1
|
Phosphorylation disrupts long-distance electron transport in cytochrome c. Nat Commun 2022; 13:7100. [PMID: 36402842 PMCID: PMC9675734 DOI: 10.1038/s41467-022-34809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.
Collapse
|
2
|
Zamora RA, López-Ortiz M, Sales-Mateo M, Hu C, Croce R, Maniyara RA, Pruneri V, Giannotti MI, Gorostiza P. Light- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer. ACS NANO 2022; 16:15155-15164. [PMID: 36067071 DOI: 10.1021/acsnano.2c06454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.
Collapse
Affiliation(s)
- Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Montserrat Sales-Mateo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Chen Hu
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rinu Abraham Maniyara
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860, Spain
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 10, Barcelona 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
3
|
Structural basis for coupled ATP-driven electron transfer in the double-cubane cluster protein. Proc Natl Acad Sci U S A 2022; 119:e2203576119. [PMID: 35905315 PMCID: PMC9351452 DOI: 10.1073/pnas.2203576119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Electron transfers coupled to the hydrolysis of ATP allow various metalloenzymes to catalyze reductions at very negative reduction potentials. The double-cubane cluster protein (DCCP) catalyzes the reduction of small molecules, such as acetylene and hydrazine, with electrons provided by its cognate ATP-hydrolyzing reductase (DCCP-R). How ATP-driven electron transfer occurs is not known. To resolve the structural basis for ATP-driven electron transfer, we solved the structures of the DCCP:DCCP-R complex in three different states. The structures show that the DCCP-R homodimer is covalently bridged by a [4Fe4S] cluster that is aligned with the twofold axis of the DCCP homodimer, positioning the [4Fe4S] cluster to enable electron transfer to both double-cubane clusters in the DCCP dimer. DCCP and DCCP-R form stable complexes independent of oxidation state or nucleotides present, and electron transfer requires the hydrolysis of ATP. Electron transfer appears to be additionally driven by modulating the angle between the helices binding the [4Fe4S] cluster. We observed hydrogen bond networks running from the ATP binding site via the [4Fe4S] cluster in DCCP-R to the double-cubane cluster in DCCP, allowing the propagation of conformational changes. Remarkable similarities between the DCCP:DCCP-R complex and the nonhomologous nitrogenases suggest a convergent evolution of catalytic strategies to achieve ATP-driven electron transfers between iron-sulfur clusters.
Collapse
|
4
|
2.85 and 2.99 Å resolution structures of 110 kDa nitrite reductase determined by 200 kV cryogenic electron microscopy. J Struct Biol 2021; 213:107768. [PMID: 34217801 DOI: 10.1016/j.jsb.2021.107768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
Cu-containing nitrite reductases (NiRs) are 110 kDa enzymes that play central roles in denitrification. Although the NiRs have been well studied, with over 100 Protein Data Bank entries, such issues as crystal packing, photoreduction, and lack of high pH cases have impeded structural analysis of their catalytic mechanisms. Here we show the cryogenic electron microscopy (cryo-EM) structures of Achromobacter cycloclastes NiR (AcNiR) at pH 6.2 and 8.1. The optimization of 3D-reconstruction parameters achieved 2.99 and 2.85 Å resolution. Comprehensive comparisons with cryo-EM and 56 AcNiR crystal structures suggested crystallographic artifacts in residues 185-215 and His255' due to packing and photoreduction, respectively. We used a newly developed map comparison method to detect structural change around the type 2 Cu site. While the theoretical estimation of coordinate errors of cryo-EM structures remains difficult, combined analysis using X-ray and cryo-EM structures will allow deeper insight into the local structural changes of proteins.
Collapse
|
5
|
Ashikawa Y, Fujimoto Z, Inoue K, Yamane H, Nojiri H. Crystal structure of the ferredoxin reductase component of carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3. Acta Crystallogr D Struct Biol 2021; 77:921-932. [PMID: 34196618 PMCID: PMC8251347 DOI: 10.1107/s2059798321005040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), is a Rieske nonheme iron oxygenase (RO). ROs are classified into five subclasses (IA, IB, IIA, IIB and III) based on their number of constituents and the nature of their redox centres. In this study, two types of crystal structure (type I and type II) were resolved of the class III CARDO-R from Janthinobacterium sp. J3 (CARDO-RJ3). Superimposition of the type I and type II structures revealed the absence of flavin adenine dinucleotide (FAD) in the type II structure along with significant conformational changes to the FAD-binding domain and the C-terminus, including movements to fill the space in which FAD had been located. Docking simulation of NADH into the FAD-bound form of CARDO-RJ3 suggested that shifts of the residues at the C-terminus caused the nicotinamide moiety to approach the N5 atom of FAD, which might facilitate electron transfer between the redox centres. Differences in domain arrangement were found compared with RO reductases from the ferredoxin-NADP reductase family, suggesting that these differences correspond to differences in the structures of their redox partners ferredoxin and terminal oxygenase. The results of docking simulations with the redox partner class III CARDO-F from Pseudomonas resinovorans CA10 suggested that complex formation suitable for efficient electron transfer is stabilized by electrostatic attraction and complementary shapes of the interacting regions.
Collapse
Affiliation(s)
- Yuji Ashikawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kengo Inoue
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Hisakazu Yamane
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Alex JM, Corvaglia V, Hu X, Engilberge S, Huc I, Crowley PB. Crystal structure of a protein–aromatic foldamer composite: macromolecular chiral resolution. Chem Commun (Camb) 2019; 55:11087-11090. [DOI: 10.1039/c9cc05330a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A protein–foldamer crystal structure illustrates protein assembly by a sulfonated aromatic oligoamide, and chiral resolution of the foldamer helix handedness.
Collapse
Affiliation(s)
- Jimi M. Alex
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
| | - Valentina Corvaglia
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | - Xiaobo Hu
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | | | - Ivan Huc
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | | |
Collapse
|
7
|
Nóbrega CS, Pauleta SR. Interaction between Neisseria gonorrhoeae bacterial peroxidase and its electron donor, the lipid-modified azurin. FEBS Lett 2018; 592:1473-1483. [PMID: 29665008 DOI: 10.1002/1873-3468.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/05/2022]
Abstract
The Neisseria gonorrhoeae bacterial cytochrome c peroxidase plays a key role in detoxifying the cells from H2 O2 by reducing it to water using the lipid-modified azurin, LAz, a small type 1 copper protein, as electron donor. Here, the interaction between these two proteins was characterized by steady-state kinetics, two-dimensional NMR and molecular docking simulations. LAz is an efficient electron donor capable of activating this enzyme. This electron transfer complex is weak with a hydrophobic character, with LAz binding close to the electron transferring heme of the enzyme. The high catalytic rate (39 ± 0.03 s-1 ) is explained by the LAz pre-orientation, due to a positive dipole moment, and by the fast-dynamic ensemble of orientations, suggested by the small chemical shifts.
Collapse
Affiliation(s)
- Cláudia S Nóbrega
- Microbial Stress Lab, UCIBIO, REQUIMTE, Department of Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Department of Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
8
|
Mellor SB, Vavitsas K, Nielsen AZ, Jensen PE. Photosynthetic fuel for heterologous enzymes: the role of electron carrier proteins. PHOTOSYNTHESIS RESEARCH 2017; 134:329-342. [PMID: 28285375 DOI: 10.1007/s11120-017-0364-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/27/2017] [Indexed: 05/21/2023]
Abstract
Plants, cyanobacteria, and algae generate a surplus of redox power through photosynthesis, which makes them attractive for biotechnological exploitations. While central metabolism consumes most of the energy, pathways introduced through metabolic engineering can also tap into this source of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic context.
Collapse
Affiliation(s)
- Silas Busck Mellor
- Copenhagen Plant Science Center, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Center, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Agnieszka Zygadlo Nielsen
- Copenhagen Plant Science Center, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Copenhagen Plant Science Center, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Singharoy A, Barragan AM, Thangapandian S, Tajkhorshid E, Schulten K. Binding Site Recognition and Docking Dynamics of a Single Electron Transport Protein: Cytochrome c2. J Am Chem Soc 2016; 138:12077-89. [PMID: 27508459 PMCID: PMC5518707 DOI: 10.1021/jacs.6b01193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small diffusible redox proteins facilitate electron transfer in respiration and photosynthesis by alternately binding to their redox partners and integral membrane proteins and exchanging electrons. Diffusive search, recognition, binding, and unbinding of these proteins often amount to kinetic bottlenecks in cellular energy conversion, but despite the availability of structures and intense study, the physical mechanisms controlling redox partner interactions remain largely unknown. The present molecular dynamics study provides an all-atom description of the cytochrome c2-docked bc1 complex in Rhodobacter sphaeroides in terms of an ensemble of favorable docking conformations and reveals an intricate series of conformational changes that allow cytochrome c2 to recognize the bc1 complex and bind or unbind in a redox state-dependent manner. In particular, the role of electron transfer in triggering a molecular switch and in altering water-mediated interface mobility, thereby strengthening and weakening complex formation, is described. The results resolve long-standing discrepancies between structural and functional data.
Collapse
Affiliation(s)
- Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | - Angela M. Barragan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
- Department of Physics, University of Illinois at Urbana–Champaign, 1110 W. Green St., Urbana, IL 61801, USA
| | - Sundarapandian Thangapandian
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois Urbana–Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
- Department of Physics, University of Illinois at Urbana–Champaign, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
10
|
Electron transfer and docking between cytochrome cd 1 nitrite reductase and different redox partners — A comparative study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1412-1421. [DOI: 10.1016/j.bbabio.2016.04.279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
|
11
|
Mellor S, Nielsen AZ, Burow M, Motawia MS, Jakubauskas D, Møller BL, Jensen PE. Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis. ACS Chem Biol 2016; 11:1862-9. [PMID: 27119279 PMCID: PMC4949584 DOI: 10.1021/acschembio.6b00190] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/27/2016] [Indexed: 01/29/2023]
Abstract
Cytochrome P450s (P450s) are key enzymes in the synthesis of bioactive natural products in plants. Efforts to harness these enzymes for in vitro and whole-cell production of natural products have been hampered by difficulties in expressing them heterologously in their active form, and their requirement for NADPH as a source of reducing power. We recently demonstrated targeting and insertion of plant P450s into the photosynthetic membrane and photosynthesis-driven, NADPH-independent P450 catalytic activity mediated by the electron carrier protein ferredoxin. Here, we report the fusion of ferredoxin with P450 CYP79A1 from the model plant Sorghum bicolor, which catalyzes the initial step in the pathway leading to biosynthesis of the cyanogenic glucoside dhurrin. Fusion with ferredoxin allows CYP79A1 to obtain electrons for catalysis by interacting directly with photosystem I. Furthermore, electrons captured by the fused ferredoxin moiety are directed more effectively toward P450 catalytic activity, making the fusion better able to compete with endogenous electron sinks coupled to metabolic pathways. The P450-ferredoxin fusion enzyme obtains reducing power solely from its fused ferredoxin and outperforms unfused CYP79A1 in vivo. This demonstrates greatly enhanced electron transfer from photosystem I to CYP79A1 as a consequence of the fusion. The fusion strategy reported here therefore forms the basis for enhanced partitioning of photosynthetic reducing power toward P450-dependent biosynthesis of important natural products.
Collapse
Affiliation(s)
- Silas
Busck Mellor
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Agnieszka Zygadlo Nielsen
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Meike Burow
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- DynaMo
Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mohammed Saddik Motawia
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Dainius Jakubauskas
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Birger Lindberg Møller
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Villum
Research Center of Excellence ”Plant Plasticity”, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Villum
Research Center of Excellence ”Plant Plasticity”, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Jeřábek P, Florián J, Martínek V. Membrane-Anchored Cytochrome P450 1A2–Cytochrome b5 Complex Features an X-Shaped Contact between Antiparallel Transmembrane Helices. Chem Res Toxicol 2016; 29:626-36. [DOI: 10.1021/acs.chemrestox.5b00349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Petr Jeřábek
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, Albertov 2030, 128 43 Prague 2, Czech Republic
| | - Jan Florián
- Department
of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan
Road, Chicago, Illinois 60660, United States
| | - Václav Martínek
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, Albertov 2030, 128 43 Prague 2, Czech Republic
- Department of Teaching and Didactics of Chemistry, Faculty of Science, Charles University in Prague, Albertov 3, 128 43 Prague 2, Czech Republic
| |
Collapse
|
13
|
Abstract
Many biomolecular interactions proceed via lowly populated, transient intermediates. Believed to facilitate formation of a productive complex, these short-lived species are inaccessible to conventional biophysical and structural techniques and, until recently, could only be studied by theoretical simulations. Recent development of experimental approaches sensitive to the presence of minor species--in particular paramagnetic relaxation enhancement (PRE) NMR spectroscopy--has enabled direct visualization and detailed characterization of such lowly populated states. Collectively referred to as an encounter complex, the binding intermediates are particularly important in transient protein interactions, such as those orchestrating signaling cascades or energy-generating electron transfer (ET) chains. Here I discuss encounter complexes of redox proteins mediating biological ET reactions, which are essential for many vital cellular activities including oxidative phosphorylation and photosynthesis. In particular, this Account focuses on the complex of cytochrome c (Cc) and cytochrome c peroxidase (CcP), which is a paradigm of biomolecular ET and an attractive system for studying protein binding and enzymatic catalysis. The Cc-CcP complex formation proceeds via an encounter state, consisting of multiple protein-protein orientations sampled in the search of the dominant, functionally active bound form and exhibiting a broad spatial distribution, in striking agreement with earlier theoretical simulations. At low ionic strength, CcP binds another Cc molecule to form a weak ternary complex, initially inferred from kinetics experiments and postulated to account for the measured ET activity. Despite strenuous efforts, the ternary complex could not be observed directly and remained eagerly sought for the past two decades. Very recently, we have solved its structure in solution and shown that it consists of two binding forms: the dominant, ET-inactive geometry and an ensemble of lowly populated species with short separations between Cc and CcP cofactors, which summarily account for the measured ET rate. Unlike most protein complexes, which require accurate alignment of the binding surfaces in a single, well-defined orientation to carry out their function, redox proteins can form multiple productive complexes. As fast ET will occur any time the redox centers of the binding partners are close enough to ensure efficient electron tunneling across the interface, many protein-protein orientations are expected to be ET active. The present analysis confirms that the low-occupancy states can support the functional ET activity and contribute to the stability of redox protein complexes. As illustrated here, boundaries between the dominant and the encounter forms become blurred for many dynamic ET systems, which are more aptly described by ensembles of functionally and structurally heterogeneous bound forms.
Collapse
Affiliation(s)
- Alexander N. Volkov
- Jean Jeener NMR Centre, Structural
Biology Brussels, Vrije Universiteit Brussel, and Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Tezcan FA, Kaiser JT, Howard JB, Rees DC. Structural evidence for asymmetrical nucleotide interactions in nitrogenase. J Am Chem Soc 2014; 137:146-9. [PMID: 25522159 PMCID: PMC4304452 DOI: 10.1021/ja511945e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
roles of ATP hydrolysis in electron-transfer (ET) reactions
of the nitrogenase catalytic cycle remain obscure. Here, we present
a new structure of a nitrogenase complex crystallized with MgADP and
MgAMPPCP, an ATP analogue. In this structure the two nucleotides are
bound asymmetrically by the Fe-protein subunits connected to the two
different MoFe-protein subunits. This binding mode suggests that ATP
hydrolysis and phosphate release may proceed by a stepwise mechanism.
Through the associated Fe-protein conformational changes, a stepwise
mechanism is anticipated to prolong the lifetime of the Fe-protein-MoFe-protein
complex and, in turn, could orchestrate the sequence of intracomplex
ET required for substrate reduction.
Collapse
Affiliation(s)
- F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0356, United States
| | | | | | | |
Collapse
|
15
|
Wettstein C, Kyne C, Doolan AM, Möhwald H, Crowley PB, Lisdat F. Study of cytochrome c-DNA interaction--evaluation of binding sites on the redox protein. NANOSCALE 2014; 6:13779-13786. [PMID: 25286363 DOI: 10.1039/c4nr05301j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Artificial assemblies consisting of the cationic cytochrome c (cyt c) and double-stranded DNA are interesting for the field of biohybrid systems because of the high electro-activity of the incorporated redox protein. However, little is known about the interactions between these two biomolecules. Here, the complex of reduced cyt c and a 41 base pair oligonucleotide was characterized in solution as a function of pH and ionic strength. Persistent cyt c-DNA agglomerates were observed by UV-vis and DLS (dynamic light scattering) at pH 5.0 and low ionic strength. The strength of the interaction was attenuated by raising the pH or the ionic strength. At pH 7.0 agglomerates were not formed, allowing interaction analysis by NMR spectroscopy. Using TROSY (transverse relaxation-optimized spectroscopy)-HSQC (heteronuclear single quantum coherence) experiments it was possible to identify the DNA binding site on the cyt c surface. Numerous residues surrounding the exposed heme edge of cyt c were involved in transient binding to DNA under these conditions. This result was supported by SEC (size exclusion chromatography) experiments at pH 7.0 showing that the interaction is sufficient for co-elution of cyt c and DNA.
Collapse
Affiliation(s)
- Christoph Wettstein
- Technical University of Applied Sciences Wildau, Institute of Applied Life Sciences, Biosystems Technology, Hochschulring 1, 15745 Wildau, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Bashir Q, Meulenbroek EM, Pannu NS, Ubbink M. Engineering specificity in a dynamic protein complex with a single conserved mutation. FEBS J 2014; 281:4892-905. [DOI: 10.1111/febs.13028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/09/2014] [Accepted: 08/27/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Qamar Bashir
- Gorlaeus Laboratories; Leiden Institute of Chemistry; Leiden University; The Netherlands
| | | | - Navraj S. Pannu
- Gorlaeus Laboratories; Leiden Institute of Chemistry; Leiden University; The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories; Leiden Institute of Chemistry; Leiden University; The Netherlands
| |
Collapse
|
17
|
Almeida RM, Turano P, Moura I, Moura JJG, Pauleta SR. Superoxide Reductase: Different Interaction Modes with its Two Redox Partners. Chembiochem 2013; 14:1858-66. [DOI: 10.1002/cbic.201300196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Indexed: 11/08/2022]
|
18
|
Volkov AN, van Nuland NAJ. Electron transfer interactome of cytochrome C. PLoS Comput Biol 2012; 8:e1002807. [PMID: 23236271 PMCID: PMC3516563 DOI: 10.1371/journal.pcbi.1002807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/12/2012] [Indexed: 01/31/2023] Open
Abstract
Lying at the heart of many vital cellular processes such as photosynthesis and respiration, biological electron transfer (ET) is mediated by transient interactions among proteins that recognize multiple binding partners. Accurate description of the ET complexes – necessary for a comprehensive understanding of the cellular signaling and metabolism – is compounded by their short lifetimes and pronounced binding promiscuity. Here, we used a computational approach relying solely on the steric properties of the individual proteins to predict the ET properties of protein complexes constituting the functional interactome of the eukaryotic cytochrome c (Cc). Cc is a small, soluble, highly-conserved electron carrier protein that coordinates the electron flow among different redox partners. In eukaryotes, Cc is a key component of the mitochondrial respiratory chain, where it shuttles electrons between its reductase and oxidase, and an essential electron donor or acceptor in a number of other redox systems. Starting from the structures of individual proteins, we performed extensive conformational sampling of the ET-competent binding geometries, which allowed mapping out functional epitopes in the Cc complexes, estimating the upper limit of the ET rate in a given system, assessing ET properties of different binding stoichiometries, and gauging the effect of domain mobility on the intermolecular ET. The resulting picture of the Cc interactome 1) reveals that most ET-competent binding geometries are located in electrostatically favorable regions, 2) indicates that the ET can take place from more than one protein-protein orientation, and 3) suggests that protein dynamics within redox complexes, and not the electron tunneling event itself, is the rate-limiting step in the intermolecular ET. Further, we show that the functional epitope size correlates with the extent of dynamics in the Cc complexes and thus can be used as a diagnostic tool for protein mobility. A number of vital cellular processes such as respiration, photosynthesis, and multifarious metabolic conversions rely on a long-range electron transfer (ET) among protein molecules. Full understanding of the biological ET requires accurate description of the redox protein complexes, which is hampered by their pronounced mobility and short lifetimes. Here we used a simple computational approach to predict the ET properties of the physiological protein complexes of cytochrome c (Cc) – a small electron carrier that coordinates the electron flow among different redox partners. By performing extensive conformational sampling of the possible binding geometries, we mapped out functional epitopes in the Cc complexes and assessed their ET properties. Our study suggests that protein dynamics within redox complexes is the rate-limiting step in the intermolecular ET and indicates that the functional epitope size correlates with the extent of dynamics in the Cc complexes. We believe that the latter finding can be used as a diagnostic tool for protein mobility and expect that this work will engender future studies of the intermolecular ET in biological networks.
Collapse
Affiliation(s)
- Alexander N Volkov
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel, Belgium.
| | | |
Collapse
|
19
|
Keinan S, Nocek JM, Hoffman BM, Beratan DN. Interfacial hydration, dynamics and electron transfer: multi-scale ET modeling of the transient [myoglobin, cytochrome b5] complex. Phys Chem Chem Phys 2012; 14:13881-9. [PMID: 22955681 PMCID: PMC3490627 DOI: 10.1039/c2cp41949a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation of a transient [myoglobin (Mb), cytochrome b(5) (cyt b(5))] complex is required for the reductive repair of inactive ferri-Mb to its functional ferro-Mb state. The [Mb, cyt b(5)] complex exhibits dynamic docking (DD), with its cyt b(5) partner in rapid exchange at multiple sites on the Mb surface. A triple mutant (Mb(3M)) was designed as part of efforts to shift the electron-transfer process to the simple docking (SD) regime, in which reactive binding occurs at a restricted, reactive region on the Mb surface that dominates the docked ensemble. An electrostatically-guided brownian dynamics (BD) docking protocol was used to generate an initial ensemble of reactive configurations of the complex between unrelaxed partners. This ensemble samples a broad and diverse array of heme-heme distances and orientations. These configurations seeded all-atom constrained molecular dynamics simulations (MD) to generate relaxed complexes for the calculation of electron tunneling matrix elements (T(DA)) through tunneling-pathway analysis. This procedure for generating an ensemble of relaxed complexes combines the ability of BD calculations to sample the large variety of available conformations and interprotein distances, with the ability of MD to generate the atomic level information, especially regarding the structure of water molecules at the protein-protein interface, that defines electron-tunneling pathways. We used the calculated T(DA) values to compute ET rates for the [Mb(wt), cyt b(5)] complex and for the complex with a mutant that has a binding free energy strengthened by three D/E → K charge-reversal mutations, [Mb(3M), cyt b(5)]. The calculated rate constants are in agreement with the measured values, and the mutant complex ensemble has many more geometries with higher T(DA) values than does the wild-type Mb complex. Interestingly, water plays a double role in this electron-transfer system, lowering the tunneling barrier as well as inducing protein interface remodeling that screens the repulsion between the negatively-charged propionates of the two hemes.
Collapse
Affiliation(s)
- Shahar Keinan
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
20
|
Lin TY, Werther T, Jeoung JH, Dobbek H. Suppression of electron transfer to dioxygen by charge transfer and electron transfer complexes in the FAD-dependent reductase component of toluene dioxygenase. J Biol Chem 2012; 287:38338-46. [PMID: 22992736 DOI: 10.1074/jbc.m112.374918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-component toluene dioxygenase system consists of an FAD-containing reductase, a Rieske-type [2Fe-2S] ferredoxin, and a Rieske-type dioxygenase. The task of the FAD-containing reductase is to shuttle electrons from NADH to the ferredoxin, a reaction the enzyme has to catalyze in the presence of dioxygen. We investigated the kinetics of the reductase in the reductive and oxidative half-reaction and detected a stable charge transfer complex between the reduced reductase and NAD(+) at the end of the reductive half-reaction, which is substantially less reactive toward dioxygen than the reduced reductase in the absence of NAD(+). A plausible reason for the low reactivity toward dioxygen is revealed by the crystal structure of the complex between NAD(+) and reduced reductase, which shows that the nicotinamide ring and the protein matrix shield the reactive C4a position of the isoalloxazine ring and force the tricycle into an atypical planar conformation, both factors disfavoring the reaction of the reduced flavin with dioxygen. A rapid electron transfer from the charge transfer complex to electron acceptors further reduces the risk of unwanted side reactions, and the crystal structure of a complex between the reductase and its cognate ferredoxin shows a short distance between the electron-donating and -accepting cofactors. Attraction between the two proteins is likely mediated by opposite charges at one large patch of the complex interface. The stability, specificity, and reactivity of the observed charge transfer and electron transfer complexes are thought to prevent the reaction of reductase(TOL) with dioxygen and thus present a solution toward conflicting requirements.
Collapse
Affiliation(s)
- Tzong-Yuan Lin
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
21
|
McGovern RE, Fernandes H, Khan AR, Power NP, Crowley PB. Protein camouflage in cytochrome c–calixarene complexes. Nat Chem 2012; 4:527-33. [DOI: 10.1038/nchem.1342] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/22/2012] [Indexed: 01/06/2023]
|
22
|
Volkov AN, Nicholls P, Worrall JA. The complex of cytochrome c and cytochrome c peroxidase: The end of the road? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1482-503. [DOI: 10.1016/j.bbabio.2011.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/25/2022]
|
23
|
Almeida RM, Geraldes CFGC, Pauleta SR, Moura JJG. Gd(III) Chelates as NMR Probes of Protein–Protein Interactions. Case Study: Rubredoxin and Cytochrome c3. Inorg Chem 2011; 50:10600-7. [DOI: 10.1021/ic200858c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rui M. Almeida
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos F. G. C. Geraldes
- Department of Life Sciences, Faculty of Science and Technology and Centre of Neurosciences and Cell Biology, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Sofia R. Pauleta
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
24
|
Lederer F. Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b (2). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1283-99. [PMID: 21503671 DOI: 10.1007/s00249-011-0697-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/16/2011] [Indexed: 11/29/2022]
Abstract
Yeast flavocytochrome b (2) tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b (2). Each subunit of the soluble tetrameric enzyme consists of an N terminal b (5)-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b (2) domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b (2) functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b (5)-like domain is fused to proteins carrying other redox functions.
Collapse
Affiliation(s)
- Florence Lederer
- Laboratoire de Chimie Physique, Université Paris-Sud, Orsay Cedex, France.
| |
Collapse
|
25
|
Crowley PB, Chow E, Papkovskaia T. Protein Interactions in the Escherichia coli Cytosol: An Impediment to In-Cell NMR Spectroscopy. Chembiochem 2011; 12:1043-8. [PMID: 21448871 DOI: 10.1002/cbic.201100063] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Indexed: 12/29/2022]
|
26
|
Bertini I, Cavallaro G, Rosato A. Principles and patterns in the interaction between mono-heme cytochrome c and its partners in electron transfer processes. Metallomics 2011; 3:354-62. [PMID: 21359406 DOI: 10.1039/c0mt00108b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochromes c are very widespread proteins that play key roles in the electron transfer events associated to a wide variety of physiological redox processes. The function of cytochromes c is, at the broad level, to interact with different partners in order to allow electrons to flow from one protein to another. Here, we focused our attention on the protein-protein interactions that involve mono-heme cytochrome c domains in order to identify possible general vs. specific patterns of intermolecular interactions at the structural level. We observed that a number of physico-chemical properties are statistically different in transient vs. permanent and fused complexes. These include the extent of the protein interface area, the amino acid composition and the packing density at the interface. The understanding of the features of transient redox complexes is of particular importance because of the difficulty of obtaining co-crystals that preserve the physiologically relevant configuration. In addition, we identified three different structural modes of interaction that cover all the structurally characterized cytochrome c interactions except one. The mode of interaction does not correlate with the nature of the complex (transient, permanent, fused). Regardless of the mode of interaction, the distance between the heme iron and the partner metal center or organic cofactor center of mass is typically around 19-20 Å for complexes permitting direct electron transfer between the two sites.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via L Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
27
|
Kokhan O, Wraight CA, Tajkhorshid E. The binding interface of cytochrome c and cytochrome c₁ in the bc₁ complex: rationalizing the role of key residues. Biophys J 2011; 99:2647-56. [PMID: 20959106 DOI: 10.1016/j.bpj.2010.08.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/07/2010] [Accepted: 08/18/2010] [Indexed: 11/27/2022] Open
Abstract
The interaction of cytochrome c with ubiquinol-cytochrome c oxidoreductase (bc₁ complex) has been studied for >30 years, yet many aspects remain unclear or controversial. We report the first molecular dynamic simulations of the cyt c-bc₁ complex interaction. Contrary to the results of crystallographic studies, our results show that there are multiple dynamic hydrogen bonds and salt bridges in the cyt c-c₁ interface. These include most of the basic cyt c residues previously implicated in chemical modification studies. We suggest that the static nature of x-ray structures can obscure the quantitative significance of electrostatic interactions between highly mobile residues. This provides a clear resolution of the discrepancy between the structural data and functional studies. It also suggests a general need to consider dynamic interactions of charged residues in protein-protein interfaces. In addition, a novel structural change in cyt c is reported, involving residues 21-25, which may be responsible for cyt c destabilization upon binding. We also propose a mechanism of interaction between cyt c₁ monomers responsible for limiting the binding of cyt c to only one molecule per bc₁ dimer by altering the affinity of the cytochrome c binding site on the second cyt c₁ monomer.
Collapse
Affiliation(s)
- Oleksandr Kokhan
- Center for Biophysics & Computational Biology, University of Illinois at Urbana-Champaign, USA
| | | | | |
Collapse
|
28
|
Salverda J, Patil A, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters G, Davis J, Heering H, Aartsma T. Fluorescent Cyclic Voltammetry of Immobilized Azurin: Direct Observation of Thermodynamic and Kinetic Heterogeneity. Angew Chem Int Ed Engl 2010; 49:5776-9. [DOI: 10.1002/anie.201001298] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Salverda J, Patil A, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters G, Davis J, Heering H, Aartsma T. Fluorescent Cyclic Voltammetry of Immobilized Azurin: Direct Observation of Thermodynamic and Kinetic Heterogeneity. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Yang W, Bell SG, Wang H, Zhou W, Hoskins N, Dale A, Bartlam M, Wong LL, Rao Z. Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. J Biol Chem 2010; 285:27372-27384. [PMID: 20576606 DOI: 10.1074/jbc.m110.118349] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes of the CYP101 and CYP111 families from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 are heme monooxygenases that receive electrons from NADH via Arx, a [2Fe-2S] ferredoxin, and ArR, a ferredoxin reductase. These systems show fast NADH turnovers (k(cat) = 39-91 s(-1)) that are efficiently coupled to product formation. The three-dimensional structures of ArR, Arx, and CYP101D1, which form a physiological class I P450 electron transfer chain, have been resolved by x-ray crystallography. The general structural features of these proteins are similar to their counterparts in other class I systems such as putidaredoxin reductase (PdR), putidaredoxin (Pdx), and CYP101A1 of the camphor hydroxylase system from Pseudomonas putida, and adrenodoxin (Adx) of the mitochondrial steroidogenic CYP11 and CYP24A1 systems. However, significant differences in the proposed protein-protein interaction surfaces of the ferredoxin reductase, ferredoxin, and P450 enzyme are found. There are regions of positive charge on the likely interaction face of ArR and CYP101D1 and a corresponding negatively charged area on the surface of Arx. The [2Fe-2S] cluster binding loop in Arx also has a neutral, hydrophobic patch on the surface. These surface characteristics are more in common with those of Adx than Pdx. The observed structural features are consistent with the ionic strength dependence of the activity.
Collapse
Affiliation(s)
- Wen Yang
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Stephen G Bell
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.
| | - Hui Wang
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Weihong Zhou
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nicola Hoskins
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alison Dale
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Mark Bartlam
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | - Luet-Lok Wong
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Zihe Rao
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Structural evidence for the functional importance of the heme domain mobility in flavocytochrome b2. J Mol Biol 2010; 400:518-30. [PMID: 20546754 DOI: 10.1016/j.jmb.2010.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 11/24/2022]
Abstract
Yeast flavocytochrome b(2) (Fcb2) is an L-lactate:cytochrome c oxidoreductase in the mitochondrial intermembrane space participating in cellular respiration. Each enzyme subunit consists of a cytochrome b(5)-like heme domain and a flavodehydrogenase (FDH) domain. In the Fcb2 crystal structure, the heme domain is mobile relative to the tetrameric FDH core in one out of two subunits. The monoclonal antibody B2B4, elicited against the holoenzyme, recognizes only the native heme domain in the holoenzyme. When bound, it suppresses the intramolecular electron transfer from flavin to heme b(2), hence cytochrome c reduction. We report here the crystal structure of the heme domain in complex with the Fab at 2.7 A resolution. The Fab epitope on the heme domain includes the two exposed propionate groups of the heme, which are hidden in the interface between the domains in the complete subunit. The structure discloses an unexpected plasticity of Fcb2 in the neighborhood of the heme cavity, in which the heme has rotated. The epitope overlaps with the docking area of the FDH domain onto the heme domain, indicating that the antibody displaces the heme domain in a movement of large amplitude. We suggest that the binding sites on the heme domain of cytochrome c and of the FDH domain also overlap and therefore that cytochrome c binding also requires the heme domain to move away from the FDH domain, so as to allow electron transfer between the two hemes. Based on this hypothesis, we propose a possible model of the Fcb2.cytochrome c complex. Interestingly, this model shares similarity with that of the cytochrome b(5) x cytochrome c complex, in which cytochrome c binds to the surface around the exposed heme edge of cytochrome b(5). The present results therefore support the idea that the heme domain mobility is an inherent component of the Fcb2 functioning.
Collapse
|
32
|
Crowley PB, Matias PM, Mi H, Firbank SJ, Banfield MJ, Dennison C. Regulation of protein function: crystal packing interfaces and conformational dimerization. Biochemistry 2010; 47:6583-9. [PMID: 18479147 DOI: 10.1021/bi800125h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accepted view of interprotein electron transport involves molecules diffusing between donor and acceptor redox sites. An emerging alternative hypothesis is that efficient long-range electron transport can be achieved through proteins arranged in supramolecular assemblies. In this study, we have investigated the crystal packing interfaces in three crystal forms of plastocyanin, an integral component of the photosynthetic electron transport chain, and discuss their potential relevance to in vivo supramolecular assemblies. Symmetry-related protein chains within these crystals have Cu-Cu separations of <25 A, a distance that readily supports electron transfer. In one structure, the plastocyanin molecule exists in two forms in which a backbone displacement coupled with side chain rearrangements enables the modulation of protein-protein interfaces.
Collapse
Affiliation(s)
- Peter B Crowley
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
33
|
Hirano Y, Higuchi M, Azai C, Oh-Oka H, Miki K, Wang ZY. Crystal structure of the electron carrier domain of the reaction center cytochrome c(z) subunit from green photosynthetic bacterium Chlorobium tepidum. J Mol Biol 2010; 397:1175-87. [PMID: 20156447 DOI: 10.1016/j.jmb.2010.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/02/2010] [Accepted: 02/09/2010] [Indexed: 11/18/2022]
Abstract
In green sulfur photosynthetic bacteria, the cytochrome c(z) (cyt c(z)) subunit in the reaction center complex mediates electron transfer mainly from menaquinol/cytochrome c oxidoreductase to the special pair (P840) of the reaction center. The cyt c(z) subunit consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. The periplasmic soluble domain has been proposed to be highly mobile and to fluctuate between oxidoreductase and P840 during photosynthetic electron transfer. We have determined the crystal structure of the oxidized form of the C-terminal functional domain of the cyt c(z) subunit (C-cyt c(z)) from thermophilic green sulfur bacterium Chlorobium tepidum at 1.3-A resolution. The overall fold of C-cyt c(z) consists of four alpha-helices and is similar to that of class I cytochrome c proteins despite the low similarity in their amino acid sequences. The N-terminal structure of C-cyt c(z) supports the swinging mechanism previously proposed in relation with electron transfer, and the surface properties provide useful information on possible interaction sites with its electron transfer partners. Several characteristic features are observed for the heme environment: These include orientation of the axial ligands with respect to the heme plane, surface-exposed area of the heme, positions of water molecules, and hydrogen-bond network involving heme propionate groups. These structural features are essential for elucidating the mechanism for regulating the redox state of cyt c(z).
Collapse
Affiliation(s)
- Yu Hirano
- Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Abresch EC, Gong XM, Paddock ML, Okamura MY. Electron transfer from cytochrome c(2) to the reaction center: a transition state model for ionic strength effects due to neutral mutations. Biochemistry 2009; 48:11390-8. [PMID: 19877711 DOI: 10.1021/bi901332t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interprotein electron transfer plays an important role in biological energy conversion. In this work, the electron transfer reaction between cytochrome c(2) (cyt) and the reaction center (RC) was studied to determine the mechanisms coupling association and electron transfer. Previous studies have shown that mutation of hydrophobic residues in the reaction interface, particularly Tyr L162, changes the binding affinity and rates of electron transfer at low ionic strengths. In this study, the effect of ionic strength on the second-order electron transfer rate constant, k(2), between cyt c(2) and native or mutant RCs was examined. Mutations of hydrophobic and hydrogen bonding residues caused k(2) to decrease more rapidly with an increase in ionic strength. This change is explained with a transition state model by a switch from a diffusion-limited reaction in native RCs, where electron transfer occurs upon each binding event, to a fast exchange reaction in the Tyr L162 mutant, where dissociation occurs before electron transfer and k(2) depends upon the equilibrium between bound and free protein complexes. The difference in ionic strength dependence is attributed to a smaller effect of ionic strength on the energy of the transition state compared to the bound state due to larger distances between charged residues in the transition state. This model explains the faster dissociation rate at higher ionic strengths that may assist rapid turnover that is important for biological function. These results provide a quantitative model for coupling protein association with electron transfer and elucidate the role of short-range interactions in determining the rate of electron transfer.
Collapse
Affiliation(s)
- Edward C Abresch
- Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
35
|
Crowley P, Matias P, Khan A, Roessle M, Svergun D. Metal-Mediated Self-Assembly of a β-Sandwich Protein. Chemistry 2009; 15:12672-80. [DOI: 10.1002/chem.200901410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Frago S, Lans I, Navarro JA, Hervás M, Edmondson DE, De la Rosa MA, Gómez-Moreno C, Mayhew SG, Medina M. Dual role of FMN in flavodoxin function: electron transfer cofactor and modulation of the protein-protein interaction surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:262-71. [PMID: 19900400 DOI: 10.1016/j.bbabio.2009.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
Flavodoxin (Fld) replaces Ferredoxin (Fd) as electron carrier from Photosystem I (PSI) to Ferredoxin-NADP(+) reductase (FNR). A number of Anabaena Fld (AnFld) variants with replacements at the interaction surface with FNR and PSI indicated that neither polar nor hydrophobic residues resulted critical for the interactions, particularly with FNR. This suggests that the solvent exposed benzenoid surface of the Fld FMN cofactor might contribute to it. FMN has been replaced with analogues in which its 7- and/or 8-methyl groups have been replaced by chlorine and/or hydrogen. The oxidised Fld variants accept electrons from reduced FNR more efficiently than Fld, as expected from their less negative midpoint potential. However, processes with PSI (including reduction of Fld semiquinone by PSI, described here for the first time) are impeded at the steps that involve complex re-arrangement and electron transfer (ET). The groups introduced, particularly chlorine, have an electron withdrawal effect on the pyrazine and pyrimidine rings of FMN. These changes are reflected in the magnitude and orientation of the molecular dipole moment of the variants, both factors appearing critical for the re-arrangement of the finely tuned PSI:Fld complex. Processes with FNR are also slightly modulated. Despite the displacements observed, the negative end of the dipole moment points towards the surface that contains the FMN, still allowing formation of complexes competent for efficient ET. This agrees with several alternative binding modes in the FNR:Fld interaction. In conclusion, the FMN in Fld not only contributes to the redox process, but also to attain the competent interaction of Fld with FNR and PSI.
Collapse
Affiliation(s)
- Susana Frago
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Institute of Biocomputation and Physics of Complex Systems (BIFI). Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Binding thermodynamics of ferredoxin:NADP+ reductase: two different protein substrates and one energetics. Biophys J 2009; 96:4966-75. [PMID: 19527656 DOI: 10.1016/j.bpj.2009.02.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/16/2009] [Accepted: 03/18/2009] [Indexed: 11/22/2022] Open
Abstract
The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics.
Collapse
|
38
|
Lavergne J, Verméglio A, Joliot P. Functional Coupling Between Reaction Centers and Cytochrome bc 1 Complexes. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Goñi G, Herguedas B, Hervás M, Peregrina JR, De la Rosa MA, Gómez-Moreno C, Navarro JA, Hermoso JA, Martínez-Júlvez M, Medina M. Flavodoxin: a compromise between efficiency and versatility in the electron transfer from Photosystem I to Ferredoxin-NADP(+) reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:144-54. [PMID: 19150326 DOI: 10.1016/j.bbabio.2008.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/01/2008] [Accepted: 12/09/2008] [Indexed: 11/18/2022]
Abstract
Under iron-deficient conditions Flavodoxin (Fld) replaces Ferredoxin in Anabaena as electron carrier from Photosystem I (PSI) to Ferredoxin-NADP(+) reductase (FNR). Several residues modulate the Fld interaction with FNR and PSI, but no one appears as specifically critical for efficient electron transfer (ET). Fld shows a strong dipole moment, with its negative end directed towards the flavin ring. The role of this dipole moment in the processes of interaction and ET with positively charged surfaces exhibited by PSI and FNR has been analysed by introducing single and multiple charge reversal mutations on the Fld surface. Our data confirm that in this system interactions do not rely on a precise complementary surface of the reacting molecules. In fact, they indicate that the initial orientation driven by the alignment of dipole moment of the Fld molecule with that of the partner contributes to the formation of a bunch of alternative binding modes competent for the efficient ET reaction. Additionally, the fact that Fld uses different interaction surfaces to dock to PSI and to FNR is confirmed.
Collapse
Affiliation(s)
- Guillermina Goñi
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009-Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Petoukhov MV, Vicente JB, Crowley PB, Carrondo MA, Teixeira M, Svergun DI. Quaternary structure of flavorubredoxin as revealed by synchrotron radiation small-angle X-ray scattering. Structure 2008; 16:1428-36. [PMID: 18786405 DOI: 10.1016/j.str.2008.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 06/01/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Flavodiiron proteins (FDP) are modular enzymes which function as NO and/or O(2) reductases. Although the majority is composed of two structural domains, the homolog found in Escherichia coli, flavorubredoxin, possesses an extra C-terminal module consisting of a linker and a rubredoxin (Rd) domain necessary for interprotein redox processes. In order to investigate the location of the Rd domain with respect to the flavodiiron structural core, small-angle X-ray scattering was used to construct low-resolution structural models of flavorubredoxin. Scattering patterns from the Rd domain, the FDP core, and full-length flavorubredoxin were collected. The latter two species were found to be tetrameric in solution. Ab initio shape reconstruction and rigid-body modeling indicate a peripheral location for the Rd domains, which appear to have weak contacts with the FDP core. This finding suggests that Rd behaves as an independent domain and is freely available to participate in redox reactions with protein partners.
Collapse
Affiliation(s)
- Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
A structural analysis of the transient interaction between the cytochrome bc1 complex and its substrate cytochrome c. Biochem Soc Trans 2008; 36:981-5. [PMID: 18793174 DOI: 10.1042/bst0360981] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In cellular respiration, cytochrome c transfers electrons from the cytochrome bc1 complex to cytochrome c oxidase by transiently binding to the membrane proteins. The first X-ray structure of the yeast cytochrome bc1 complex with bound cytochrome c revealed the general architecture of the electron-transfer complex. The interface of the complex is small. The haem moieties are centrally located in a mainly non-polar contact site, which includes a cation-pi interaction and is surrounded by complementary charged residues. Only one cytochrome c1-docking site of the dimeric complex is occupied with cytochrome c. The recent 1.9 A (1 A=0.1 nm) resolution structure of the complex showed that the interface is highly hydrated. With cytochrome c bound, a higher number of interfacial water molecules are present on the cytochrome c1 interface, whereas its protein surface is not affected. Remarkably, the dimer structure is slightly asymmetric. Univalent cytochrome c binding coincides with conformational changes of the Rieske head domain and subunit QCR6p. Pronounced hydration and a mobility mismatch at the interface with disordered charged residues on the cytochrome c side are favourable for transient binding. Comparison with a new structure of the complex with bound isoform-2 cytochrome c led to the definition of a core interface, which refers to four common interaction pairs including the cation-pi interaction. They encircle the haem groups and are surrounded by variable interactions. The core interface may be a feature to gain specificity for formation of the reactive complex. The consistency in the binding interaction despite differences in primary sequence, redox state and crystal contacts, together with crystallization at physiological ionic strength, clearly suggest that the structures show the native bound state of the electron-transfer complex.
Collapse
|
42
|
Volkov AN, Bashir Q, Worrall JAR, Ubbink M. Binding hot spot in the weak protein complex of physiological redox partners yeast cytochrome C and cytochrome C peroxidase. J Mol Biol 2008; 385:1003-13. [PMID: 19026661 DOI: 10.1016/j.jmb.2008.10.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/16/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
Transient protein interactions mediate many vital cellular processes such as signal transduction or intermolecular electron transfer. However, due to difficulties associated with their structural characterization, little is known about the principles governing recognition and binding in weak transient protein complexes. In particular, it has not been well established whether binding hot spots, which are frequently found in strong static complexes, also govern transient protein interactions. To address this issue, we have investigated an electron transfer complex of physiological partners from yeast: yeast iso-1-cytochrome c (Cc) and yeast cytochrome c peroxidase (CcP). Using isothermal titration calorimetry and NMR spectroscopy, we show that Cc R13 is a hot-spot residue, as R13A mutation has a strong destabilizing effect on binding. Furthermore, we employ a double-mutant cycle to illustrate that Cc R13 interacts with CcP Y39. The present results, in combination with those of earlier mutational studies, have enabled us to outline the extent of the energetically important Cc-CcP binding region. Based on our analysis, we propose that binding energy hot spots, which are prevalent in static protein complexes, could also govern transient protein interactions.
Collapse
Affiliation(s)
- Alexander N Volkov
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Abderrakib Zahid
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
| | - Samia Afoulous
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
| | - Roland Cazalis
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
- Corresponding author. Phone: 33-561152989. Fax: 33-561153060. E-mail address:
| |
Collapse
|
44
|
Abstract
AbstractProtein–protein recognition plays an essential role in structure and function. Specific non-covalent interactions stabilize the structure of macromolecular assemblies, exemplified in this review by oligomeric proteins and the capsids of icosahedral viruses. They also allow proteins to form complexes that have a very wide range of stability and lifetimes and are involved in all cellular processes. We present some of the structure-based computational methods that have been developed to characterize the quaternary structure of oligomeric proteins and other molecular assemblies and analyze the properties of the interfaces between the subunits. We compare the size, the chemical and amino acid compositions and the atomic packing of the subunit interfaces of protein–protein complexes, oligomeric proteins, viral capsids and protein–nucleic acid complexes. These biologically significant interfaces are generally close-packed, whereas the non-specific interfaces between molecules in protein crystals are loosely packed, an observation that gives a structural basis to specific recognition. A distinction is made within each interface between a core that contains buried atoms and a solvent accessible rim. The core and the rim differ in their amino acid composition and their conservation in evolution, and the distinction helps correlating the structural data with the results of site-directed mutagenesis and in vitro studies of self-assembly.
Collapse
|
45
|
Dell’Acqua S, Pauleta SR, Monzani E, Pereira AS, Casella L, Moura JJG, Moura I. Electron Transfer Complex between Nitrous Oxide Reductase and Cytochrome c552 from Pseudomonas nautica: Kinetic, Nuclear Magnetic Resonance, and Docking Studies. Biochemistry 2008; 47:10852-62. [DOI: 10.1021/bi801375q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Dell’Acqua
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Sofia R. Pauleta
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alice S. Pereira
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luigi Casella
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Isabel Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
46
|
Crowley PB, Ganji P, Ibrahim H. Protein Surface Recognition: Structural Characterisation of Cytochrome c–Porphyrin Complexes. Chembiochem 2008; 9:1029-33. [DOI: 10.1002/cbic.200700736] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Maeda K, Hägglund P, Finnie C, Svensson B, Henriksen A. Crystal structures of barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 reveal features involved in protein recognition and possibly in discriminating the isoform specificity. Protein Sci 2008; 17:1015-24. [PMID: 18424513 DOI: 10.1110/ps.083460308] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H-type thioredoxins (Trxs) constitute a particularly large Trx sub-group in higher plants. Here, the crystal structures are determined for the two barley Trx h isoforms, HvTrxh1 and HvTrxh2, in the partially radiation-reduced state to resolutions of 1.7 A, and for HvTrxh2 in the oxidized state to 2.0 A. The two Trxs have a sequence identity of 51% and highly similar fold and active-site architecture. Interestingly, the four independent molecules in the crystals of HvTrxh1 form two relatively large and essentially identical protein-protein interfaces. In each interface, a loop segment of one HvTrxh1 molecule is positioned along a shallow hydrophobic groove at the primary nucleophile Cys40 of another HvTrxh1 molecule. The association mode can serve as a model for the target protein recognition by Trx, as it brings the Met82 Cgamma atom (gamma position as a disulfide sulfur) of the bound loop segment in the proximity of the Cys40 thiol. The interaction involves three characteristic backbone-backbone hydrogen bonds in an antiparallel beta-sheet-like arrangement, similar to the arrangement observed in the structure of an engineered, covalently bound complex between Trx and a substrate protein, as reported by Maeda et al. in an earlier paper. The occurrence of an intermolecular salt bridge between Glu80 of the bound loop segment and Arg101 near the hydrophobic groove suggests that charge complementarity plays a role in the specificity of Trx. In HvTrxh2, isoleucine corresponds to this arginine, which emphasizes the potential for specificity differences between the coexisting barley Trx isoforms.
Collapse
Affiliation(s)
- Kenji Maeda
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|
48
|
Michel LV, Bren KL. Submolecular unfolding units of Pseudomonas aeruginosa cytochrome c-551. J Biol Inorg Chem 2008; 13:837-45. [PMID: 18392863 DOI: 10.1007/s00775-008-0370-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
Abstract
Hydrogen exchange rates for backbone amide protons of oxidized Pseudomonas aeruginosa cytochrome c-551 (P. aeruginosa cytochrome c) have been measured in the presence of low concentrations of the denaturant guanidine hydrochloride. Analysis of the data has allowed identification of submolecular unfolding units known as foldons. The highest-energy foldon bears similarity to the proposed folding intermediate for P. aeruginosa cytochrome c. Parallels are seen to the foldons of the structurally homologous horse cytochrome c, although the heme axial methionine-bearing loop has greater local stability in P. aeruginosa cytochrome c, in accord with previous folding studies. Regions of low local stability are observed to correspond with regions that interact with redox partners, providing a link between foldon properties and function.
Collapse
Affiliation(s)
- Lea V Michel
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, 14642, USA
| | | |
Collapse
|
49
|
Crowley PB, Brett K, Muldoon J. NMR Spectroscopy Reveals Cytochromec–Poly(ethylene glycol) Interactions. Chembiochem 2008; 9:685-8. [DOI: 10.1002/cbic.200700603] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G. Structural and functional diversity of ferredoxin-NADP(+) reductases. Arch Biochem Biophys 2008; 474:283-91. [PMID: 18307973 DOI: 10.1016/j.abb.2008.02.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/07/2008] [Accepted: 02/11/2008] [Indexed: 11/29/2022]
Abstract
Although all ferredoxin-NADP(+) reductases (FNRs) catalyze the same reaction, i.e. the transfer of reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of proteins: the plant-type and the glutathione reductase-type of FNRs. Aim of this review is to provide a general classification scheme for these enzymes, to be used as a framework for the comparison of their properties. Furthermore, we report on some recent findings, which significantly increased the understanding of the structure-function relationships of FNRs, i.e. the ability of adrenodoxin reductase and its homologs to catalyze the oxidation of NADP(+) to its 4-oxo derivative, and the properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria and Apicomplexan parasites provide examples of novel ways of FAD- and NADP(H)-binding. The recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field of drug design.
Collapse
Affiliation(s)
- Alessandro Aliverti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|