID: 23799640 DOI: 10.1080/07391102.2013.799437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MutSα is the most abundant mismatch-binding factor of human DNA mismatch repair (MMR) proteins. MMR maintains genetic stability by recognizing and repairing DNA defects. Failure to accomplish their function may lead to cancer. In addition, MutSα recognizes at least some types of DNA damage making it a target for anticancer agents. Here, complementing scarce experimental data, we report unique hydrogen-bonding motifs associated with the recognition of the carboplatin induced DNA damage by MutSα. These data predict that carboplatin and cisplatin induced damaging DNA adducts are recognized by MutSα in a similar manner. Our simulations also indicate that loss of base pairing at the damage site results in (1) non-specific binding and (2) changes in the atomic flexibility at the lesion site and beyond. To further quantify alterations at MutSα-DNA interface in response to damage recognition, non-bonding interactions and salt bridges were investigated. These data indicate (1) possible different packing and (2) disruption of the salt bridges at the MutSα-DNA interface in the damaged complex. These findings (1) underscore the general observation of disruptions at the MutSα-DNA interface and (2) highlight the nature of the anticancer effect of the carboplatin agent. The analysis was carried out from atomistic simulations.
Collapse
|
8
|
Salsbury FR. Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr Opin Pharmacol 2011; 10:738-44. [PMID: 20971684 DOI: 10.1016/j.coph.2010.09.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022]
Abstract
Molecular dynamics simulations have become increasingly useful in studying biological systems of biomedical interest, and not just in the study of model or toy systems. In this article, the methods and principles of all-atom molecular dynamics will be elucidated with several examples provided of their utility to investigators interested on drug discovery.
Collapse
Affiliation(s)
- Freddie R Salsbury
- Department of Physics, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27106, USA.
| |
Collapse
|
9
|
Yamaguchi Y, Takashio N, Wachino JI, Yamagata Y, Arakawa Y, Matsuda K, Kurosaki H. Structure of metallo- -lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution. J Biochem 2010; 147:905-15. [DOI: 10.1093/jb/mvq029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
10
|
Minond D, Saldanha SA, Subramaniam P, Spaargaren M, Spicer T, Fotsing JR, Weide T, Fokin VV, Sharpless KB, Galleni M, Bebrone C, Lassaux P, Hodder P. Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Bioorg Med Chem 2009; 17:5027-37. [PMID: 19553129 DOI: 10.1016/j.bmc.2009.05.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 12/27/2022]
Abstract
VIM-2 is an Ambler class B metallo-beta-lactamase (MBL) capable of hydrolyzing a broad-spectrum of beta-lactam antibiotics. Although the discovery and development of MBL inhibitors continue to be an area of active research, an array of potent, small molecule inhibitors is yet to be fully characterized for VIM-2. In the presented research, a compound library screening approach was used to identify and characterize VIM-2 inhibitors from a library of pharmacologically active compounds as well as a focused 'click' chemistry library. The four most potent VIM-2 inhibitors resulting from a VIM-2 screen were characterized by kinetic studies in order to determine K(i) and mechanism of enzyme inhibition. As a result, two previously described pharmacologic agents, mitoxantrone (1,4-dihydroxy-5,8-bis([2-([2-hydroxyethyl]amino)ethyl]amino)-9,10-anthracenedione) and 4-chloromercuribenzoic acid (pCMB) were found to be active, the former as a non-competitive inhibitor (K(i)=K(i)(')=1.5+/-0.2microM) and the latter as a slowly reversible or irreversible inhibitor. Additionally, two novel sulfonyl-triazole analogs from the click library were identified as potent, competitive VIM-2 inhibitors: N-((4-((but-3-ynyloxy)methyl)-1H-1,2,3-triazol-5-yl)methyl)-4-iodobenzenesulfonamide (1, K(i)=0.41+/-0.03microM) and 4-iodo-N-((4-(methoxymethyl)-1H-1,2,3-triazol-5-yl)methyl)benzenesulfonamide (2, K(i)=1.4+/-0.10microM). Mitoxantrone and pCMB were also found to potentiate imipenem efficacy in MIC and synergy assays employing Escherichia coli. Taken together, all four compounds represent useful chemical probes to further investigate mechanisms of VIM-2 inhibition in biochemical and microbiology-based assays.
Collapse
Affiliation(s)
- Dmitriy Minond
- Lead Identification, Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #1A1, Jupiter, 33458 FL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oelschlaeger P. Outsmarting metallo-β-lactamases by mimicking their natural evolution. J Inorg Biochem 2008; 102:2043-51. [DOI: 10.1016/j.jinorgbio.2008.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 11/25/2022]
|
12
|
Salsbury FR, Crowder MW, Kingsmore SF, Huntley JJA. Molecular dynamic simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. J Mol Model 2008; 15:133-45. [PMID: 19039608 DOI: 10.1007/s00894-008-0410-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 07/19/2008] [Indexed: 11/28/2022]
Abstract
The beta-lactam-based antibiotics are among the most prescribed and effective antibacterial agents. Widespread use of these antibiotics, however, has created tremendous pressure for the emergence of resistance mechanisms in bacteria. The most common cause of antibiotic resistance is bacterial production of actamases that efficiently degrade antibiotics. The metallo-beta-lactamases are of particular clinical concern due to their transference between bacterial strains. We used molecular dynamics (MD) simulations to further study the conformational changes that occur due to binding of an inhibitor to the dicanzinc metallo-beta-lactamase from Bacteroides fragilis. Our studies confirm previous findings that the major flap is a major source of plasticity within the active site, therefore its dynamic response should be considered in drug development. However, our results also suggest the need for care in using MD simulations in evaluating loop mobility, both due to relaxation times and to the need to accurately model the zinc active site. Our study also reveals two new robust responses to ligand binding. First, there are specific localized changes in the zinc active site--a local loop flip--due to ligand intercalation that may be critical to the function of this enzyme. Second, inhibitor binding perturbs the dynamics throughout the protein, without otherwise perturbing the enzyme structure. These dynamic perturbations radiate outward from the active site and their existence suggests that long-range communication and dynamics may be important in the activity of this enzyme.
Collapse
Affiliation(s)
- Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston Salem, NC 27109, USA.
| | | | | | | |
Collapse
|
13
|
Simona F, Magistrato A, Vera DMA, Garau G, Vila AJ, Carloni P. Protonation state and substrate binding to B2 metallo-beta-lactamase CphA from Aeromonas hydrofila. Proteins 2007; 69:595-605. [PMID: 17623844 DOI: 10.1002/prot.21476] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The zinc enzymes metallo beta-lactamases counteract the beneficial action of beta-lactam antibiotics against bacterial infections, by hydrolyzing their beta-lactam rings. To understand structure/function relationships on a representative member of this class, the B2 M beta L CphA, we have investigated the H-bond pattern at the Zn enzymatic active site and substrate binding mode by molecular simulation methods. Extensive QM calculations at the DFT-BLYP level on eleven models of the protein active site, along with MD simulations of the protein in aqueous solution, allow us to propose two plausible protonation states for the unbound enzyme, which are probably in equilibrium. Docking procedures along with MD simulations and QM calculations suggest that in the complex between the enzyme and its substrate (biapenem), the latter is stable in only one of the two protonation states, in addition it exhibits two different binding modes, of which only one agrees with previous proposals. In both cases, the substrate is polarized as in aqueous solution. We conclude that addressing mechanistic issues on this class of enzymes requires a careful procedure to assign protonation states and substrate docking modes.
Collapse
Affiliation(s)
- F Simona
- SISSA, Via Beirut 2-4, 34014 Grignano, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Yamaguchi Y, Jin W, Matsunaga K, Ikemizu S, Yamagata Y, Wachino JI, Shibata N, Arakawa Y, Kurosaki H. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J Med Chem 2007; 50:6647-53. [PMID: 18052313 DOI: 10.1021/jm701031n] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The VIM-2 metallo-beta-lactamase enzyme from Pseudomonas aeruginosa catalyzes the hydrolysis of most beta-lactam antibiotics including carbapenems, and there are currently no potent inhibitors of such enzymes. We found rac-2-omega-phenylpropyl-3-mercaptopropionic acid, phenylC3SH, to be a potent inhibitor of VIM-2. The structure of the VIM-2-phenylC3SH complex was determined by X-ray crystallography to 2.3 A. The structure revealed that the thiol group of phenylC3SH bridged to the two zinc(II) ions and the phenyl group interacted with Tyr67(47) on loop1 near the active site, by pi-pi stacking interactions. The methylene group interacted with Phe61(42) located at the bottom of loop1 through CH-pi interactions. Dynamic movements were observed in Arg228(185) and Asn233(190) on loop2, compared with the native structure (PDB code: 1KO3 ). These results suggest that the above-mentioned four residues play important roles in the binding and recognition of inhibitors or substrates and in stabilizing a loop in the VIM-2 enzyme.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Environmental Safety Center, Kumamoto University, Department of Structure-Function Physical Chemistry, Graduate School of Pharmaceutical Sciences, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Garcia-Saez I, Docquier JD, Rossolini GM, Dideberg O. The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J Mol Biol 2007; 375:604-11. [PMID: 18061205 DOI: 10.1016/j.jmb.2007.11.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/31/2007] [Accepted: 11/02/2007] [Indexed: 11/20/2022]
Abstract
The crystal structures of the universally widespread metallo-beta-lactamase (MBL) Verona integron-encoded MBL (VIM)-2 from Pseudomonas aeruginosa have been solved in their native form as well as in an unexpected oxidised form. This carbapenem-hydrolysing enzyme belongs to the so-called B1 subfamily of MBLs and shares the folding of alpha beta/beta alpha sandwich, consisting of a core of beta-sheet surrounded by alpha-helices. Surprisingly, it showed a high tendency to be strongly oxidised at the catalytic cysteine located in the Cys site, Cys221, which, in the oxidised structure, becomes a cysteinesulfonic residue. Its native structure was obtained only in the presence of Tris(2-carboxyethyl)phosphine. This oxidation might be a consequence of a lower affinity for the second Zn located in the Cys site that would also explain the observed susceptibility of VIM-2 to chelating agents. This modification, if present in nature, might play a role in catalytic down-regulation. Comparison between native and oxidised VIM-2 and a predicted model of VIM-1 (which shows one residue different in the Cys site compared with VIM-2) is performed to explain the different activities and antibiotic specificities.
Collapse
Affiliation(s)
- I Garcia-Saez
- Laboratoire de Cristallographie Macromoléculaire, Institut de Biologie Structurale Jean-Pierre Ebel, CNRS-Commissariat à l'Energie Atomique (CEA)-Université Joseph Fourier, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1, France.
| | | | | | | |
Collapse
|
16
|
Estiu G, Suárez D, Merz KM. Quantum mechanical and molecular dynamics simulations of ureases and Zn beta-lactamases. J Comput Chem 2007; 27:1240-62. [PMID: 16773613 DOI: 10.1002/jcc.20411] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Herein we briefly review theoretical contributions that have increased our understanding of the structure and function of metallo-beta-lactamases and ureases. Both are bimetallic metalloenzymes, with the former containing two zinc ions and the latter containing two nickel ions. We describe the use of several different methodologies, including quantum chemical calculations, molecular dynamic simulations, as well as mixed QM/MM approaches and how they have impacted our understanding of the structure and function of metallo-beta-lactamases and ureases.
Collapse
Affiliation(s)
- Guillermina Estiu
- Department of Chemistry, Quantum Theory Project, University of Florida, 2328 New Physics Building, P.O. Box 118435, Gainesville, Florida 32611-8435, USA
| | | | | |
Collapse
|
17
|
Xu D, Guo H, Cui Q. Antibiotic Deactivation by a Dizinc β-Lactamase: Mechanistic Insights from QM/MM and DFT Studies. J Am Chem Soc 2007; 129:10814-22. [PMID: 17691780 DOI: 10.1021/ja072532m] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods and density functional theory (DFT) were used to investigate the initial ring-opening step in the hydrolysis of moxalactam catalyzed by the dizinc L1 beta-lactamase from Stenotrophomonas maltophilia. Anchored at the enzyme active site via direct metal binding as suggested by a recent X-ray structure of an enzyme-product complex (Spencer, J.; et al. J. Am. Chem. Soc. 2005, 127, 14439), the substrate is well aligned with the nucleophilic hydroxide that bridges the two zinc ions. Both QM/MM and DFT results indicate that the addition of the hydroxide nucleophile to the carbonyl carbon in the substrate lactam ring leads to a metastable intermediate via a dominant nucleophilic addition barrier. The potential of mean force obtained by SCC-DFTB/MM simulations and corrected by DFT/MM calculations yields a reaction free energy barrier of 23.5 kcal/mol, in reasonable agreement with the experimental value of 18.5 kcal/mol derived from kcat of 0.15 s(-1). It is further shown that zinc-bound Asp120 plays an important role in aligning the nucleophile, but accepts the hydroxide proton only after the nucleophilic addition. The two zinc ions are found to participate intimately in the catalysis, consistent with the proposed mechanism. In particular, the Zn(1) ion is likely to serve as an "oxyanion hole" in stabilizing the carbonyl oxygen, while the Zn(2) ion acts as an electrophilic catalyst to stabilize the anionic nitrogen leaving group.
Collapse
Affiliation(s)
- Dingguo Xu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
18
|
Wang C, Guo H. Inhibitor Binding by Metallo-β-lactamase IMP-1 from Pseudomonas aeruginosa: Quantum Mechanical/Molecular Mechanical Simulations. J Phys Chem B 2007; 111:9986-92. [PMID: 17663582 DOI: 10.1021/jp073864g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamics of the IMP-1 enzyme complexed with three prototypical inhibitors are investigated using a quantum mechanical/molecular mechanical (QM/MM) method based on the self-consistent-charge density-functional tight-binding model. The binding patterns of the inhibitors observed in X-ray diffraction experiments are well reproduced in 600 ps molecular dynamics simulations at room temperature. These inhibitors anchor themselves in the enzyme active site by direct coordination with the two zinc ions, displacing the hydroxide nucleophile that bridges the two zinc ions. In addition, they also interact with several active-site residues and those in two mobile loops. The excellent agreement with experimental structural data validates the QM/MM treatment used in our simulations.
Collapse
Affiliation(s)
- Canhui Wang
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
19
|
Oelschlaeger P, Pleiss J. Hydroxyl Groups in the ββ Sandwich of Metallo-β-lactamases Favor Enzyme Activity: Tyr218 and Ser262 Pull Down the Lid. J Mol Biol 2007; 366:316-29. [PMID: 17157873 DOI: 10.1016/j.jmb.2006.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 11/01/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Metallo-beta-lactamases (MBLs) efficiently hydrolyze and thereby inactivate various beta-lactam antibiotics in clinical use. Their potential to evolve into more efficient enzymes threatens public health. Recently, we have identified the designed F218Y mutant of IMP-1 as an enzyme with superior catalytic efficiency compared to the wild-type. Thus, it may be found in clinical isolates in the future. In an effort to elucidate the molecular mechanisms involved in enhanced activity, we carried out molecular dynamics simulations of ten MBL variants in complex with a cefotaxime intermediate. The stability of these near-transition state enzyme-substrate intermediate complexes was modeled and compared to the experimental catalytic efficiencies k(cat)/K(M). For each of the ten complexes ten independent simulations were performed. In each simulation the temperature was gradually increased and determined upon breakdown of the complex. Rankings based on the experimental catalytic efficiencies and the data from computer simulations were in good agreement. From trajectory analysis of stable simulations, the combination of Tyr218 and Ser262 was found to lead to an altered hydrogen bonding network, which translates into a closing down movement of a beta-hairpin loop covering the active site. These observations may explain the significantly decreased K(M) and increased k(cat)/K(M) values of this variant toward all substrates recently tested in experiment. Previously, we have discovered that mutations G262S (yielding IMP-1) and G262A in IMP-6 stabilize the Zn(II) ligand His263 and thus the enzyme-substrate intermediate complex through a domino effect, which enhances conversion of drugs like ceftazidime, penicillins, and imipenem. Together, the domino effect and the altered beta-hairpin loop conformation explain how IMP-6 can evolve through mutations G262S and F218Y into an enzyme with up to one order of magnitude increased catalytic efficiencies toward these important antibiotics. Furthermore, the previously proposed binding of a third zinc ion close to the active site of IMP-6 mutant S121G was corroborated by our simulations.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Department of Chemistry, SGM 418, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA.
| | | |
Collapse
|
20
|
Crowder MW, Spencer J, Vila AJ. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res 2006; 39:721-8. [PMID: 17042472 DOI: 10.1021/ar0400241] [Citation(s) in RCA: 310] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallo-beta-lactamases are broad-spectrum zinc enzymes, able to inactivate most clinically useful beta-lactam antibiotics. Their structural and functional diversity has thus far limited the understanding of their catalytic mechanism, therefore thwarting the rational design of a common inhibitor. On the basis of the recent availability of structures of enzyme-product complexes and novel mechanistic studies, here, we attempt to find minimal common elements in different members of this family. In contrast with other metalloenzymes, most of the substrate binding and catalytic power resides in the adequate positioning of one or two Zn(II) ions in the active site, empowered by an unusual flexibility.
Collapse
Affiliation(s)
- Michael W Crowder
- Department of Chemistry and Biochemistry, 160 Hughes Hall, Miami University, Oxford, OH 45056, USA.
| | | | | |
Collapse
|
21
|
Simm AM, Loveridge EJ, Crosby J, Avison MB, Walsh TR, Bennett PM. Bulgecin A: a novel inhibitor of binuclear metallo-beta-lactamases. Biochem J 2006; 387:585-90. [PMID: 15569001 PMCID: PMC1134987 DOI: 10.1042/bj20041542] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bulgecin A, a sulphonated N-acetyl-D-glucosamine unit linked to a 4-hydroxy-5-hydroxymethylproline ring by a beta-glycosidic linkage, is a novel type of inhibitor for binuclear metallo-beta-lactamases. Using steady-state kinetic analysis with nitrocefin as the beta-lactam substrate, bulgecin A competitively inhibited the metallo-beta-lactamase BceII from Bacillus cereus in its two-zinc form, but failed to inhibit when the enzyme was in the single-zinc form. The competitive inhibition was restored by restoring the second zinc ion. The single-zinc metallo-beta-lactamase from Aeromonas veronii bv. sobria, ImiS, was not inhibited by bulgecin A. The tetrameric L1 metallo-beta-lactamase from Stenotrophomonas maltophilia was subject to partial non-competitive inhibition, which is consistent with a kinetic model in which the enzyme bound to inhibitor retains catalytic activity. Docking experiments support the conclusion that bulgecin A co-ordinates to the zinc II site in metallo-beta-lactamases via the terminal sulphonate group on the sugar moiety.
Collapse
Affiliation(s)
- Alan M Simm
- Department of Pathology and Microbiology, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Costello A, Periyannan G, Yang KW, Crowder MW, Tierney DL. Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. J Biol Inorg Chem 2006; 11:351-8. [PMID: 16489411 DOI: 10.1007/s00775-006-0083-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 01/20/2006] [Indexed: 11/27/2022]
Abstract
Extended X-ray absorption fine structure studies of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia containing 1 and 2 equiv of Zn(II) and containing 2 equiv of Zn(II) plus hydrolyzed nitrocefin are presented. The data indicate that the first, catalytically dominant metal ion is bound by L1 at the consensus Zn1 site. The data further suggest that binding of the first metal helps preorganize the ligands for binding of the second metal ion. The di-Zn enzyme displays a well-defined metal-metal interaction at 3.42 A. Reaction with the beta-lactam antibiotic nitrocefin results in a product-bound species, in which the ring-opened lactam rotates in the active site to present the S1 sulfur atom of nitrocefin to one of the metal ions for coordination. The product bridges the two metal ions, with a concomitant lengthening of the Zn-Zn interaction to 3.62 A.
Collapse
Affiliation(s)
- Alison Costello
- Department of Chemistry, University of New Mexico, 87131, Albuquerque, NM, USA
| | | | | | | | | |
Collapse
|
23
|
Murphy TA, Catto LE, Halford SE, Hadfield AT, Minor W, Walsh TR, Spencer J. Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases. J Mol Biol 2006; 357:890-903. [PMID: 16460758 DOI: 10.1016/j.jmb.2006.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/28/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
Metallo-beta-lactamases (mbetals) confer broad-spectrum resistance to beta-lactam antibiotics upon host bacteria and escape the action of existing beta-lactamase inhibitors. SPM-1 is a recently discovered mbetal that is distinguished from related enzymes by possession of a substantial central insertion and by sequence variation at positions that maintain active site structure. Biochemical data show SPM-1 to contain two Zn2+ sites of differing affinities, a phenomenon that is well documented amongst mbetals but for which a structural explanation has proved elusive. Here, we report the crystal structure of SPM-1 to 1.9 A resolution. The structure reveals SPM-1 to lack a mobile loop implicated in substrate binding by related mbetals and to accommodate the central insertion in an extended helical interdomain region. Deleting this had marginal effect upon binding and hydrolysis of a range of beta-lactams. These data suggest that the interactions of SPM-1 with substrates differ from those employed by other mbetals. SPM-1 as crystallised contains a single Zn2+. Both the active site hydrogen-bonding network and main-chain geometry at Asp120, a key component of the binding site for the second zinc ion, differ significantly from previous mbetal structures. We propose that variable interactions made by the Asp120 carbonyl group modulate affinity for a second Zn2+ equivalent in mbetals of the B1 subfamily. We further predict that SPM-1 possesses the capacity to evolve variants of enhanced catalytic activity by point mutations altering geometry and hydrogen bonding in the vicinity of the second Zn2+ site.
Collapse
Affiliation(s)
- Tanya A Murphy
- Department of Cellular and Molecular Medicine, University of Bristol School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Weston J. Mode of action of bi- and trinuclear zinc hydrolases and their synthetic analogues. Chem Rev 2005; 105:2151-74. [PMID: 15941211 DOI: 10.1021/cr020057z] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jennie Weston
- Institut für Organische und Makromolekulare Chemie, Friedrich-Schiller-Universität, Jena, Germany.
| |
Collapse
|
25
|
Antony J, Piquemal JP, Gresh N. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-β-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry. J Comput Chem 2005; 26:1131-47. [PMID: 15937993 DOI: 10.1002/jcc.20245] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using the polarizable molecular mechanics method SIBFA, we have performed a search for the most stable binding modes of D- and L-thiomandelate to a 104-residue model of the metallo-beta-lactamase from B. fragilis, an enzyme involved in the acquired resistance of bacteria to antibiotics. Energy balances taking into account solvation effects computed with a continuum reaction field procedure indicated the D-isomer to be more stably bound than the L-one, conform to the experimental result. The most stably bound complex has the S(-) ligand bridging monodentately the two Zn(II) cations and one carboxylate O(-) H-bonded to the Asn193 side chain. We have validated the SIBFA energy results by performing additional SIBFA as well as quantum chemical (QC) calculations on small (88 atoms) model complexes extracted from the 104-residue complexes, which include the residues involved in inhibitor binding. Computations were done in parallel using uncorrelated (HF) as well as correlated (DFT, LMP2, MP2) computations, and the comparisons extended to corresponding captopril complexes (Antony et al., J Comput Chem 2002, 23, 1281). The magnitudes of the SIBFA intermolecular interaction energies were found to correctly reproduce their QC counterparts and their trends for a total of twenty complexes.
Collapse
Affiliation(s)
- Jens Antony
- Freie Universität Berlin, FB Mathematik und Informatik, Institut für Mathematik II, AG Biocomputing, Arnimallee 2-6, D-14195 Berlin, Germany
| | | | | |
Collapse
|
26
|
Oelschlaeger P, Mayo SL, Pleiss J. Impact of remote mutations on metallo-beta-lactamase substrate specificity: implications for the evolution of antibiotic resistance. Protein Sci 2005; 14:765-74. [PMID: 15722450 PMCID: PMC2279297 DOI: 10.1110/ps.041093405] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Metallo-beta-lactamases have raised concerns due to their ability to hydrolyze a broad spectrum of beta-lactam antibiotics. The G262S point mutation distinguishing the metallo-beta-lactamase IMP-1 from IMP-6 has no effect on the hydrolysis of the drugs cephalothin and cefotaxime, but significantly improves catalytic efficiency toward cephaloridine, ceftazidime, benzylpenicillin, ampicillin, and imipenem. This change in specificity occurs even though residue 262 is remote from the active site. We investigated the substrate specificities of five other point mutants resulting from single-nucleotide substitutions at positions near residue 262: G262A, G262V, S121G, F218Y, and F218I. The results suggest two types of substrates: type I (nitrocefin, cephalothin, and cefotaxime), which are converted equally well by IMP-6, IMP-1, and G262A, but even more efficiently by the other mutants, and type II (ceftazidime, benzylpenicillin, ampicillin, and imipenem), which are hydrolyzed much less efficiently by all the mutants. G262V, S121G, F218Y, and F218I improve conversion of type I substrates, whereas G262A and IMP-1 improve conversion of type II substrates, indicating two distinct evolutionary adaptations from IMP-6. Substrate structure may explain the catalytic efficiencies observed. Type I substrates have R2 electron donors, which may stabilize the substrate intermediate in the binding pocket. In contrast, the absence of these stabilizing interactions with type II substrates may result in poor conversion. This observation may assist future drug design. As the G262A and F218Y mutants confer effective resistance to Escherichia coli BL21(DE3) cells (high minimal inhibitory concentrations), they are likely to evolve naturally.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
27
|
Park H, Brothers EN, Merz KM. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. J Am Chem Soc 2005; 127:4232-41. [PMID: 15783205 DOI: 10.1021/ja042607b] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on hybrid QM/MM molecular dynamics simulation and density functional theoretical (DFT) calculations, we investigate the mechanistic and energetic features of the catalytic action of dizinc metallo-beta-lactamase CcrA from Bacteroides fragilis. The 200 ps QM/MM simulation of the CcrA enzyme in complex with nitrocefin shows that the substrate beta-lactam moiety is directed toward the active site dizinc center through the interactions of aminocarbonyl and carboxylate groups with the two active site zinc ions and the two conserved residues, Lys167 and Asn176. From the determination of the potential energy profile of a relevant enzymatic reaction model, it is found that the nucleophilic displacement reaction step proceeds with a low-barrier height, leading to the formation of an energetically favored reaction intermediate. The results also show that the high catalytic activity of the CcrA enzyme stems from a simultaneous operation of three catalytic components: activation of the bridging hydroxide nucleophile by zinc-coordinated Asp86; polarization of the substrate aminocarbonyl group by the first zinc ion; stabilization of the negative charge developed on the departing amide nitrogen by the second zinc ion. Consistent with the previous experimental finding that the proton-transfer reaction step is rate-limiting, the activation energy of the second step is found to be 1.6 kcal/mol higher than that of the first step. Finally, through an examination of the structural and energetic features of binding of a thiazolidinecarboxylic acid inhibitor to the active site dizinc center, a two-step inhibition mechanism involving a protonation-induced ligand exchange reaction is proposed for the inhibitory action of a tight-binding inhibitor possessing a thiol group.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, Pennsylvania 16802-6300, USA
| | | | | |
Collapse
|
28
|
Park H, Merz KM. Force field design and molecular dynamics simulations of the carbapenem- and cephamycin-resistant dinuclear zinc metallo-beta-lactamase from Bacteroides fragilis and its complex with a biphenyl tetrazole inhibitor. J Med Chem 2005; 48:1630-7. [PMID: 15743204 DOI: 10.1021/jm0491290] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of molecular dynamics simulations, we investigate the dynamic properties of the carbapenem- and cephamycin-resistant dinuclear zinc metallo-beta-lactamase from Bacteroides fragilis and its complex with a biphenyl tetrazole inhibitor, 2-butyl-6-hydroxy-3-[2'-(1H-tetrazol-5-yl)biphenyl-4-ylmethyl]-3H-quinazolin-4-one 1 (L-159061). The results obtained with the newly developed force field parameters for the coordination environment of the catalytic zinc ions show that the active site gorge comprising major and minor loops gets deeper and narrower upon binding of the inhibitor, which supports the previous experimental implication that the structural flexibility of the loop structures plays a significant role in enzymatic action. In the presence of the inhibitor, the Trp32 side chain at the apex of the major loop covers the entrance of active site channel, thereby contributing to the stabilization of the enzyme-inhibitor complex. In addition to a direct coordination of the inhibitor tetrazole ring to the second zinc ion in the active site, the hydrogen bonding of Lys167 to the inhibitor carbonyl group and hydrophobic interactions between the inhibitor and side chains of loop residues prove to be significant binding forces of the enzyme-inhibitor complex.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802-6300, USA
| | | |
Collapse
|
29
|
Materon IC, Beharry Z, Huang W, Perez C, Palzkill T. Analysis of the context dependent sequence requirements of active site residues in the metallo-beta-lactamase IMP-1. J Mol Biol 2005; 344:653-63. [PMID: 15533435 DOI: 10.1016/j.jmb.2004.09.074] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 09/23/2004] [Accepted: 09/24/2004] [Indexed: 11/27/2022]
Abstract
The metallo-beta-lactamase IMP-1 catalyzes the hydrolysis of a broad range of beta-lactam antibiotics to provide bacterial resistance to these compounds. In this study, 29 amino acid residue positions in and near the active-site pocket of the IMP-1 enzyme were randomized individually by site-directed mutagenesis of the corresponding codons in the bla(IMP-1) gene. The 29 random libraries were used to identify positions that are critical for the catalytic and substrate-specific properties of the IMP-1 enzyme. Mutants from each of the random libraries were selected for the ability to confer to Escherichia coli resistance to ampicillin, cefotaxime, imipenem or cephaloridine. The DNA sequence of several functional mutants was determined for each of the substrates. Comparison of the sequences of mutants obtained from the different antibiotic selections indicates the sequence requirements for each position in the context of each substrate. The zinc-chelating residues in the active site were found to be essential for hydrolysis of all antibiotics tested. Several positions, however, displayed context-dependent sequence requirements, in that they were essential for one substrate(s) but not others. The most striking examples included Lys69, Asp84, Lys224, Pro225, Gly232, Asn233, Asp236 and Ser262. In addition, comparison of the results for all 29 positions indicates that hydrolysis of imipenem, cephaloridine and ampicillin has stringent sequence requirements, while the requirements for hydrolysis of cefotaxime are more relaxed. This suggests that more information is required to specify active-site pockets that carry out imipenem, cephaloridine or ampicillin hydrolysis than one that catalyzes cefotaxime hydrolysis.
Collapse
Affiliation(s)
- Isabel C Materon
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
30
|
Olsen L, Rasmussen T, Hemmingsen L, Ryde U. Binding of Benzylpenicillin to Metallo-β-lactamase: A QM/MM Study. J Phys Chem B 2004. [DOI: 10.1021/jp0482215] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lars Olsen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark, Department of Theoretical Chemistry, University of Lund, Chemical Center, P.O.B. 124 S-221 00 Lund, Sweden, and Department of Physics, The Quantum Protein Centre, The Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - T. Rasmussen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark, Department of Theoretical Chemistry, University of Lund, Chemical Center, P.O.B. 124 S-221 00 Lund, Sweden, and Department of Physics, The Quantum Protein Centre, The Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - L. Hemmingsen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark, Department of Theoretical Chemistry, University of Lund, Chemical Center, P.O.B. 124 S-221 00 Lund, Sweden, and Department of Physics, The Quantum Protein Centre, The Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - U. Ryde
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark, Department of Theoretical Chemistry, University of Lund, Chemical Center, P.O.B. 124 S-221 00 Lund, Sweden, and Department of Physics, The Quantum Protein Centre, The Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
31
|
Garrity JD, Pauff JM, Crowder MW. Probing the dynamics of a mobile loop above the active site of L1, a metallo-beta-lactamase from Stenotrophomonas maltophilia, via site-directed mutagenesis and stopped-flow fluorescence spectroscopy. J Biol Chem 2004; 279:39663-70. [PMID: 15271998 DOI: 10.1074/jbc.m406826200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A structural feature shared by the metallo-beta-lactamases is a flexible loop of amino acids that extends over their active sites and that has been proposed to move during the catalytic cycle of the enzymes, clamping down on substrate. To probe the movement of this loop (residues 152-164), a site-directed mutant of metallo-beta-lactamase L1 was engineered that contained a Trp residue on the loop to serve as a fluorescent probe. It was necessary first, however, to evaluate the contribution of each native Trp residue to the fluorescence changes observed during the catalytic cycle of wild-type L1. Five site-directed mutants of L1 (W39F, W53F, W204F, W206F, and W269F) were prepared and characterized using metal analyses, CD spectroscopy, steady-state kinetics, stopped-flow fluorescence, and fluorescence titrations. All mutants retained the wild-type tertiary structure and bound Zn(II) at levels comparable with wild type and exhibited only slight (<10-fold) decreases in k(cat) values as compared with wild-type L1 for all substrates tested. Fluorescence studies revealed a single mutant, W39F, to be void of the fluorescence changes observed with wild-type L1 during substrate binding and catalysis. Using W39F as a template, a Trp residue was added to the flexile loop over the active site of L1, to generate the double mutant, W39F/D160W. This double mutant retained all the structural and kinetic characteristics of wild-type L1. Stopped-flow fluorescence and rapid-scanning UV-visible studies revealed the motion of the loop (k(obs) = 27 +/- 2 s(-1)) to be similar to the formation rate of a reaction intermediate (k(obs) = 25 +/- 2 s(-1)).
Collapse
Affiliation(s)
- James D Garrity
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | |
Collapse
|
32
|
Dal Peraro M, Vila AJ, Carloni P. Substrate binding to mononuclear metallo-β-lactamase from Bacillus cereus. Proteins 2003; 54:412-23. [PMID: 14747990 DOI: 10.1002/prot.10554] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Structure and dynamics of substrate binding (cefotaxime) to the catalytic pocket of the mononuclear zinc-beta-lactamase from Bacillus cereus are investigated by molecular dynamics simulations. The calculations, which are based on the hydrogen-bond pattern recently proposed by Dal Peraro et al. (J Biol Inorg Chem 2002; 7:704-712), are carried out for both the free and the complexed enzyme. In the resting state, active site pattern and temperature B-factors are in agreement with crystallographic data. In the complexed form, cefotaxime is accommodated into a stable orientation in the catalytic pocket within the nanosecond timescale, interacting with the enzyme zinc-bound hydroxide and the surrounding loops. The beta-lactam ring remains stable and very close to the hydroxide nucleophile agent, giving a stable representation of the productive enzyme-substrate complex.
Collapse
Affiliation(s)
- Matteo Dal Peraro
- International School for Advanced Studies, SISSA and INFM-DEMOCRITOS, Trieste, Italy
| | | | | |
Collapse
|
33
|
Garrity JD, Carenbauer AL, Herron LR, Crowder MW. Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis. J Biol Chem 2003; 279:920-7. [PMID: 14573595 DOI: 10.1074/jbc.m309852200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallo-beta-lactamase L1 from Stenotrophomonas maltophilia is a dinuclear Zn(II) enzyme that contains a metal-binding aspartic acid in a position to potentially play an important role in catalysis. The presence of this metal-binding aspartic acid appears to be common to most dinuclear, metal-containing, hydrolytic enzymes; particularly those with a beta-lactamase fold. In an effort to probe the catalytic and metal-binding role of Asp-120 in L1, three site-directed mutants (D120C, D120N, and D120S) were prepared and characterized using metal analyses, circular dichroism spectroscopy, and presteady-state and steady-state kinetics. The D120C, D120N, and D120S mutants were shown to bind 1.6 +/- 0.2, 1.8 +/- 0.2, and 1.1 +/- 0.2 mol of Zn(II) per monomer, respectively. The mutants exhibited 10- to 1000-fold drops in kcat values as compared with wild-type L1, and a general trend of activity, wild-type > D120N > D120C and D120S, was observed for all substrates tested. Solvent isotope and pH dependence studies indicate one or more protons in flight, with pKa values outside the range of pH 5-10 (except D120N), during a rate-limiting step for all the enzymes. These data demonstrate that Asp-120 is crucial for L1 to bind its full complement of Zn(II) and subsequently for proper substrate binding to the enzyme. This work also confirms that Asp-120 plays a significant role in catalysis, presumably via hydrogen bonding with water, assisting in formation of the bridging hydroxide/water, and a rate-limiting proton transfer in the hydrolysis reaction.
Collapse
Affiliation(s)
- James D Garrity
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
34
|
Huntley JJ, Fast W, Benkovic SJ, Wright PE, Dyson HJ. Role of a solvent-exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo-beta-lactamase. Protein Sci 2003; 12:1368-75. [PMID: 12824483 PMCID: PMC2323931 DOI: 10.1110/ps.0305303] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Revised: 03/31/2003] [Accepted: 04/03/2003] [Indexed: 10/27/2022]
Abstract
Numerous X-ray crystal structures of the metallo-beta-lactamase from Bacteroides fragilis and related organisms show a beta-hairpin loop immediately adjacent to the active-site zinc atom(s). Both crystallographic and NMR information show that the end of this beta-hairpin loop, which contains a solvent exposed tryptophan residue, Trp49, is highly flexible in the absence of substrates or other ligands, giving rise in some of the X-ray structures to a lack of observable electron density in this region. We report an investigation of the role of this mobile, solvent-exposed tryptophan using site-directed mutagenesis, steady state kinetics measurements and characterization by NMR. Trp49 appears to have a role both in substrate binding and in promotion of catalysis. Substitution of this residue with a number of different side chains indicates that the binding interaction depends on the bulky hydrophobic and aromatic nature of the indole ring, which can provide relatively non-specific interactions with a variety of antibiotic substrates. In this way, the tryptophan at this position provides a large degree of the breadth of substrate specificity for the metallo-beta-lactamase. Previous studies established that the antibiotic binding site was sufficiently plastic that the derivatization of existing antibiotics is unlikely to result in the successful treatment of bacterial infections incorporating this resistance element. Rather, a more productive approach may be to design therapeutics directed towards this solvent-exposed tryptophan residue.
Collapse
Affiliation(s)
- James J.A. Huntley
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Walter Fast
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Stephen J. Benkovic
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Peter E. Wright
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - H. Jane Dyson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
35
|
Moali C, Anne C, Lamotte-Brasseur J, Groslambert S, Devreese B, Van Beeumen J, Galleni M, Frère JM. Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. CHEMISTRY & BIOLOGY 2003; 10:319-29. [PMID: 12725860 DOI: 10.1016/s1074-5521(03)00070-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of the mobile loop comprising residues 60-66 in metallo-beta-lactamases has been studied by site-directed mutagenesis, determination of kinetic parameters for six substrates and two inhibitors, pre-steady-state characterization of the interaction with chromogenic nitrocefin, and molecular modeling. The W64A mutation was performed in IMP-1 and BcII (after replacement of the BcII 60-66 peptide by that of IMP-1) and always resulted in increased K(i) and K(m) and decreased k(cat)/K(m) values, an effect reinforced by complete deletion of the loop. k(cat) values were, by contrast, much more diversely affected, indicating that the loop does not systematically favor the best relative positioning of substrate and enzyme catalytic groups. The hydrophobic nature of the ligand is also crucial to strong interactions with the loop, since imipenem was almost insensitive to loop modifications.
Collapse
Affiliation(s)
- Catherine Moali
- Centre d'Ingénierie des Protéines, Université de Liège, Sart-Tilman, B-4000 Liege, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Suárez D, Díaz N, Merz KM. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem. J Comput Chem 2002; 23:1587-600. [PMID: 12395427 DOI: 10.1002/jcc.10157] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herein, we present results from MD simulations of the Michaelis complex formed between the dizinc beta-lactamase from B. fragilis and imipenem. We considered two catalytically important configurations, which differ in the presence or absence of a hydroxide bridge connecting the two zinc ions in the active site. The structural and dynamical effects induced by substrate binding, the specific roles of the conserved residues and the zinc-bound water molecules, the near attack conformers of the Michaelis complex, and so forth, are discussed in detail. The relative stability of the two configurations was estimated from QM linear scaling calculations on the enzyme-substrate complex combined with Poisson-Boltzmann electrostatic calculations and normal mode calculations. Importantly, we find that the two configurations have similar energies, indicating that these two structures could readily be interchanged, thereby facilitating catalysis. The configuration with the hydroxide bound to the two zinc ions is predicted to be the resting form of the enzyme, while the configuration without the bridge is the reactive form that was found to place the hydroxide in position to attack the carbonyl of the beta-lactam ring. Thus, we propose that the enzyme initiates catalysis by converting from the hydroxide bridge form into the configuration that lacks the hydroxide bridge. This interconversion increases the nucleophilicity of the hydroxide ion and exposes it to the beta-lactam carbonyl, which ultimately facilitates nucleophilic attack. The implications of the observed modes of binding, the possible influence of mutating the Lys184 and Asn193 residues on substrate binding, and the reaction mechanism are also discussed in detail.
Collapse
Affiliation(s)
- Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | | | | |
Collapse
|
37
|
Antony J, Gresh N, Olsen L, Hemmingsen L, Schofield CJ, Bauer R. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics. J Comput Chem 2002; 23:1281-96. [PMID: 12210153 DOI: 10.1002/jcc.10111] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The bacterial Zn2+ metallo-beta-lactamase from B. fragilis is a zinc-enzyme with two potential metal ion binding sites. It cleaves the lactam ring of antibiotics, thus contributing to the acquired resistance of bacteria against antibiotics. The present study bears on the binuclear form of the enzyme. We compare several possible binding modes of captopril, a mercaptocarboxamide inhibitor of several zinc-metalloenzymes. Two diastereoisomers of captopril were considered, with either a D- or an L-proline residue. We have used the polarizable molecular mechanics procedure SIBFA (Sum of Interactions Between Fragments ab initio computed). Two beta-lactamase models were considered, encompassing 104 and 188 residues, respectively. The energy balances included the inter and intramolecular interaction energies as well as the contribution from solvation computed using a continuum reaction field procedure. The thiolate ion of the inhibitor is binding to both metal ions, expelling the bridging solvent molecule from the uncomplexed enzyme. Different competing binding modes of captopril were considered, either where the inhibitor binds in a monodentate mode to the zinc cations only with its thiolate ion, or in bidentate modes involving additional zinc binding by its carboxylate or ketone carbonyl groups. The additional coordination by the inhibitor's carboxylate or carbonyl group always occurs at the zinc ion, which is bound by a histidine, a cysteine, and an aspartate side chain. For both diastereomers, the energy balances favor monodentate binding of captopril via S-. The preference over bidentate binding is small. The interaction energies were recomputed in model sites restricted to captopril, the Zn2+ cations, and their coordinating end side chains from beta-lactamase (98 atoms). The interaction energies and their ranking among competing arrangements were consistent with those computed by ab initio HF and DFT procedures.
Collapse
Affiliation(s)
- Jens Antony
- Department of Mathematics and Physics, The Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
38
|
Carenbauer AL, Garrity JD, Periyannan G, Yates RB, Crowder MW. Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis. BMC BIOCHEMISTRY 2002; 3:4. [PMID: 11876827 PMCID: PMC77373 DOI: 10.1186/1471-2091-3-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Accepted: 02/13/2002] [Indexed: 11/23/2022]
Abstract
BACKGROUND The metallo-beta-lactamases are Zn(II)-containing enzymes that hydrolyze the beta-lactam bond in penicillins, cephalosporins, and carbapenems and are involved in bacterial antibiotic resistance. There are at least 20 distinct organisms that produce a metallo-beta-lactamase, and these enzymes have been extensively studied using X-ray crystallographic, computational, kinetic, and inhibition studies; however, much is still unknown about how substrates bind and the catalytic mechanism. In an effort to probe substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia, nine site-directed mutants of L1 were prepared and characterized using metal analyses, CD spectroscopy, and pre-steady state and steady state kinetics. RESULTS Site-directed mutations were generated of amino acids previously predicted to be important in substrate binding. Steady-state kinetic studies using the mutant enzymes and 9 different substrates demonstrated varying Km and kcat values for the different enzymes and substrates and that no direct correlation between Km and the effect of the mutation on substrate binding could be drawn. Stopped-flow fluorescence studies using nitrocefin as the substrate showed that only the S224D and Y228A mutants exhibited weaker nitrocefin binding. CONCLUSIONS The data presented herein indicate that Ser224, Ile164, Phe158, Tyr228, and Asn233 are not essential for tight binding of substrate to metallo-beta-lactamase L1. The results in this work also show that Km values are not reliable for showing substrate binding, and there is no correlation between substrate binding and the amount of reaction intermediate formed during the reaction. This work represents the first experimental testing of one of the computational models of the metallo-beta-lactamases.
Collapse
Affiliation(s)
- Anne L Carenbauer
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - James D Garrity
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Gopal Periyannan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Robert B Yates
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| |
Collapse
|