1
|
Zaater MA, El Kerdawy AM, Mahmoud WR, Abou-Seri SM. Going beyond ATP binding site as a novel inhibitor design strategy for tau protein kinases in the treatment of Alzheimer's disease: A review. Int J Biol Macromol 2025; 307:142141. [PMID: 40090653 DOI: 10.1016/j.ijbiomac.2025.142141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Alzheimer's disease (AD) is among the top mortality causing diseases worldwide. The presence of extracellular β-amyloidosis, as well as intraneuronal neurofibrillary aggregates of the abnormally hyperphosphorylated tau protein are two major characteristics of AD. Targeting protein kinases that are involved in the disease pathways has been a common approach in the fight against AD. Unfortunately, most kinase inhibitors currently available target the adenosine triphosphate (ATP)- binding site, which has proven unsuccessful due to issues with selectivity and resistance. As a result, a pressing need to find other alternative sites beyond the ATP- binding site has profoundly evolved. In this review, we will showcase some case studies of inhibitors of tau protein kinases acting beyond ATP binding site which have shown promising results in alleviating AD.
Collapse
Affiliation(s)
- Marwa A Zaater
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt; School of Health and Care Sciences, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom.
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| |
Collapse
|
2
|
Murga M, Lopez-Pernas G, Soliva R, Fueyo-Marcos E, Amor C, Faustino I, Serna M, Serrano AG, Díaz L, Martínez S, Blanco-Aparicio C, Antón ME, Seashore-Ludlow B, Pastor J, Jafari R, Lafarga M, Llorca O, Orozco M, Fernández-Capetillo O. SETD8 inhibition targets cancer cells with increased rates of ribosome biogenesis. Cell Death Dis 2024; 15:694. [PMID: 39341827 PMCID: PMC11438997 DOI: 10.1038/s41419-024-07106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
SETD8 is a methyltransferase that is overexpressed in several cancers, which monomethylates H4K20 as well as other non-histone targets such as PCNA or p53. We here report novel SETD8 inhibitors, which were discovered while trying to identify chemicals that prevent 53BP1 foci formation, an event mediated by H4K20 methylation. Consistent with previous reports, SETD8 inhibitors induce p53 expression, although they are equally toxic for p53 proficient or deficient cells. Thermal stability proteomics revealed that the compounds had a particular impact on nucleoli, which was confirmed by fluorescent and electron microscopy. Similarly, Setd8 deletion generated nucleolar stress and impaired ribosome biogenesis, supporting that this was an on-target effect of SETD8 inhibitors. Furthermore, a genome-wide CRISPR screen identified an enrichment of nucleolar factors among those modulating the toxicity of SETD8 inhibitors. Accordingly, the toxicity of SETD8 inhibition correlated with MYC or mTOR activity, key regulators of ribosome biogenesis. Together, our study provides a new class of SETD8 inhibitors and a novel biomarker to identify tumors most likely to respond to this therapy.
Collapse
Affiliation(s)
- Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Gema Lopez-Pernas
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 3-2, 08029, Barcelona, Spain
| | - Elena Fueyo-Marcos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Corina Amor
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ignacio Faustino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alicia G Serrano
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 3-2, 08029, Barcelona, Spain
| | - Sonia Martínez
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Elena Antón
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Joaquín Pastor
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Miguel Lafarga
- Departament of Anatomy and Cell Biology, Neurodegenerative diseases network (CIBERNED), University of Cantabria-IDIVAL, Santander, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Oscar Fernández-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden.
| |
Collapse
|
3
|
Bayarri G, Andrio P, Gelpí JL, Hospital A, Orozco M. Using interactive Jupyter Notebooks and BioConda for FAIR and reproducible biomolecular simulation workflows. PLoS Comput Biol 2024; 20:e1012173. [PMID: 38900779 PMCID: PMC11189206 DOI: 10.1371/journal.pcbi.1012173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Interactive Jupyter Notebooks in combination with Conda environments can be used to generate FAIR (Findable, Accessible, Interoperable and Reusable/Reproducible) biomolecular simulation workflows. The interactive programming code accompanied by documentation and the possibility to inspect intermediate results with versatile graphical charts and data visualization is very helpful, especially in iterative processes, where parameters might be adjusted to a particular system of interest. This work presents a collection of FAIR notebooks covering various areas of the biomolecular simulation field, such as molecular dynamics (MD), protein-ligand docking, molecular checking/modeling, molecular interactions, and free energy perturbations. Workflows can be launched with myBinder or easily installed in a local system. The collection of notebooks aims to provide a compilation of demonstration workflows, and it is continuously updated and expanded with examples using new methodologies and tools.
Collapse
Affiliation(s)
- Genís Bayarri
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pau Andrio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Josep Lluís Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Beltrán D, Hospital A, Gelpí JL, Orozco M. A new paradigm for molecular dynamics databases: the COVID-19 database, the legacy of a titanic community effort. Nucleic Acids Res 2024; 52:D393-D403. [PMID: 37953362 PMCID: PMC10767965 DOI: 10.1093/nar/gkad991] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Molecular dynamics (MD) simulations are keeping computers busy around the world, generating a huge amount of data that is typically not open to the scientific community. Pioneering efforts to ensure the safety and reusability of MD data have been based on the use of simple databases providing a limited set of standard analyses on single-short trajectories. Despite their value, these databases do not offer a true solution for the current community of MD users, who want a flexible analysis pipeline and the possibility to address huge non-Markovian ensembles of large systems. Here we present a new paradigm for MD databases, resilient to large systems and long trajectories, and designed to be compatible with modern MD simulations. The data are offered to the community through a web-based graphical user interface (GUI), implemented with state-of-the-art technology, which incorporates system-specific analysis designed by the trajectory providers. A REST API and associated Jupyter Notebooks are integrated into the platform, allowing fully customized meta-analysis by final users. The new technology is illustrated using a collection of trajectories obtained by the community in the context of the effort to fight the COVID-19 pandemic. The server is accessible at https://bioexcel-cv19.bsc.es/#/. It is free and open to all users and there are no login requirements. It is also integrated into the simulations section of the BioExcel-MolSSI COVID-19 Molecular Structure and Therapeutics Hub: https://covid.molssi.org/simulations/ and is part of the MDDB effort (https://mddbr.eu).
Collapse
Affiliation(s)
- Daniel Beltrán
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josep Lluís Gelpí
- Department of Biochemistry and Biomedicine. University of Barcelona, Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biochemistry and Biomedicine. University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Balboni B, Masi M, Rocchia W, Girotto S, Cavalli A. GSK-3β Allosteric Inhibition: A Dead End or a New Pharmacological Frontier? Int J Mol Sci 2023; 24:7541. [PMID: 37108703 PMCID: PMC10139115 DOI: 10.3390/ijms24087541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Most kinase inhibitors are designed to bind to highly homologous ATP-binding sites, which leads to promiscuity and possible off-target effects. Allostery is an alternative approach to pursuing selectivity. However, allostery is difficult to exploit due to the wide variety of underlying mechanisms and the potential involvement of long-range conformational effects that are difficult to pinpoint. GSK-3β is involved in several pathologies. This critical target has an ATP-binding site that is highly homologous with the orthosteric sites of other kinases. Unsurprisingly, there is also great similarity between the ATP-binding sites of GSK-3β and its isomer, which is not redundant and thus would benefit from selective inhibition. Allostery would also allow for a moderate and tunable inhibition, which is ideal for GSK-3β, because this target is involved in multiple pathways, some of which must be preserved. However, despite considerable research efforts, only one allosteric GSK-3β inhibitor has reached the clinic. Moreover, unlike other kinases, there are no X-ray structures of GSK-3β in complex with allosteric inhibitors in the PDB data bank. This review aims to summarize the state of the art in allosteric GSK-3β inhibitor investigations, highlighting the aspects that make this target challenging for an allosteric approach.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Mirco Masi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| | - Walter Rocchia
- Computational mOdelling of NanosCalE and bioPhysical sysTems (CONCEPT) Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Stefania Girotto
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (B.B.); (M.M.)
| |
Collapse
|
6
|
Serrano-Chacón I, Mir B, Cupellini L, Colizzi F, Orozco M, Escaja N, González C. pH-Dependent Capping Interactions Induce Large-Scale Structural Transitions in i-Motifs. J Am Chem Soc 2023; 145:3696-3705. [PMID: 36745195 PMCID: PMC9936585 DOI: 10.1021/jacs.2c13043] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 02/07/2023]
Abstract
We study here a DNA oligonucleotide having the ability to form two different i-motif structures whose relative stability depends on pH and temperature. The major species at neutral pH is stabilized by two C:C+ base pairs capped by two minor groove G:C:G:C tetrads. The high pH and thermal stability of this structure are mainly due to the favorable effect of the minor groove tetrads on their adjacent positively charged C:C+ base pairs. At pH 5, we observe a more elongated i-motif structure consisting of four C:C+ base pairs capped by two G:T:G:T tetrads. Molecular dynamics calculations show that the conformational transition between the two structures is driven by the protonation state of key cytosines. In spite of large conformational differences, the transition between the acidic and neutral structures can occur without unfolding of the i-motif. These results represent the first case of a conformational switch between two different i-motif structures and illustrate the dramatic pH-dependent plasticity of this fascinating DNA motif.
Collapse
Affiliation(s)
- Israel Serrano-Chacón
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Bartomeu Mir
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Lorenzo Cupellini
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Francesco Colizzi
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Modesto Orozco
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
- Departament
de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, 08028Barcelona, Spain
| | - Núria Escaja
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| | - Carlos González
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| |
Collapse
|
7
|
A Fijivirus Major Viroplasm Protein Shows RNA-Stimulated ATPase Activity by Adopting Pentameric and Hexameric Assemblies of Dimers. mBio 2023; 14:e0002323. [PMID: 36786587 PMCID: PMC10128069 DOI: 10.1128/mbio.00023-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.
Collapse
|
8
|
Suriñach A, Hospital A, Westermaier Y, Jordà L, Orozco-Ruiz S, Beltrán D, Colizzi F, Andrio P, Soliva R, Municoy M, Gelpí JL, Orozco M. High-Throughput Prediction of the Impact of Genetic Variability on Drug Sensitivity and Resistance Patterns for Clinically Relevant Epidermal Growth Factor Receptor Mutations from Atomistic Simulations. J Chem Inf Model 2023; 63:321-334. [PMID: 36576351 DOI: 10.1021/acs.jcim.2c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) can be drivers of cancer and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this end, we explored a variety of in silico methods, from sequence-based to "state-of-the-art" atomistic simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation appears or the impact of such mutations on drug activity. Low-level simulation methods provide limited qualitative information on regions where mutations are likely to cause alterations in drug activity, and they can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on nonequilibrium alchemical free energy calculations show predictive power. The integration of these "state-of-the-art" methods into a workflow implementing an interface for parallel distribution of the calculations allows its automatic and high-throughput use, even for researchers with moderate experience in molecular simulations.
Collapse
Affiliation(s)
- Aristarc Suriñach
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 08029 Barcelona, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Yvonne Westermaier
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 08029 Barcelona, Spain
| | - Luis Jordà
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - Sergi Orozco-Ruiz
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - Daniel Beltrán
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Pau Andrio
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 08029 Barcelona, Spain
| | - Martí Municoy
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 08029 Barcelona, Spain
| | - Josep Lluís Gelpí
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain.,Department Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona 08029, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,Department Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona 08029, Spain
| |
Collapse
|
9
|
Ketley RF, Battistini F, Alagia A, Mondielli C, Iehl F, Balikçi E, Huber KVM, Orozco M, Gullerova M. DNA double-strand break-derived RNA drives TIRR/53BP1 complex dissociation. Cell Rep 2022; 41:111526. [PMID: 36288694 PMCID: PMC9638026 DOI: 10.1016/j.celrep.2022.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Tudor-interacting repair regulator (TIRR) is an RNA-binding protein and a negative regulator of the DNA-repair factor p53-binding protein 1 (53BP1). In non-damage conditions, TIRR is bound to 53BP1. After DNA damage, TIRR and 53BP1 dissociate, and 53BP1 binds the chromatin at the double-strand break (DSB) to promote non-homologous end joining (NHEJ)-mediated repair. However, the exact mechanistic details of this dissociation after damage are unknown. Increasing evidence has implicated RNA as a crucial factor in the DNA damage response (DDR). Here, we show that RNA can separate TIRR/53BP1. Specifically, RNA with a hairpin secondary structure, transcribed at the DSB by RNA polymerase II (RNAPII), promotes TIRR/53BP1 complex separation. This hairpin RNA binds to the same residues on TIRR as 53BP1. Our results uncover a role of DNA-damage-derived RNA in modulating a protein-protein interaction and contribute to our understanding of DSB repair.
Collapse
Affiliation(s)
- Ruth F Ketley
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science, and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biology. University of Barcelona, 08028 Barcelona, Spain
| | - Adele Alagia
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Clémence Mondielli
- HTBS - Biophysics Group, Evotec (France) SAS, Campus Curie, 195 Route d'Espagne, 31036 Toulouse Cedex, France
| | - Florence Iehl
- HTBS - Biophysics Group, Evotec (France) SAS, Campus Curie, 195 Route d'Espagne, 31036 Toulouse Cedex, France
| | - Esra Balikçi
- Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford OX3 7FZ, UK; Target Discovery Institute, Nuffield Department of Medicine, Oxford OX3 7FZ, UK
| | - Kilian V M Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford OX3 7FZ, UK; Target Discovery Institute, Nuffield Department of Medicine, Oxford OX3 7FZ, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science, and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biology. University of Barcelona, 08028 Barcelona, Spain
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
10
|
Aranda J, Wieczór M, Terrazas M, Brun-Heath I, Orozco M. Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2. CHEM CATALYSIS 2022; 2:1084-1099. [PMID: 35465139 PMCID: PMC9016896 DOI: 10.1016/j.checat.2022.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023]
Abstract
We combine molecular dynamics, statistical mechanics, and hybrid quantum mechanics/molecular mechanics simulations to describe mechanistically the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp). Our study analyzes the binding mode of both natural triphosphate substrates as well as remdesivir triphosphate (the active form of drug), which is bound preferentially over ATP by RdRp while being poorly recognized by human RNA polymerase II (RNA Pol II). A comparison of incorporation rates between natural and antiviral nucleotides shows that remdesivir is incorporated more slowly into the nascent RNA compared with ATP, leading to an RNA duplex that is structurally very similar to an unmodified one, arguing against the hypothesis that remdesivir is a competitive inhibitor of ATP. We characterize the entire mechanism of reaction, finding that viral RdRp is highly processive and displays a higher catalytic rate of incorporation than human RNA Pol II. Overall, our study provides the first detailed explanation of the replication mechanism of RdRp.
Collapse
Affiliation(s)
- Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Milosz Wieczór
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicine, Universitat de Barcelona, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Peluffo RD. Cationic amino acid transporters and their modulation by nitric oxide in cardiac muscle cells. Biophys Rev 2022; 13:1071-1079. [PMID: 35059028 DOI: 10.1007/s12551-021-00870-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
Cationic amino acid transporters (CATs) play a central role in the supply of the substrate L-arginine to intracellular nitric oxide synthases (NOS), the enzymes responsible for the synthesis of nitric oxide (NO). In heart, NO produced by cardiac myocytes has diverse and even opposite effects on myocardial contractility depending on the subcellular location of its production. Approximately a decade ago, using a combination of biophysical and biochemical approaches, we discovered and characterized high- and low-affinity CATs that function simultaneously in the cardiac myocyte plasma membrane. Later on, we reported a negative feedback regulation of NO on the activity of cardiac CATs. In this way, NO was found to modulate its own biosynthesis by regulating the amount of L-arginine that becomes available as NOS substrate. We have recently solved the molecular determinants for this NO regulation on the low-affinity high-capacity CAT-2A. This review highlights some biophysical and biochemical features of L-arginine transporters and their potential relation to cardiac muscle physiology and pathology.
Collapse
Affiliation(s)
- R Daniel Peluffo
- Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de La República, Rivera 1350, CP: 50000 Salto, Uruguay.,Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103 USA
| |
Collapse
|
12
|
Battistini F, Dans PD, Terrazas M, Castellazzi CL, Portella G, Labrador M, Villegas N, Brun-Heath I, González C, Orozco M. The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function. PLoS Comput Biol 2021; 17:e1009547. [PMID: 34748533 PMCID: PMC8601608 DOI: 10.1371/journal.pcbi.1009547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/18/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022] Open
Abstract
We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding. In Eukaryotic cells, DNA epigenetic modifications play an important role in gene expression and regulation, and protein recognition. In this work we investigate the physical implications of cytosine 5-hydroxymethylation on DNA, its structural and flexibility differences with methylated and unmodified cytosine using molecular dynamics, biophysical experiments and NMR spectroscopy. In particular the effect of hydroxyl group on free energy of nucleosome and Methyl binding Protein (MBD) binding, comparing in silico and experimental data to shed light on the effect of the reduced flexibility and the direct protein-DNA recognition.
Collapse
Affiliation(s)
- Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pablo D. Dans
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
- Functional Genomics Lab., Institut Pasteur of Montevideo, Montevideo, Uruguay
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Chiara L. Castellazzi
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guillem Portella
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Chemistry Department, University of Cambridge, Cambridge, United Kingdom
| | - Mireia Labrador
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria Villegas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlos González
- Instituto Química Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
13
|
Zheng R, da Rosa G, Dans PD, Peluffo RD. Molecular Determinants for Nitric Oxide Regulation of the Murine Cationic Amino Acid Transporter CAT-2A. Biochemistry 2020; 59:4225-4237. [PMID: 33135877 DOI: 10.1021/acs.biochem.0c00729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cationic amino acid transporters (CATs) supply cells with essential and semiessential dibasic amino acids. Among them, l-arginine is the substrate for nitric oxide synthases (NOS) to produce nitric oxide (NO), a key signaling molecule and second messenger. In cardiac preparations, we showed that NO acutely and directly modulates transport activity by noncompetitively inhibiting these CATs. We hypothesize that this NO regulation occurs through modification of cysteine residues in CAT proteins. Homology modeling and a computational chemistry approach identified Cys347 as one of two putative targets for NO binding, of 15 Cys residues present in the low-affinity mouse CAT-2A (mCAT-2A). To test this prediction, mammalian cell lines overexpressing mCAT-2A were used for site-directed mutagenesis and uptake studies. When Cys347 was replaced with alanine (Cys347Ala), mCAT-2A became insensitive to inhibition by NO donors. In addition, the transport capacity of this variant decreased by >50% compared to that of the control, without affecting membrane expression levels or apparent affinities for the transported amino acids. Interestingly, replacing Cys347 with serine (Cys347Ser) restored uptake levels to those of the control while retaining NO insensitivity. Other Cys residues, when replaced with Ala, still produced a NO-sensitive CAT-2A. In cells co-expressing NOS and mCAT-2A, exposure to extracellular l-arginine inhibited the uptake activity of control mCAT-2A, via NO production, but not that of the Cys347Ser variant. Thus, the -SH moiety of Cys347 is largely responsible for mCAT-2A inhibition by NO. Because of the endogenous NO effect, this modulation is likely to be physiologically relevant and a potential intervention point for therapeutics.
Collapse
Affiliation(s)
- Ruifang Zheng
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Gabriela da Rosa
- Laboratory of Molecular Microbiology, DEPBIO, School of Sciences-School of Chemistry, Universidad de la República, 11400 Montevideo, Uruguay.,Functional Genomics Laboratory, Institut Pasteur of Montevideo, Mataojo 2020, CP, 11400 Montevideo, Uruguay.,Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Rivera 1350, CP, 50000 Salto, Uruguay
| | - Pablo D Dans
- Functional Genomics Laboratory, Institut Pasteur of Montevideo, Mataojo 2020, CP, 11400 Montevideo, Uruguay.,Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Rivera 1350, CP, 50000 Salto, Uruguay
| | - R Daniel Peluffo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, New Jersey 07103, United States.,Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Rivera 1350, CP, 50000 Salto, Uruguay
| |
Collapse
|
14
|
Zivanovic S, Bayarri G, Colizzi F, Moreno D, Gelpí JL, Soliva R, Hospital A, Orozco M. Bioactive Conformational Ensemble Server and Database. A Public Framework to Speed Up In Silico Drug Discovery. J Chem Theory Comput 2020; 16:6586-6597. [PMID: 32786900 DOI: 10.1021/acs.jctc.0c00305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modern high-throughput structure-based drug discovery algorithms consider ligand flexibility, but typically with low accuracy, which results in a loss of performance in the derived models. Here we present the bioactive conformational ensemble (BCE) server and its associated database. The server creates conformational ensembles of drug-like ligands and stores them in the BCE database, where a variety of analyses are offered to the user. The workflow implemented in the BCE server combines enhanced sampling molecular dynamics with self-consistent reaction field quantum mechanics (SCRF/QM) calculations. The server automatizes all of the steps to transform one-dimensional (1D) or 2D representation of drugs into 3D molecules, which are then titrated, parametrized, hydrated, and optimized before being subjected to Hamiltonian replica-exchange (HREX) molecular dynamics simulations. Ensembles are collected and subjected to a clustering procedure to derive representative conformers, which are then analyzed at the SCRF/QM level of theory. All structural data are organized in a noSQL database accessible through a graphical interface and in a programmatic manner through a REST API. The server allows the user to define a private workspace and offers a deposition protocol as well as input files for "in house" calculations in those cases where confidentiality is a must. The database and the associated server are available at https://mmb.irbbarcelona.org/BCE.
Collapse
Affiliation(s)
- Sanja Zivanovic
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). Barcelona 08028, Spain
| | - Genís Bayarri
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). Barcelona 08028, Spain
| | - Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). Barcelona 08028, Spain
| | - David Moreno
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). Barcelona 08028, Spain
| | - Josep Lluís Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain.,Departament de Bioquímica i Biomedicina, Facultat de Biologia. Universitat de Barcelona, Barcelona E08028, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Nexus II Building, Barcelona 08034, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). Barcelona 08028, Spain.,Departament de Bioquímica i Biomedicina, Facultat de Biologia. Universitat de Barcelona, Barcelona E08028, Spain
| |
Collapse
|
15
|
Roe DR, Brooks BR. A protocol for preparing explicitly solvated systems for stable molecular dynamics simulations. J Chem Phys 2020; 153:054123. [PMID: 32770927 PMCID: PMC7413747 DOI: 10.1063/5.0013849] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/19/2020] [Indexed: 11/14/2022] Open
Abstract
Before beginning the production phase of molecular dynamics simulations, i.e., the phase that produces the data to be analyzed, it is often necessary to first perform a series of one or more preparatory minimizations and/or molecular dynamics simulations in order to ensure that subsequent production simulations are stable. This is particularly important for simulations with explicit solvent molecules. Despite the preparatory minimizations and simulations being ubiquitous and essential for stable production simulations, there are currently no general recommended procedures to perform them and very few criteria to decide whether the system is capable of producing a stable simulation trajectory. Here, we propose a simple and well-defined ten step simulation preparation protocol for explicitly solvated biomolecules, which can be applied to a wide variety of system types, as well as a simple test based on the system density for determining whether the simulation is stabilized.
Collapse
Affiliation(s)
- Daniel R. Roe
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med 2020; 26:1063-1069. [PMID: 32483361 DOI: 10.1038/s41591-020-0908-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The mucosal epithelium is a common target of damage by chronic bacterial infections and the accompanying toxins, and most cancers originate from this tissue. We investigated whether colibactin, a potent genotoxin1 associated with certain strains of Escherichia coli2, creates a specific DNA-damage signature in infected human colorectal cells. Notably, the genomic contexts of colibactin-induced DNA double-strand breaks were enriched for an AT-rich hexameric sequence motif, associated with distinct DNA-shape characteristics. A survey of somatic mutations at colibactin target sites of several thousand cancer genomes revealed notable enrichment of this motif in colorectal cancers. Moreover, the exact double-strand-break loci corresponded with mutational hot spots in cancer genomes, reminiscent of a trinucleotide signature previously identified in healthy colorectal epithelial cells3. The present study provides evidence for the etiological role of colibactin in human cancer.
Collapse
|
17
|
How B-DNA Dynamics Decipher Sequence-Selective Protein Recognition. J Mol Biol 2019; 431:3845-3859. [DOI: 10.1016/j.jmb.2019.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022]
|
18
|
An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases. Nat Catal 2019. [DOI: 10.1038/s41929-019-0290-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Pal S, Paul S. Conformational deviation of Thrombin binding G-quadruplex aptamer (TBA) in presence of divalent cation Sr 2+: A classical molecular dynamics simulation study. Int J Biol Macromol 2018; 121:350-363. [PMID: 30308284 DOI: 10.1016/j.ijbiomac.2018.09.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
Thrombin binding TBA-G-quadruplex aptamer (TBA) plays a major role in blood coagulation cascade. The 15-mer TBA sequence tends to form four-stranded TBA-G-quadruplex structure. In this research work, a series of explicit solvent classical MD simulations of the TBA is carried out using different salt (SrCl2) concentrations (0, 50, 100 and 200 mM). Here we have also testified the effect of salt concentration of divalent cation Sr2+ on the conformational change of quadruplex DNA. The structural deviations, fluctuations, torsional angles and the affinity of the ion are explored at different salt concentrations. It is found that the conformation of TBA-G-quadruplex at 0 mM and 50 mM salt concentrations, is very much different than the other salt concentrations (100 mM and 200 mM). Also observed are as follows: (i) no exchange of Sr2+ ion between inside and outside of the channel, (ii) an enhancement in the Sr2+ ion density around the phosphate region of the loop residues as salt concentration increases and (iii) the stacking of T3 and T4 residues of loop-1 that appears up to 50 mM concentration, vanishes as the salt concentration is increased further.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
20
|
Balaceanu A, Pérez A, Dans PD, Orozco M. Allosterism and signal transfer in DNA. Nucleic Acids Res 2018; 46:7554-7565. [PMID: 29905860 PMCID: PMC6125689 DOI: 10.1093/nar/gky549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/11/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
We analysed the basic mechanisms of signal transmission in DNA and the origins of the allostery exhibited by systems such as the ternary complex BAMHI-DNA-GRDBD. We found that perturbation information generated by a primary protein binding event travels as a wave to distant regions of DNA following a hopping mechanism. However, such a structural perturbation is transient and does not lead to permanent changes in the DNA geometry and interaction properties at the secondary binding site. The BAMHI-DNA-GRDBD allosteric mechanism does not occur through any traditional models: direct (protein-protein), indirect (reorganization of the secondary site) readout or solvent-release. On the contrary, it is generated by a subtle and less common entropy-mediated mechanism, which might have an important role to explain other DNA-mediated cooperative effects.
Collapse
Affiliation(s)
- Alexandra Balaceanu
- Joint IRB-BSC Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Alberto Pérez
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Pablo D Dans
- Joint IRB-BSC Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Modesto Orozco
- Joint IRB-BSC Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
21
|
Cunha ES, Sfriso P, Rojas AL, Roversi P, Hospital A, Orozco M, Abrescia NG. Mechanism of Structural Tuning of the Hepatitis C Virus Human Cellular Receptor CD81 Large Extracellular Loop. Structure 2017; 25:53-65. [DOI: 10.1016/j.str.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/21/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
|
22
|
Challenges of docking in large, flexible and promiscuous binding sites. Bioorg Med Chem 2016; 24:4961-4969. [PMID: 27545443 DOI: 10.1016/j.bmc.2016.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 01/11/2023]
Abstract
After decades of work, the correct determination of the binding mode of a small molecule into a target protein is still a challenging problem, whose difficulty depends on: (i) the sizes of the binding site and the ligand; (ii) the flexibility of both interacting partners, and (iii) the differential solvation of bound and unbound partners. We have evaluated the performance of standard rigid(receptor)/flexible(ligand) docking approaches with respect to last-generation fully flexible docking methods to obtain reasonable poses in a very challenging case: soluble Epoxide Hydrolase (sEH), a flexible protein showing different binding sites. We found that full description of the flexibility of both protein and ligand and accurate description of solvation leads to significant improvement in the ability of docking to reproduce well known binding modes, and at the same time capture the intrinsic binding promiscuity of the protein.
Collapse
|
23
|
Isley WC, Urick AK, Pomerantz WCK, Cramer CJ. Prediction of 19F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study. Mol Pharm 2016; 13:2376-86. [DOI: 10.1021/acs.molpharmaceut.6b00137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- William C. Isley
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Andrew K. Urick
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Islam B, Stadlbauer P, Krepl M, Koca J, Neidle S, Haider S, Sponer J. Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res 2015; 43:8673-93. [PMID: 26245347 PMCID: PMC4605300 DOI: 10.1093/nar/gkv785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023] Open
Abstract
The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 μs long, ∼50 μs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal μs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex.
Collapse
Affiliation(s)
- Barira Islam
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jaroslav Koca
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic National Center for Biomolecular Research, Faculty of Science, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiri Sponer
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
25
|
Molina R, Stella S, Redondo P, Gomez H, Marcaida MJ, Orozco M, Prieto J, Montoya G. Visualizing phosphodiester-bond hydrolysis by an endonuclease. Nat Struct Mol Biol 2014; 22:65-72. [PMID: 25486305 DOI: 10.1038/nsmb.2932] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/12/2014] [Indexed: 01/12/2023]
Abstract
The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-ion cleavage mechanism. We captured intermediates of the different catalytic steps, and this allowed us to watch the reaction by 'freezing' multiple states. We observed the successive entry of two metals involved in the reaction and the arrival of a third cation in a central position of the active site. This third metal ion has a crucial role, triggering the consecutive hydrolysis of the targeted phosphodiester bonds in the DNA strands and leaving its position once the DSB is generated. The multiple structures show the orchestrated conformational changes in the protein residues, nucleotides and metals during catalysis.
Collapse
Affiliation(s)
- Rafael Molina
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Stefano Stella
- 1] Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. [2] Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pilar Redondo
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Hansel Gomez
- Joint Barcelona Computing Center (BSC)-Centre for Genomic Regulation (CRG)-Institute for Research in Biomedicine (IRB) Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - María José Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Modesto Orozco
- 1] Joint Barcelona Computing Center (BSC)-Centre for Genomic Regulation (CRG)-Institute for Research in Biomedicine (IRB) Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain. [2] Departament de Bioquimica, Facultat de Biologia, University of Barcelona, Barcelona, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Montoya
- 1] Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. [2] Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Fenollosa C, Otón M, Andrio P, Cortés J, Orozco M, Goñi JR. SEABED: Small molEcule activity scanner weB servicE baseD. ACTA ACUST UNITED AC 2014; 31:773-5. [PMID: 25348211 PMCID: PMC7297214 DOI: 10.1093/bioinformatics/btu709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Motivation: The SEABED web server integrates a variety of docking and QSAR techniques in a user-friendly environment. SEABED goes beyond the basic docking and QSAR web tools and implements extended functionalities like receptor preparation, library editing, flexible ensemble docking, hybrid docking/QSAR experiments or virtual screening on protein mutants. SEABED is not a monolithic workflow tool but Software as a Service platform. Availability and implementation: SEABED is a free web server available athttp://www.bsc.es/SEABED. No registration is required. Contact:ramon.goni@bsc.es Supplementary information:Supplementary data are available atBioinformatics online.
Collapse
Affiliation(s)
- Carlos Fenollosa
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain
| | - Marcel Otón
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain
| | - Pau Andrio
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain
| | - Jorge Cortés
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain
| | - Modesto Orozco
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molec
| | - J Ramon Goñi
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain, Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain, Computational Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08034, Spain, Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain, Department of Biochemistry and Molecular Biology, Biology Faculty, University of Barcelona, Barcelona 08028, Spain and Structural Bioinformatics Node, National Institute of Bioinformatics, Barcelona 08028, Spain
| |
Collapse
|
27
|
Dans PD, Faustino I, Battistini F, Zakrzewska K, Lavery R, Orozco M. Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA. Nucleic Acids Res 2014; 42:11304-20. [PMID: 25223784 PMCID: PMC4191396 DOI: 10.1093/nar/gku809] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/12/2022] Open
Abstract
We have made a detailed study of one of the most surprising sources of polymorphism in B-DNA: the high twist/low twist (HT/LT) conformational change in the d(CpG) base pair step. Using extensive computations, complemented with database analysis, we were able to characterize the twist polymorphism in the d(CpG) step in all the possible tetranucleotide environment. We found that twist polymorphism is coupled with BI/BII transitions, and, quite surprisingly, with slide polymorphism in the neighboring step. Unexpectedly, the penetration of cations into the minor groove of the d(CpG) step seems to be the key element in promoting twist transitions. The tetranucleotide environment also plays an important role in the sequence-dependent d(CpG) polymorphism. In this connection, we have detected a previously unexplored intramolecular C-H···O hydrogen bond interaction that stabilizes the low twist state when 3'-purines flank the d(CpG) step. This work explains a coupled mechanism involving several apparently uncorrelated conformational transitions that has only been partially inferred by earlier experimental or theoretical studies. Our results provide a complete description of twist polymorphism in d(CpG) steps and a detailed picture of the molecular choreography associated with this conformational change.
Collapse
Affiliation(s)
- Pablo Daniel Dans
- Joint BSC-CRG-IRB Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Ignacio Faustino
- Joint BSC-CRG-IRB Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Federica Battistini
- Joint BSC-CRG-IRB Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Krystyna Zakrzewska
- Bases Moléculaires et Structurales des Systèmes Infectieux, Univ. Lyon I/CNRS UMR 5086, IBCP, 7 Passage du Vercors, Lyon 69367, France
| | - Richard Lavery
- Bases Moléculaires et Structurales des Systèmes Infectieux, Univ. Lyon I/CNRS UMR 5086, IBCP, 7 Passage du Vercors, Lyon 69367, France
| | - Modesto Orozco
- Joint BSC-CRG-IRB Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain Departament de Bioquimica, Facultat de Biologia, Avgda Diagonal 647, Barcelona 08028, Spain
| |
Collapse
|
28
|
Abstract
The electric polarizability of DNA, represented by the dielectric constant, is a key intrinsic property that modulates DNA interaction with effector proteins. Surprisingly, it has so far remained unknown owing to the lack of experimental tools able to access it. Here, we experimentally resolved it by detecting the ultraweak polarization forces of DNA inside single T7 bacteriophages particles using electrostatic force microscopy. In contrast to the common assumption of low-polarizable behavior like proteins (εr ∼ 2-4), we found that the DNA dielectric constant is ∼ 8, considerably higher than the value of ∼ 3 found for capsid proteins. State-of-the-art molecular dynamic simulations confirm the experimental findings, which result in sensibly decreased DNA interaction free energy than normally predicted by Poisson-Boltzmann methods. Our findings reveal a property at the basis of DNA structure and functions that is needed for realistic theoretical descriptions, and illustrate the synergetic power of scanning probe microscopy and theoretical computation techniques.
Collapse
|
29
|
Arcella A, Portella G, Collepardo-Guevara R, Chakraborty D, Wales DJ, Orozco M. Structure and properties of DNA in apolar solvents. J Phys Chem B 2014; 118:8540-8. [PMID: 24968001 PMCID: PMC4124876 DOI: 10.1021/jp503816r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The
study of nucleic acids in low-polarity environments paves the
way for novel biotechnological applications of DNA. Here, we use a
repertoire of atomistic molecular simulation tools to study the nature
of DNA when placed in a highly apolar environment and when transferred
from aqueous to apolar solvent. Our results show that DNA becomes
stiffer in apolar solvents and suggest that highly negatively charged
states, which are the most prevalent in water, are strongly disfavored
in apolar solvents and neutral states with conformations not far from
the aqueous ones are the dominant forms. Transfer from water to an
apolar solvent such as CCl4 is unlikely to occur, but our
results suggest that if forced, the DNA would migrate surrounded by
a small shell of water (the higher the DNA charge, the larger the
number of water molecules in this shell). Even the neutral form (predicted
to be the dominant one in apolar solvents) would surround itself by
a small number of highly stable water molecules when moved from water
to a highly apolar environment. Neutralization of DNA charges seems
a crucial requirement for transfer of DNA to apolar media, and the
most likely mechanism to achieve good transfer properties.
Collapse
Affiliation(s)
- Annalisa Arcella
- Institute for Research in Biomedicine (IRB Barcelona) , 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Faustino I, Curutchet C, Luque FJ, Orozco M. The DNA-forming properties of 6-selenoguanine. Phys Chem Chem Phys 2013; 16:1101-10. [PMID: 24287926 DOI: 10.1039/c3cp53885k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present here an exhaustive characterization of the structure and properties of 6-selenoguanine, an isoster of guanine, and the impact of its introduction in DNA. This study reports the results of state-of-the-art quantum mechanical calculations and atomistic molecular dynamics simulations carried out to shed light on the impact of the replacement of guanine (G) by 6-selenoguanine (SeG) in different forms of DNA. The results point out that the G → SeG substitution leads to stable DNA duplex, antiparallel triplex and G-quadruplex structures, though local distortions are also found. These structural changes affect the thermodynamic stability of the mutation leading to a clear destabilization for all studied systems. Interestingly, the lowest effect has been found when the mutation was placed in the triplex-forming oligonucleotide strand in a reverse Hoogsteen orientation, which favours the antiparallel triplex formation regarding the G-tetraplex formation. Detailed QM studies strongly suggest that SeG impacts the HOMO-LUMO gap and accordingly the transfer properties of DNA, opening the way to modulate the conductivity properties of non-natural DNAs.
Collapse
Affiliation(s)
- Ignacio Faustino
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac, 10, Barcelona 08028, Spain
| | | | | | | |
Collapse
|
31
|
Stadlbauer P, Krepl M, Cheatham TE, Koča J, Šponer J. Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res 2013; 41:7128-43. [PMID: 23700306 PMCID: PMC3737530 DOI: 10.1093/nar/gkt412] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
Explicit solvent molecular dynamics simulations have been used to complement preceding experimental and computational studies of folding of guanine quadruplexes (G-DNA). We initiate early stages of unfolding of several G-DNAs by simulating them under no-salt conditions and then try to fold them back using standard excess salt simulations. There is a significant difference between G-DNAs with all-anti parallel stranded stems and those with stems containing mixtures of syn and anti guanosines. The most natural rearrangement for all-anti stems is a vertical mutual slippage of the strands. This leads to stems with reduced numbers of tetrads during unfolding and a reduction of strand slippage during refolding. The presence of syn nucleotides prevents mutual strand slippage; therefore, the antiparallel and hybrid quadruplexes initiate unfolding via separation of the individual strands. The simulations confirm the capability of G-DNA molecules to adopt numerous stable locally and globally misfolded structures. The key point for a proper individual folding attempt appears to be correct prior distribution of syn and anti nucleotides in all four G-strands. The results suggest that at the level of individual molecules, G-DNA folding is an extremely multi-pathway process that is slowed by numerous misfolding arrangements stabilized on highly variable timescales.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Thomas E. Cheatham
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jaroslav Koča
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
32
|
Bidon-Chanal A, Fuertes A, Alonso D, Pérez DI, Martínez A, Luque FJ, Medina M. Evidence for a new binding mode to GSK-3: Allosteric regulation by the marine compound palinurin. Eur J Med Chem 2013; 60:479-89. [DOI: 10.1016/j.ejmech.2012.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 11/16/2022]
|
33
|
Defining the nature of thermal intermediate in 3 state folding proteins: apoflavodoxin, a study case. PLoS Comput Biol 2012; 8:e1002647. [PMID: 22927805 PMCID: PMC3426563 DOI: 10.1371/journal.pcbi.1002647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022] Open
Abstract
The early stages of the thermal unfolding of apoflavodoxin have been determined by using atomistic multi microsecond-scale molecular dynamics (MD) simulations complemented with a variety of experimental techniques. Results strongly suggest that the intermediate is reached very early in the thermal unfolding process and that it has the properties of an “activated” form of the native state, where thermal fluctuations in the loops break loop-loop contacts. The unrestrained loops gain then kinetic energy corrupting short secondary structure elements without corrupting the core of the protein. The MD-derived ensembles agree with experimental observables and draw a picture of the intermediate state inconsistent with a well-defined structure and characteristic of a typical partially disordered protein. Our results allow us to speculate that proteins with a well packed core connected by long loops might behave as partially disordered proteins under native conditions, or alternatively behave as three state folders. Small details in the sequence, easily tunable by evolution, can yield to one or the other type of proteins. A simplistic view of protein structure tends to emphasize the opposition between the native state and the denatured ensemble of unfolded conformations. In addition to these extreme conformations, proteins subjected to a variety of perturbations often populate alternative partly unfolded conformations, some of which are close in energy to the native state and, accordingly, can be populated under native or quasi-native conditions. There is increasing evidence that these “perturbed” conformations participate in protein function or, in some cases, are related to the outcome of folding diseases. We have used the “state of the art” molecular dynamics combined with a variety of experimental techniques to characterize for the first time, to our knowledge, the thermal intermediate of a three-state folding protein (apoflavodoxin). Based on our results we have been able to suggest a general mechanism of thermal unfolding in complex proteins and to determine interesting links between thermal intermediates and partially unfolded proteins.
Collapse
|
34
|
Réblová K, Šponer JE, Špačková N, Beššeová I, Šponer J. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis. J Phys Chem B 2011; 115:13897-910. [PMID: 21999672 DOI: 10.1021/jp2065584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The RNA kink-turn is an important recurrent RNA motif, an internal loop with characteristic consensus sequence forming highly conserved three-dimensional structure. Functional arrangement of RNA kink-turns shows a sharp bend in the phosphodiester backbone. Among other signature interactions, kink-turns form A-minor interaction between their two stems. Most kink-turns possess extended A-minor I (A-I) interaction where adenine of the second A•G base pair of the NC-stem interacts with the first canonical pair of the C-stem (i.e., the receptor pair) via trans-sugar-edge/sugar-edge (tSS) and cis-sugar-edge/sugar-edge (cSS) interactions. The remaining kink-turns have less compact A-minor 0 (A-0) interaction with just one tSS contact. We show that kink-turns with A-I in ribosomal X-ray structures keep G═C receptor base pair during evolution while the inverted pair (C═G) is not realized. In contrast, kink-turns with A-0 in the observed structures alternate G═C and C═G base pairs in sequences. We carried out an extended set (~5 μs) of explicit-solvent molecular dynamics simulations of kink-turns to rationalize this structural/evolutionary pattern. The simulations were done using a net-neutral Na(+) cation atmosphere (with ~0.25 M cation concentration) supplemented by simulations with either excess salt KCl atmosphere or inclusion of Mg(2+). The results do not seem to depend on the treatment of ions. The simulations started with X-ray structures of several kink-turns while we tested the response of the simulated system to base substitutions, modest structural perturbations and constraints. The trends seen in the simulations reveal that the A-I/G═C arrangement is preferred over all three other structures. The A-I/C═G triple appears structurally entirely unstable, consistent with the covariation patterns seen during the evolution. The A-0 arrangements tend to shift toward the A-I pattern in simulations, which suggests that formation of the A-0 interaction is likely supported by the surrounding protein and RNA molecules. A-0 may also be stabilized by additional kink-turn nucleotides not belonging to the kink-turn consensus, as shown for the kink-turn from ribosomal Helix 15. Quantum-chemical calculations on all four A-minor triples suggest that there is a different balance of electrostatic and dispersion stabilization in the A-I/G═C and A-I/C═G triples, which may explain different behavior of these otherwise isosteric triples in the context of kink-turns.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
35
|
Beyond structural genomics: computational approaches for the identification of ligand binding sites in protein structures. ACTA ACUST UNITED AC 2011; 12:109-17. [PMID: 21537951 DOI: 10.1007/s10969-011-9110-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Structural genomics projects have revealed structures for a large number of proteins of unknown function. Understanding the interactions between these proteins and their ligands would provide an initial step in their functional characterization. Binding site identification methods are a fast and cost-effective way to facilitate the characterization of functionally important protein regions. In this review we describe our recently developed methods for binding site identification in the context of existing methods. The advantage of energy-based approaches is emphasized, since they provide flexibility in the identification and characterization of different types of binding sites.
Collapse
|
36
|
Ayuso-Tejedor S, García-Fandiño R, Orozco M, Sancho J, Bernadó P. Structural analysis of an equilibrium folding intermediate in the apoflavodoxin native ensemble by small-angle X-ray scattering. J Mol Biol 2011; 406:604-19. [PMID: 21216251 DOI: 10.1016/j.jmb.2010.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 11/16/2022]
Abstract
Intermediate conformations are crucial to our understanding of how proteins fold into their native structures and become functional. Conventional spectroscopic measurements of thermal denaturation transitions allow the detection of equilibrium intermediates but often provide little structural detail; thus, application of more informative techniques is required. Here we used small-angle X-ray scattering (SAXS) to study the thermal denaturation of four variants of Anabaena PCC 7119 flavodoxin, including the wild-type apo and holo forms, and two mutants, E20K/E72K and F98N. Denaturation was monitored from changes in SAXS descriptors. Although the starting and final points of the denaturation were similar for the flavodoxin variants tested, substantial differences in the unfolding pathway were apparent between them. In agreement with calorimetric data, analysis of the SAXS data sets indicated a three-state unfolding equilibrium for wild-type apoflavodoxin, a two-state equilibrium for the F98N mutant, and increased thermostability of the E20K/E72K mutant and holoflavodoxin. Although the apoflavodoxin intermediate consistently appeared mixed with significant amounts of either native or unfolded conformations, its SAXS profile was derived from the deconvolution of the temperature-dependent SAXS data set. The apoflavodoxin thermal intermediate was structurally close to the native state but less compact, thereby indicating incipient unfolding. The residues that foster denaturation were explored by an ensemble of equilibrium ϕ-value restrained molecular dynamics. These simulations pointed to residues located in the cofactor and partner-protein recognition regions as the initial sites of denaturation and suggest a conformational adaptation as the mechanism of action in apoflavodoxin.
Collapse
Affiliation(s)
- Sara Ayuso-Tejedor
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
| | | | | | | | | |
Collapse
|
37
|
Faustino I, Pérez A, Orozco M. Toward a consensus view of duplex RNA flexibility. Biophys J 2011; 99:1876-85. [PMID: 20858433 DOI: 10.1016/j.bpj.2010.06.061] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 11/25/2022] Open
Abstract
The structure and flexibility of the RNA duplex has been studied using extended molecular dynamics simulations on four diverse 18-mer oligonucleotides designed to contain many copies of the 10 unique dinucleotide steps in different sequence environments. Simulations were performed using the two most popular force fields for nucleic acids simulations (AMBER and CHARMM) in their latest versions, trying to arrive to a consensus picture of the RNA flexibility. Contrary to what was found for DNA duplex (DNA(2)), no clear convergence is found for the RNA duplex (RNA(2)), but one of the force field seems to agree better with experimental data. MD simulations performed with this force field were used to fully characterize, for the first time to our knowledge, the sequence-dependent elastic properties of RNA duplexes at different levels of resolutions. The flexibility pattern of RNA(2) shows similarities with DNA(2), but also surprising differences, which help us to understand the different biological functions of both molecules. A full mesoscopic model of RNA duplex at different resolution levels is derived to be used for genome-wide description of the flexibility of double-helical fragments of RNA.
Collapse
Affiliation(s)
- Ignacio Faustino
- Joint Institute of IRB/BSC Program on Computational Biology, Institute of Research in Biomedicine, Barcelona, Spain
| | | | | |
Collapse
|
38
|
Rayo J, Muñoz L, Rosell G, Hammock BD, Guerrero A, Luque FJ, Pouplana R. Reactivity versus steric effects in fluorinated ketones as esterase inhibitors: a quantum mechanical and molecular dynamics study. J Mol Model 2010; 16:1753-64. [PMID: 20676708 PMCID: PMC3014912 DOI: 10.1007/s00894-010-0807-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 07/09/2010] [Indexed: 11/24/2022]
Abstract
Carboxylesterases (CEs) are a family of ubiquitous enzymes with broad substrate specificity, and their inhibition may have important implications in pharmaceutical and agrochemical fields. One of the most potent inhibitors both for mammalian and insect CEs are trifluoromethyl ketones (TFMKs), but the mechanism of action of these chemicals is not completely understood. This study examines the balance between reactivity versus steric effects in modulating the activity against human carboxylesterase 1. The intrinsic reactivity of the ketone moiety is determined from quantum mechanical computations, which combine gas phase B3LYP calculations with hydration free energies estimated with the IEF/MST model. In addition, docking and molecular dynamics simulations are used to explore the binding mode of the inhibitors along the deep gorge that delineates the binding site. The results point out that the activity largely depends on the nature of the fluorinated ketone, since the activity is modulated by the balance between the intrinsic electrophilicity of the carbonyl carbon atom and the ratio between keto and hydrate forms. However, the results also suggest that the correct alignment of the alkyl chain in the binding site can exert a large influence on the inhibitory activity, as this effect seems to override the intrinsic reactivity features of the fluorinated ketone. Overall, the results sustain a subtle balance between reactivity and steric effects in modulating the inhibitory activity of TFMK inhibitors.
Collapse
Affiliation(s)
- Josep Rayo
- Department of Biological Chemistry and Molecular Modeling, IQAC (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lourdes Muñoz
- Department of Biological Chemistry and Molecular Modeling, IQAC (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Gloria Rosell
- Pharmaceutical Chemistry, Unity Associated to CSIC, Faculty of Pharmacy, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Bruce D. Hammock
- Department of Entomology and Cancer Center, University of California, Davis, CA 95616, USA
| | - Angel Guerrero
- Department of Biological Chemistry and Molecular Modeling, IQAC (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - F. Javier Luque
- Department of Physical Chemistry and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Ramon Pouplana
- Department of Physical Chemistry and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
39
|
Meyer T, D'Abramo M, Hospital A, Rueda M, Ferrer-Costa C, Pérez A, Carrillo O, Camps J, Fenollosa C, Repchevsky D, Gelpí JL, Orozco M. MoDEL (Molecular Dynamics Extended Library): A Database of Atomistic Molecular Dynamics Trajectories. Structure 2010; 18:1399-409. [DOI: 10.1016/j.str.2010.07.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 07/19/2010] [Accepted: 07/27/2010] [Indexed: 11/26/2022]
|
40
|
García-Fandiño R, Granja JR, D'Abramo M, Orozco M. Theoretical characterization of the dynamical behavior and transport properties of alpha,gamma-peptide nanotubes in solution. J Am Chem Soc 2010; 131:15678-86. [PMID: 19860480 DOI: 10.1021/ja903400n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present here a molecular dynamics study on a promising class of peptide nanotubes with a partially hydrophobic inner cavity and an easy chemical functionalization of the lumen of the cylindrical structure. The structural and dynamical behavior of the nanotube in water, methanol, and chloroform has been analyzed using state of the art theoretical methods. The nanotube structure is always well preserved, but solvent-dependent dynamic alterations are evident. Such dynamic effects are surprisingly more severe in the most viscous solvent (water), as a consequence of the competition in polar solvents between intra- and intermolecular hydrogen bonds. Stiffness analysis from the collected trajectories helped us to characterize the equilibrium deformability of the nanotube, while steered dynamics simulations were used to determine the magnitude of free energy associated with nanotube growth. Analysis of the carrier and permeation properties of the compounds reveals surprising properties: (i) permeability for the most polar solvent (water), (ii) carrier properties for the most apolar solvent (chloroform), and (iii) neither good permeation nor carrier properties for the intermediate solvent in polarity (methanol). Results reported here constitute the most extensive characterization of these nanotubes presented to date and open many intriguing questions on their stability, dynamics, and transport/carrier properties.
Collapse
Affiliation(s)
- Rebeca García-Fandiño
- Institut de Recerca Biomèdica and Instituto Nacional de Bioinformatica, Parc Cientific de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
| | | | | | | |
Collapse
|
41
|
Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function. J Comput Aided Mol Des 2010; 24:91-105. [PMID: 20119653 DOI: 10.1007/s10822-009-9317-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/26/2009] [Indexed: 10/19/2022]
Abstract
Physics-based force fields for ligand-protein docking usually determine electrostatic energy with distance-dependent dielectric (DDD) functions, which do not fully account for the dielectric permittivity variance between approximately 2 in the protein core and approximately 80 in bulk water. Here we propose an atom-atom solvent exposure- and distance-dependent dielectric (SEDDD) function, which accounts for both electrostatic and dehydration energy components. Docking was performed using the ZMM program, the AMBER force field, and precomputed libraries of ligand conformers. At the seeding stage, hundreds of thousands of positions and orientations of conformers from the libraries were sampled within the rigid protein. At the refinement stage, the ten lowest-energy structures from the seeding stage were Monte Carlo-minimized with the flexible ligand and flexible protein. A search was considered a success if the root mean square deviation (RMSD) of the ligand atoms in the apparent global minimum from the x-ray structure was <2 A. Calculations on an examining set of 60 ligand-protein complexes with different DDD functions and solvent-exclusion energy revealed outliers in most of which the ligand-binding site was located at the protein surface. Using a training set of 16 ligand-protein complexes, which did not overlap with the examining set, we parameterized the SEDDD function to minimize the RMSD of the apparent global minima from the x-ray structures. Recalculation of the examining set with the SEDDD function demonstrated a 20% increase in the success rate versus the best-performing DDD function.
Collapse
|
42
|
Abstract
An efficient molecular simulation methodology has been developed to determine the positioning of water molecules in the binding site of a protein or protein-ligand complex. Occupancies and absolute binding free energies of water molecules are computed using a statistical thermodynamics approach. The methodology, referred to as Just Add Water Molecules (JAWS), features "theta-water" molecules that can appear and disappear on a binding-site grid. Key approximations render the technique far more efficient than conventional free energy simulations. Testing of JAWS on five diverse examples (neuraminidase, scytalone dehydratase, major urinary protein 1, beta-lactoglobulin, and COX-2) demonstrates its accuracy in locating hydration sites in comparison to results from high-resolution crystal structures. Possible applications include aid in refinement of protein crystal structures, drug lead optimization, setup of docking calculations, and simulations of protein-ligand complexes.
Collapse
Affiliation(s)
- Julien Michel
- Department of Chemistry, Yale University, New Haven CT-06520, USA
| | | | | |
Collapse
|
43
|
An Atomistic View to the Gas Phase Proteome. Structure 2009; 17:88-95. [DOI: 10.1016/j.str.2008.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/14/2008] [Accepted: 11/06/2008] [Indexed: 11/22/2022]
|
44
|
Pérez A, Lankas F, Luque FJ, Orozco M. Towards a molecular dynamics consensus view of B-DNA flexibility. Nucleic Acids Res 2008; 36:2379-94. [PMID: 18299282 PMCID: PMC2367714 DOI: 10.1093/nar/gkn082] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 01/05/2023] Open
Abstract
We present a systematic study of B-DNA flexibility in aqueous solution using long-scale molecular dynamics simulations with the two more recent versions of nucleic acids force fields (CHARMM27 and parmbsc0) using four long duplexes designed to contain several copies of each individual base pair step. Our study highlights some differences between pambsc0 and CHARMM27 families of simulations, but also extensive agreement in the representation of DNA flexibility. We also performed additional simulations with the older AMBER force fields parm94 and parm99, corrected for non-canonical backbone flips. Taken together, the results allow us to draw for the first time a consensus molecular dynamics picture of B-DNA flexibility.
Collapse
Affiliation(s)
- Alberto Pérez
- Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona. Barcelona 08034, Departament de Fisicoquímica, Facultat de Farmàcia, Avgda Diagonal sn, Barcelona 08028, Spain, Laboratory for Computation and Visualization in Mathematics and Mechanics, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland, Centre for Complex Molecular Systems and Biomolecues, Institute of Organic Chemistry and Biochemistry Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, National Institute of Bioinformatics, Parc Científic de Barcelona, Josep Samitier 1-5 and Departament de Bioquímica, Facultat de Biología, Avgda Diagonal 647, Barcelona 08028, Spain
| | - Filip Lankas
- Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona. Barcelona 08034, Departament de Fisicoquímica, Facultat de Farmàcia, Avgda Diagonal sn, Barcelona 08028, Spain, Laboratory for Computation and Visualization in Mathematics and Mechanics, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland, Centre for Complex Molecular Systems and Biomolecues, Institute of Organic Chemistry and Biochemistry Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, National Institute of Bioinformatics, Parc Científic de Barcelona, Josep Samitier 1-5 and Departament de Bioquímica, Facultat de Biología, Avgda Diagonal 647, Barcelona 08028, Spain
| | - F. Javier Luque
- Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona. Barcelona 08034, Departament de Fisicoquímica, Facultat de Farmàcia, Avgda Diagonal sn, Barcelona 08028, Spain, Laboratory for Computation and Visualization in Mathematics and Mechanics, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland, Centre for Complex Molecular Systems and Biomolecues, Institute of Organic Chemistry and Biochemistry Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, National Institute of Bioinformatics, Parc Científic de Barcelona, Josep Samitier 1-5 and Departament de Bioquímica, Facultat de Biología, Avgda Diagonal 647, Barcelona 08028, Spain
| | - Modesto Orozco
- Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona. Barcelona 08034, Departament de Fisicoquímica, Facultat de Farmàcia, Avgda Diagonal sn, Barcelona 08028, Spain, Laboratory for Computation and Visualization in Mathematics and Mechanics, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland, Centre for Complex Molecular Systems and Biomolecues, Institute of Organic Chemistry and Biochemistry Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, National Institute of Bioinformatics, Parc Científic de Barcelona, Josep Samitier 1-5 and Departament de Bioquímica, Facultat de Biología, Avgda Diagonal 647, Barcelona 08028, Spain
| |
Collapse
|
45
|
Noy A, Luque FJ, Orozco M. Theoretical analysis of antisense duplexes: determinants of the RNase H susceptibility. J Am Chem Soc 2008; 130:3486-96. [PMID: 18298115 DOI: 10.1021/ja076734u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure and dynamic properties of different antisense related duplexes (DNA x RNA, 2'O-Me-DNA x RNA, 2'F-ANA x RNA, C5(Y)-propynyl-DNA x RNA, ANA x RNA, and control duplexes DNA x DNA and RNA x RNA) have been determined by means of long molecular dynamics simulations (covering more than 0.5 micros of fully solvated unrestrained MD simulation). The massive analysis presented here allows us to determine the subtle differences between the different duplexes, which in all cases pertain to the same structural family. This analysis provides information on the molecular determinants that allow RNase H to recognize and degrade some of these duplexes, whereas others with apparently similar conformations are not affected. Subtle structural and deformability features define the key properties used by RNase H to discriminate between duplexes.
Collapse
Affiliation(s)
- Agnes Noy
- Joint IRB-BSC Research Program in Computational Biology, Institut de Recerca Biomèdica Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
| | | | | |
Collapse
|
46
|
Abstract
We present here a fast method for the exploration of channels in proteins based on molecular dynamics simulations of probe particles in a discrete grid space defined by an ensemble of protein conformations obtained either experimentally or by out-of-the-grid atomistic molecular dynamics simulations. The method is able to provide millisecond-long trajectories with a small computational effort, requires no human intervention in defining possible exit pathways and can detect both major and minor channels, giving a correct balance to the relative flux between them. The Grid-Molecular-Dynamics approach is then a suitable method for massive exploration of channels in proteins, even of those with unknown functional annotation.
Collapse
Affiliation(s)
- Oliver Carrillo
- Molecular Modelling and Bioinformatics, Institut de Recerca Biomèdica, Parc Científic de Barcelona and Nacional Institut of Bioinformatics, Josep Samitier 1-5, Barcelona 08028, Spain
| | | |
Collapse
|
47
|
Bidon-Chanal A, Martí MA, Estrin DA, Luque FJ. Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N fromMycobacterium tuberculosis. J Am Chem Soc 2007; 129:6782-8. [PMID: 17488073 DOI: 10.1021/ja0689987] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Truncated hemoglobin-N is believed to constitute a defense mechanism of Mycobacterium tuberculosis against NO produced by macrophages, which is converted to the harmless nitrate anion. This process is catalyzed very efficiently, as the enzyme activity is limited by ligand diffusion. By using extended molecular dynamics simulations we explore the mechanism that regulates ligand diffusion and, particularly, the role played by residues that assist binding of O2 to the heme group. Our data strongly support the hypothesis that the access of NO to the heme cavity is dynamically regulated by the TyrB10-GlnE11 pair, which acts as a molecular switch that controls opening of the ligand diffusion tunnel. Binding of O2 to the heme group triggers local conformational changes in the TyrB10-GlnE11 pair, which favor opening of the PheE15 gate residue through global changes in the essential motions of the protein skeleton. The complex pattern of conformational changes triggered upon O2 binding is drastically altered in the GlnE11-->Ala and TyrB10-->Phe mutants, which justifies the poor enzymatic activity observed experimentally for the TyrB10-->Phe form. The results support a molecular mechanism evolved to ensure access of NO to the heme cavity in the oxygenated form of the protein, which should warrant survival of the microorganism under stress conditions.
Collapse
Affiliation(s)
- Axel Bidon-Chanal
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avenida Diagonal 643, 08028, Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
Noy A, Pérez A, Laughton CA, Orozco M. Theoretical study of large conformational transitions in DNA: the B<-->A conformational change in water and ethanol/water. Nucleic Acids Res 2007; 35:3330-8. [PMID: 17459891 PMCID: PMC1904281 DOI: 10.1093/nar/gkl1135] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We explore here the possibility of determining theoretically the free energy change associated with large conformational transitions in DNA, like the solvent-induced B<-->A conformational change. We find that a combination of targeted molecular dynamics (tMD) and the weighted histogram analysis method (WHAM) can be used to trace this transition in both water and ethanol/water mixture. The pathway of the transition in the A-->B direction mirrors the B-->A pathway, and is dominated by two processes that occur somewhat independently: local changes in sugar puckering and global rearrangements (particularly twist and roll) in the structure. The B-->A transition is found to be a quasi-harmonic process, which follows closely the first spontaneous deformation mode of B-DNA, showing that a physiologically-relevant deformation is in coded in the flexibility pattern of DNA.
Collapse
Affiliation(s)
- Agnes Noy
- Molecular Modeling and Bioinformatics Unit, Institut de Recerca Biomèdica & Instituto Nacional de Bioinformática, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain, School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK, Departament de Bioquímica i Biologia Molecular. Facultat de Biología. Universitat de Barcelona. Avgda Diagonal 645, Barcelona 08028, Spain and Computational Biology Program, Barcelona Supercomputer Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08028, Spain
| | - Alberto Pérez
- Molecular Modeling and Bioinformatics Unit, Institut de Recerca Biomèdica & Instituto Nacional de Bioinformática, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain, School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK, Departament de Bioquímica i Biologia Molecular. Facultat de Biología. Universitat de Barcelona. Avgda Diagonal 645, Barcelona 08028, Spain and Computational Biology Program, Barcelona Supercomputer Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08028, Spain
| | - Charles A. Laughton
- Molecular Modeling and Bioinformatics Unit, Institut de Recerca Biomèdica & Instituto Nacional de Bioinformática, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain, School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK, Departament de Bioquímica i Biologia Molecular. Facultat de Biología. Universitat de Barcelona. Avgda Diagonal 645, Barcelona 08028, Spain and Computational Biology Program, Barcelona Supercomputer Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08028, Spain
| | - Modesto Orozco
- Molecular Modeling and Bioinformatics Unit, Institut de Recerca Biomèdica & Instituto Nacional de Bioinformática, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain, School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK, Departament de Bioquímica i Biologia Molecular. Facultat de Biología. Universitat de Barcelona. Avgda Diagonal 645, Barcelona 08028, Spain and Computational Biology Program, Barcelona Supercomputer Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08028, Spain
| |
Collapse
|
49
|
Rakhmanov SV, Makeev VJ. Atomic hydration potentials using a Monte Carlo Reference State (MCRS) for protein solvation modeling. BMC STRUCTURAL BIOLOGY 2007; 7:19. [PMID: 17397537 PMCID: PMC1852318 DOI: 10.1186/1472-6807-7-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 03/30/2007] [Indexed: 11/10/2022]
Abstract
Background Accurate description of protein interaction with aqueous solvent is crucial for modeling of protein folding, protein-protein interaction, and drug design. Efforts to build a working description of solvation, both by continuous models and by molecular dynamics, yield controversial results. Specifically constructed knowledge-based potentials appear to be promising for accounting for the solvation at the molecular level, yet have not been used for this purpose. Results We developed original knowledge-based potentials to study protein hydration at the level of atom contacts. The potentials were obtained using a new Monte Carlo reference state (MCRS), which simulates the expected probability density of atom-atom contacts via exhaustive sampling of structure space with random probes. Using the MCRS allowed us to calculate the expected atom contact densities with high resolution over a broad distance range including very short distances. Knowledge-based potentials for hydration of protein atoms of different types were obtained based on frequencies of their contacts at different distances with protein-bound water molecules, in a non-redundant training data base of 1776 proteins with known 3D structures. Protein hydration sites were predicted in a test set of 12 proteins with experimentally determined water locations. The MCRS greatly improves prediction of water locations over existing methods. In addition, the contribution of the energy of macromolecular solvation into total folding free energy was estimated, and tested in fold recognition experiments. The correct folds were preferred over all the misfolded decoys for the majority of proteins from the improved Rosetta decoy set based on the structure hydration energy alone. Conclusion MCRS atomic hydration potentials provide a detailed distance-dependent description of hydropathies of individual protein atoms. This allows placement of water molecules on the surface of proteins and in protein interfaces with much higher precision. The potentials provide a means to estimate the total solvation energy for a protein structure, in many cases achieving a successful fold recognition. Possible applications of atomic hydration potentials to structure verification, protein folding and stability, and protein-protein interactions are discussed.
Collapse
Affiliation(s)
- Sergei V Rakhmanov
- Institute of Genetics and Selection of Industrial Microorganisms, State Research Centre GosNIIgenetika, 1Dorozhny proezd, 1, Moscow, Russia
| | - Vsevolod J Makeev
- Institute of Genetics and Selection of Industrial Microorganisms, State Research Centre GosNIIgenetika, 1Dorozhny proezd, 1, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, Moscow, Russia
| |
Collapse
|
50
|
Soliva R, Gelpí JL, Almansa C, Virgili M, Orozco M. Dissection of the recognition properties of p38 MAP kinase. Determination of the binding mode of a new pyridinyl-heterocycle inhibitor family. J Med Chem 2007; 50:283-93. [PMID: 17228870 DOI: 10.1021/jm061073h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The main recognition characteristics of the ATP binding site of p38 mitogen activated protein kinase alpha (p38alpha MAPK) have been explored by a combination of modeling and bioinformatics techniques, making special emphasis in the characteristics of the site that justifies binding specificity with respect to other MAP kinases. Particularly, we have analyzed the binding mode of a new family of p38 MAPK inhibitors based on the pyridinyl-heterocycle core. This family of compounds has a marked pseudosymmetry and can exist in different tautomeric forms, which makes the determination of the binding mode especially challenging. A combination of homology modeling, quantum mechanics, classical docking, and molecular dynamics calculations allowed us to determine the main characteristics defining the binding mode of this new scaffold in the ATP binding site of p38alpha. A set of free energy calculations allowed us to verify the binding mode proposed, giving an overall excellent agreement with the experimental values. Finally, the binding mode of this new family of compounds was compared to that of other members of the pyridinyl and pyrimidinyl heterocycle class.
Collapse
Affiliation(s)
- Robert Soliva
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|