1
|
Cui L, Yang L, Lai B, Luo L, Deng H, Chen Z, Wang Z. Integrative and comprehensive pan-cancer analysis of ubiquitin specific peptidase 11 ( USP11) as a prognostic and immunological biomarker. Heliyon 2024; 10:e34523. [PMID: 39114046 PMCID: PMC11305246 DOI: 10.1016/j.heliyon.2024.e34523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The significance of USP11 as a critical regulator in cancer has garnered substantial attention, primarily due to its catalytic activity as a deubiquitinating enzyme. Nonetheless, a thorough evaluation of USP11 across various cancer types in pan-cancer studies remains absent. Our analysis integrates data from a variety of sources, including five immunotherapy cohorts, thirty-three cohorts from The Cancer Genome Atlas (TCGA), and sixteen cohorts from the Gene Expression Omnibus (GEO), two of which involve single-cell transcriptomic data. Our findings indicate that aberrant USP11 expression is predictive of survival outcomes across various cancer types. The highest frequency of genomic alterations was observed in uterine corpus endometrial carcinoma (UCEC), with single-cell transcriptome analysis revealing significantly higher USP11 expression in plasmacytoid dendritic cells and mast cells. Notably, USP11 expression was associated with the infiltration levels of CD8+ T cells and natural killer (NK) activated cells. Additionally, in the skin cutaneous melanoma (SKCM) phs000452 cohort, patients with higher USP11 mRNA levels during immunotherapy experienced a significantly shorter median progression-free survival. USP11 emerges as a promising molecular biomarker with significant potential for predicting patient prognosis and immunoreactivity across various cancer types.
Collapse
Affiliation(s)
- Lijuan Cui
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Ling Yang
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Boan Lai
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Lingzhi Luo
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Haoyue Deng
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Zhongyi Chen
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Zixing Wang
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| |
Collapse
|
2
|
Salomonsson J, Wallner B, Sjöstrand L, D'Arcy P, Sunnerhagen M, Ahlner A. Transient interdomain interactions in free USP14 shape its conformational ensemble. Protein Sci 2024; 33:e4975. [PMID: 38588275 PMCID: PMC11001199 DOI: 10.1002/pro.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.
Collapse
Affiliation(s)
| | - Björn Wallner
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Linda Sjöstrand
- Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | - Pádraig D'Arcy
- Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Alexandra Ahlner
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| |
Collapse
|
3
|
Chi L, Wang H, Yu F, Gao C, Dai H, Si X, Liu L, Wang Z, Zheng J, Ke Y, Liu H, Zhang Q. Recent Progress of Ubiquitin-Specific-Processing Protease 7 Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Karlowitz R, van Wijk SJL. Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J 2023; 290:37-54. [PMID: 34710282 DOI: 10.1111/febs.16255] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| |
Collapse
|
5
|
Luo ZJ, Li H, Yang L, Kang B, Cai T. Exome sequencing revealed USP9X and COL2A1 mutations in a large family with multiple epiphyseal dysplasia. Bone 2022; 163:116508. [PMID: 35907616 DOI: 10.1016/j.bone.2022.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Diagnosis of rare skeletal diseases is based primarily on clinical phenotype and radiographic analysis. Genetic etiology of these heterogeneous diseases remains largely unknown. Here, we report the identification of two genomic mutations using exome sequencing from patients with multiple epiphyseal dysplasia (MED) of an unusual family in autosomal dominant and X-linked inheritance. A dominant mutation (c.2224G > A; p.Gly687Ser) in the known causal COL2A1 gene was identified in three patients with MED, deformed femoral heads and vertebral dysplasia. Furthermore, a hemizygous mutation (c.2830G > A; p.Ala944Thr) in the USP9X gene was identified in the fourth patient with short stature, MED, deformed femoral head, thoracic and lumbar platyspondyly, right ankle condyle dysplasia, and subchondral sclerosis. This is the first identification of an X-linked candidate causative gene in a patient with MED, suggesting a new clinical entity. Our findings shed a new light on the role of USP9X in MED-associated disorders.
Collapse
Affiliation(s)
- Zhuo-Jing Luo
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongzhuo Li
- Department of Orthopedics, Heping Hospital Attached to Changzhi Medical College, Changzhi, China
| | - Liu Yang
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA.
| |
Collapse
|
6
|
Kaushal K, Kim EJ, Tyagi A, Karapurkar JK, Haq S, Jung HS, Kim KS, Ramakrishna S. Genome-wide screening for deubiquitinase subfamily identifies ubiquitin-specific protease 49 as a novel regulator of odontogenesis. Cell Death Differ 2022; 29:1689-1704. [PMID: 35273362 PMCID: PMC9433428 DOI: 10.1038/s41418-022-00956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Proteins expressed by the paired box gene 9 (PAX9) and Msh Homeobox 1 (MSX1) are intimately involved in tooth development (odontogenesis). The regulation of PAX9 and MSX1 protein turnover by deubiquitinating enzymes (DUBs) plausibly maintain the required levels of PAX9 and MSX1 during odontogenesis. Herein, we used a loss-of-function CRISPR-Cas9-mediated DUB KO library kit to screen for DUBs that regulate PAX9 and MSX1 protein levels. We identify and demonstrate that USP49 interacts with and deubiquitinates PAX9 and MSX1, thereby extending their protein half-lives. On the other hand, the loss of USP49 reduces the levels of PAX9 and MSX1 proteins, which causes transient retardation of odontogenic differentiation in human dental pulp stem cells and delays the differentiation of human pluripotent stem cells into the neural crest cell lineage. USP49 depletion produced several morphological defects during tooth development, such as reduced dentin growth with shrunken enamel space, and abnormal enamel formation including irregular mineralization. In sum, our results suggest that deubiquitination of PAX9 and MSX1 by USP49 stabilizes their protein levels to facilitate successful odontogenesis.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, South Korea
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | | | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, South Korea.
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea. .,College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea. .,College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
7
|
The Dual Role of USP11 in Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9963905. [PMID: 35359344 PMCID: PMC8964208 DOI: 10.1155/2022/9963905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
Abstract
Ubiquitination is one of the most crucial ways of protein degradation and plays an indispensable role in various living activities of cells. The deubiquitinating enzyme (DUB) is the main practitioner of the reversal of ubiquitination. Up till the present moment, nearly 100 DUBs from six families have been confirmed. USP11 is a member of the largest subfamily of cysteine protease DUBs, involving in the regulation of cell cycle, DNA repair, regulating signaling pathways, tumor development, and other important biological behaviors. This review briefly describes the structure and function of USP11 and comprehensively describes its dual role in tumorigenesis and development, as well as its targeted therapy.
Collapse
|
8
|
Domain interactions reveal auto-inhibition of the deubiquitinating enzyme USP19 and its activation by HSP90 in the modulation of huntingtin aggregation. Biochem J 2020; 477:4295-4312. [PMID: 33094816 DOI: 10.1042/bcj20200536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/25/2023]
Abstract
Ubiquitin-specific protease 19 (USP19) is a member of the deubiquitinating (DUB) enzymes that catalyze removing the ubiquitin signals from target proteins. Our previous research has demonstrated that USP19 up-regulates the protein level and aggregation of polyQ-expanded huntingtin through the involvement of heat shock protein 90 (HSP90). Here, we present solution structures of the CS1, CS2 and UbL domains of USP19 and structural insights into their domain interactions. We found that the tandem CS domains fold back to interact with the C-terminal USP domain (USPD) intra-molecularly that leads to inhibition of the catalytic core of USP19, especially CS1 interacts with the embedded UbL domain and CS2 does with the CH2 catalytic core. Moreover, CS2 specifically interacts with the NBD domain of HSP90, which can activate the DUB enzyme. A mechanism of auto-inhibition of USP19 and activation by HSP90 is proposed, on which USP19 modulates the protein level of polyQ-expanded huntingtin in cells. This study provides structural and mechanistic insights into the modulation of protein level and aggregation by USP19 with the assistance of HSP90.
Collapse
|
9
|
Majumdar P, Nath U. De-ubiquitinases on the move: an emerging field in plant biology. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:563-572. [PMID: 32233097 DOI: 10.1111/plb.13118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
A balance between the synthesis and degradation of active proteins governs diverse cellular processes in plants, spanning from cell-cycle progression and circadian rhythm to the outcome of several hormone signalling pathways. Ubiquitin-mediated post-translational modification determines the degradative fate of the target proteins, thereby altering the output of cellular processes. An equally important, and perhaps under-appreciated, aspect of this pathway is the antagonistic process of de-ubiquitination. De-ubiquitinases (DUBs), a group of processing enzymes, play an important role in maintaining cellular ubiquitin homeostasis by hydrolyzing ubiquitin poly-proteins and free poly-ubiquitin chains into mono-ubiquitin. Further, DUBs rescue the cellular proteins from 26S proteasome-mediated degradation to their active form by cleaving the poly-ubiquitin chain from the target protein. Any perturbation in DUB activity is likely to affect proteostasis and downstream cellular processes. This review illustrates recent findings on the biological significance and mechanisms of action of the DUBs in Arabidopsis thaliana, with an emphasis on ubiquitin-specific proteases (UBPs), the largest family among the DUBs. We focus on the putative roles of various protein-protein interaction interfaces in DUBs and their generalized function in ubiquitin recycling, along with their pre-eminent role in plant development.
Collapse
Affiliation(s)
- P Majumdar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - U Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|
11
|
Wang A, Zhu F, Liang R, Li D, Li B. Regulation of T cell differentiation and function by ubiquitin-specific proteases. Cell Immunol 2019; 340:103922. [PMID: 31078284 DOI: 10.1016/j.cellimm.2019.103922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
T cells play critical roles in immune responses to pathogens, autoimmunity, and antitumor immunity. During the past few decades, increasing numbers of studies have demonstrated the significance of protein ubiquitination in T cell-mediated immunity. Several E3 ubiquitin ligases and deubiquitinases (DUBs) have been identified as either positive or negative regulators of T cell development and function. In this review, we mainly focus on the roles of DUBs (especially ubiquitin-specific proteases (USPs)) in modulating T cell differentiation and function, as well as the molecular mechanisms. Understanding how T cell development and function is regulated by ubiquitination and deubiquitination will provide novel strategies for treating infection, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Aiting Wang
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Fangming Zhu
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Bio-energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Wang Z, Kang W, You Y, Pang J, Ren H, Suo Z, Liu H, Zheng Y. USP7: Novel Drug Target in Cancer Therapy. Front Pharmacol 2019; 10:427. [PMID: 31114498 PMCID: PMC6502913 DOI: 10.3389/fphar.2019.00427] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUB) that erases ubiquitin and protects substrate protein from degradation. Full activity of USP7 requires the C-terminal Ub-like domains fold back onto the catalytic domain, allowing the remodeling of the active site to a catalytically competent state by the C-terminal peptide. Until now, numerous proteins have been identified as substrates of USP7, which play a key role in cell cycle, DNA repair, chromatin remodeling, and epigenetic regulation. Aberrant activation or overexpression of USP7 may promote oncogenesis and viral disease, making it a target for therapeutic intervention. Currently, several synthetic small molecules have been identified as inhibitors of USP7, and applied in the treatment of diverse diseases. Hence, USP7 may be a promising therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Zhiru Wang
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China.,Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Wenting Kang
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Yinghua You
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Jingru Pang
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Hongmei Ren
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Zhenhe Suo
- Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| | - Yichao Zheng
- School of Pharmaceutical Sciences, Zhenghzou University, Zhengzhou, China.,Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, and Key Laboratory of Henan Province for Drug Quality and Evaluation, Ministry of Education of China, Zhengzhou, China
| |
Collapse
|
13
|
Spiliotopoulos A, Blokpoel Ferreras L, Densham RM, Caulton SG, Maddison BC, Morris JR, Dixon JE, Gough KC, Dreveny I. Discovery of peptide ligands targeting a specific ubiquitin-like domain-binding site in the deubiquitinase USP11. J Biol Chem 2019; 294:424-436. [PMID: 30373771 PMCID: PMC6333900 DOI: 10.1074/jbc.ra118.004469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/11/2018] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) reverse ubiquitination and regulate virtually all cellular processes. Defined noncatalytic domains in USP4 and USP15 are known to interact with E3 ligases and substrate recruitment factors. No such interactions have been reported for these domains in the paralog USP11, a key regulator of DNA double-strand break repair by homologous recombination. We hypothesized that USP11 domains adjacent to its protease domain harbor unique peptide-binding sites. Here, using a next-generation phage display (NGPD) strategy, combining phage display library screening with next-generation sequencing, we discovered unique USP11-interacting peptide motifs. Isothermal titration calorimetry disclosed that the highest affinity peptides (KD of ∼10 μm) exhibit exclusive selectivity for USP11 over USP4 and USP15 in vitro Furthermore, a crystal structure of a USP11-peptide complex revealed a previously unknown binding site in USP11's noncatalytic ubiquitin-like (UBL) region. This site interacted with a helical motif and is absent in USP4 and USP15. Reporter assays using USP11-WT versus a binding pocket-deficient double mutant disclosed that this binding site modulates USP11's function in homologous recombination-mediated DNA repair. The highest affinity USP11 peptide binder fused to a cellular delivery sequence induced significant nuclear localization and cell cycle arrest in S phase, affecting the viability of different mammalian cell lines. The USP11 peptide ligands and the paralog-specific functional site in USP11 identified here provide a framework for the development of new biochemical tools and therapeutic agents. We propose that an NGPD-based strategy for identifying interacting peptides may be applied also to other cellular targets.
Collapse
Affiliation(s)
- Anastasios Spiliotopoulos
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
- the School of Veterinary Medicine and Science, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD
| | - Lia Blokpoel Ferreras
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Ruth M Densham
- the Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham B15 2TT, and
| | - Simon G Caulton
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Ben C Maddison
- ADAS, School of Veterinary Medicine and Science, Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Joanna R Morris
- the Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham B15 2TT, and
| | - James E Dixon
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Kevin C Gough
- the School of Veterinary Medicine and Science, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD,
| | - Ingrid Dreveny
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD,
| |
Collapse
|
14
|
Kim RQ, Sixma TK. Regulation of USP7: A High Incidence of E3 Complexes. J Mol Biol 2017; 429:3395-3408. [DOI: 10.1016/j.jmb.2017.05.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023]
|
15
|
The Regulations of Deubiquitinase USP15 and Its Pathophysiological Mechanisms in Diseases. Int J Mol Sci 2017; 18:ijms18030483. [PMID: 28245560 PMCID: PMC5372499 DOI: 10.3390/ijms18030483] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) play a critical role in ubiquitin-directed signaling by catalytically removing the ubiquitin from substrate proteins. Ubiquitin-specific protease 15 (USP15), a member of the largest subfamily of cysteine protease DUBs, contains two conservative cysteine (Cys) and histidine (His) boxes. USP15 harbors two zinc-binding motifs that are essential for recognition of poly-ubiquitin chains. USP15 is grouped into the same category with USP4 and USP11 due to high degree of homology in an N-terminal region consisting of domains present in ubiquitin-specific proteases (DUSP) domain and ubiquitin-like (UBL) domain. USP15 cooperates with COP9 signalosome complex (CSN) to maintain the stability of cullin-ring ligase (CRL) adaptor proteins by removing the conjugated ubiquitin chains from RBX1 subunit of CRL. USP15 is also implicated in the stabilization of the human papillomavirus type 16 E6 oncoprotein, adenomatous polyposis coli, and IκBα. Recently, reports have suggested that USP15 acts as a key regulator of TGF-β receptor-signaling pathways by deubiquitinating the TGF-β receptor itself and its downstream transducers receptor-regulated SMADs (R-SMADs), including SMAD1, SMAD2, and SMAD3, thus activating the TGF-β target genes. Although the importance of USP15 in pathologic processes remains ambiguous so far, in this review, we endeavor to summarize the literature regarding the relationship of the deubiquitinating action of USP15 with the proteins involved in the regulation of Parkinson’s disease, virus infection, and cancer-related signaling networks.
Collapse
|
16
|
Clasman JR, Báez-Santos YM, Mettelman RC, O’Brien A, Baker SC, Mesecar AD. X-ray Structure and Enzymatic Activity Profile of a Core Papain-like Protease of MERS Coronavirus with utility for structure-based drug design. Sci Rep 2017; 7:40292. [PMID: 28079137 PMCID: PMC5228125 DOI: 10.1038/srep40292] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-like domain 2 (Ubl2) is immediately adjacent to the N-terminus of the papain-like protease (PLpro) domain in coronavirus polyproteins, and it may play a critical role in protease regulation and stability as well as in viral infection. However, our recent cellular studies reveal that removing the Ubl2 domain from MERS PLpro has no effect on its ability to process the viral polyprotein or act as an interferon antagonist, which involves deubiquitinating and deISGylating cellular proteins. Here, we test the hypothesis that the Ubl2 domain is not required for the catalytic function of MERS PLpro in vitro. The X-ray structure of MERS PLpro-∆Ubl2 was determined to 1.9 Å and compared to PLpro containing the N-terminal Ubl2 domain. While the structures were nearly identical, the PLpro-∆Ubl2 enzyme revealed the intact structure of the substrate-binding loop. Moreover, PLpro-∆Ubl2 catalysis against different substrates and a purported inhibitor revealed no differences in catalytic efficiency, substrate specificity, and inhibition. Further, no changes in thermal stability were observed between enzymes. We conclude that the catalytic core of MERS PLpro, i.e. without the Ubl2 domain, is sufficient for catalysis and stability in vitro with utility to evaluate potential inhibitors as a platform for structure-based drug design.
Collapse
Affiliation(s)
- Jozlyn R. Clasman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Robert C. Mettelman
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Amornrat O’Brien
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Andrew D. Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Jo U, Cai W, Wang J, Kwon Y, D’Andrea AD, Kim H. PCNA-Dependent Cleavage and Degradation of SDE2 Regulates Response to Replication Stress. PLoS Genet 2016; 12:e1006465. [PMID: 27906959 PMCID: PMC5131917 DOI: 10.1371/journal.pgen.1006465] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
Maintaining genomic integrity during DNA replication is essential for cellular survival and for preventing tumorigenesis. Proliferating cell nuclear antigen (PCNA) functions as a processivity factor for DNA replication, and posttranslational modification of PCNA plays a key role in coordinating DNA repair against replication-blocking lesions by providing a platform to recruit factors required for DNA repair and cell cycle control. Here, we identify human SDE2 as a new genome surveillance factor regulated by PCNA interaction. SDE2 contains an N-terminal ubiquitin-like (UBL) fold, which is cleaved at a diglycine motif via a PCNA-interacting peptide (PIP) box and deubiquitinating enzyme activity. The cleaved SDE2 is required for negatively regulating ultraviolet damage-inducible PCNA monoubiquitination and counteracting replication stress. The cleaved SDE2 products need to be degraded by the CRL4CDT2 ubiquitin E3 ligase in a cell cycle- and DNA damage-dependent manner, and failure to degrade SDE2 impairs S phase progression and cellular survival. Collectively, this study uncovers a new role for CRL4CDT2 in protecting genomic integrity against replication stress via regulated proteolysis of PCNA-associated SDE2 and provides insights into how an integrated UBL domain within linear polypeptide sequence controls protein stability and function. Preserving genomic integrity during DNA replication is essential for preventing tumorigenesis. The CRL4CDT2 ubiquitin E3 ligase plays a unique role in this pathway by coupling proteolysis to interaction with the DNA replication processivity factor PCNA, in order to ensure selective elimination of key factors in cell cycle regulation. However, the mechanisms by which CRL4CDT2 directly regulates replication-associated DNA repair remain elusive. In this work, we identify a new human protein called SDE2 that helps cells relieve replication stress and ensure completing DNA replication process, whose activity is regulated by PCNA interaction and CRL4CDT2. We show that SDE2 is cleaved by PCNA interaction and ubiquitin signaling to generate a functional C-terminal product. The cleaved SDE2 negatively regulates PCNA monoubiquitination required for relieving replication stress. Conversely, the cleaved SDE2 fragments need to be degraded, and failure to degrade SDE2 impairs S phase progression and cellular survival. Our findings uncover the role of CRL4CDT2-proteolytic signaling coupled to PCNA in protecting genomic integrity against replication stress. Knowledge on such mechanism will be useful to identify novel cancer therapeutic interventions exploiting deregulated ubiquitin signaling and SDE2 activities in cancer.
Collapse
Affiliation(s)
- Ukhyun Jo
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Winson Cai
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Jingming Wang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Yoojin Kwon
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Alan D. D’Andrea
- Department of Radiation Oncology and Center for DNA damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Molecular Understanding of USP7 Substrate Recognition and C-Terminal Activation. Structure 2016; 24:1335-1345. [PMID: 27452404 DOI: 10.1016/j.str.2016.05.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
The deubiquitinating enzyme USP7 has a pivotal role in regulating the stability of proteins involved in fundamental cellular processes of normal biology and disease. Despite the importance of USP7, the mechanisms underlying substrate recognition and catalytic activation are poorly understood. Here we present structural, biochemical, and biophysical analyses elucidating the molecular mechanism by which the C-terminal 19 amino acids of USP7 (residues 1084-1102) enhance the ubiquitin cleavage activity of the deubiquitinase (DUB) domain. Our data demonstrate that the C-terminal peptide binds the activation cleft in the catalytic domain and stabilizes the catalytically competent conformation of USP7. Additional structures of longer fragments of USP7, as well as solution studies, provide insight into full-length USP7, the role of the UBL domains, and demonstrate that both substrate recognition and deubiquitinase activity are highly regulated by the catalytic and noncatalytic domains of USP7, a feature that could be essential for the proper function of multi-domain DUBs.
Collapse
|
19
|
Abstract
This review examines the small molecules described over the past decade as inhibitors of any of the approximately 100 human deubiquitinating enzymes (DUBs). Structures from patent publications as well as from the primary literature are included. Inhibitors of two viral DUBs are also described since these proteases share structural similarity with one of the human DUB sub-families. The structure, function and disease associations of certain DUBs are presented. The evolution of the screening assays used to identify and characterise new inhibitors is discussed. Several emerging trends in the series are highlighted and the ‘drug-likeness’ of the various inhibitors is analysed. Large pharmaceutical company collaborations have drawn attention to this field, and these recent advances are discussed in the context of the wider range of therapeutically important DUB targets.
Collapse
Affiliation(s)
- Mark Kemp
- MISSION Therapeutics, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
20
|
Pozhidaeva AK, Mohni KN, Dhe-Paganon S, Arrowsmith CH, Weller SK, Korzhnev DM, Bezsonova I. Structural Characterization of Interaction between Human Ubiquitin-specific Protease 7 and Immediate-Early Protein ICP0 of Herpes Simplex Virus-1. J Biol Chem 2015. [PMID: 26224631 DOI: 10.1074/jbc.m115.664805] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that prevents protein degradation by removing polyubiquitin chains from its substrates. It regulates the stability of a number of human transcription factors and tumor suppressors and plays a critical role in the development of several types of cancer, including prostate and small cell lung cancer. In addition, human USP7 is targeted by several viruses of the Herpesviridae family and is required for effective herpesvirus infection. The USP7 C-terminal region (C-USP7) contains five ubiquitin-like domains (UBL1-5) that interact with several USP7 substrates. Although structures of the USP7 C terminus bound to its substrates could provide vital information for understanding USP7 substrate specificity, no such data has been available to date. In this work we have demonstrated that the USP7 ubiquitin-like domains can be studied in isolation by solution NMR spectroscopy, and we have determined the structure of the UBL1 domain. Furthermore, we have employed NMR and viral plaque assays to probe the interaction between the C-USP7 and HSV-1 immediate-early protein ICP0 (infected cell protein 0), which is essential for efficient lytic infection and virus reactivation from latency. We have shown that depletion of the USP7 in HFF-1 cells negatively affects the efficiency of HSV-1 lytic infection. We have also found that USP7 directly binds ICP0 via its C-terminal UBL1-2 domains and mapped the USP7-binding site for ICP0. Therefore, this study represents a first step toward understanding the molecular mechanism of C-USP7 specificity toward its substrates and may provide the basis for future development of novel antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Alexandra K Pozhidaeva
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030
| | - Kareem N Mohni
- the Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Sirano Dhe-Paganon
- the Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, and
| | - Cheryl H Arrowsmith
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sandra K Weller
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030
| | - Dmitry M Korzhnev
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030
| | - Irina Bezsonova
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030,
| |
Collapse
|
21
|
Asaoka T, Ikeda F. New Insights into the Role of Ubiquitin Networks in the Regulation of Antiapoptosis Pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:121-58. [PMID: 26315885 DOI: 10.1016/bs.ircmb.2015.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ubiquitin is a small modifier protein that conjugates on lysine (Lys) residues of substrates, and it can be targeted by another ubiquitin molecule to form chains through conjugation on the intrinsic Lys residues and methionine (Met) 1 residue. Ubiquitination of substrates by such chains determines the fate of substrates, thereby influencing various biological processes. In this chapter, we focus on apoptosis with an emphasis on the regulation by ubiquitination. The signal transduction of apoptosis is governed not only by the classical function of ubiquitin, which is proteasome-dependent degradation of substrates, but also by the apoptosis signaling complex formation guided by different types of ubiquitin chains. Ubiquitinations of pro- and antiapoptotic proteins are tightly regulated by particular sets of enzymes, such as ubiquitin E3 ligases and deubiquitinases (DUBs). We further discuss ubiquitination in the tumor necrosis factor (TNF) signaling pathway as an example for the ubiquitin-dependent regulation of apoptosis and cell survival.
Collapse
Affiliation(s)
- Tomoko Asaoka
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| |
Collapse
|
22
|
Abstract
The post-translational modification of proteins with ubiquitin represents a complex signalling system that co-ordinates essential cellular functions, including proteolysis, DNA repair, receptor signalling and cell communication. DUBs (deubiquitinases), the enzymes that disassemble ubiquitin chains and remove ubiquitin from proteins, are central to this system. Reflecting the complexity and versatility of ubiquitin signalling, DUB activity is controlled in multiple ways. Although several lines of evidence indicate that aberrant DUB function may promote human disease, the underlying molecular mechanisms are often unclear. Notwithstanding, considerable interest in DUBs as potential drug targets has emerged over the past years. The future success of DUB-based therapy development will require connecting the basic science of DUB function and enzymology with drug discovery. In the present review, we discuss new insights into DUB activity regulation and their links to disease, focusing on the role of DUBs as regulators of cell identity and differentiation, and discuss their potential as emerging drug targets.
Collapse
|
23
|
Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis. J Virol 2015; 89:4907-17. [PMID: 25694594 DOI: 10.1128/jvi.00338-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.
Collapse
|
24
|
The DUSP-Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Nat Commun 2014; 5:5399. [PMID: 25404403 PMCID: PMC4243247 DOI: 10.1038/ncomms6399] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/26/2014] [Indexed: 01/02/2023] Open
Abstract
Ubiquitin-specific protease USP4 is emerging as an important regulator of cellular pathways, including the TGF-β response, NF-κB signalling and splicing, with possible roles in cancer. Here we show that USP4 has its catalytic triad arranged in a productive conformation. Nevertheless, it requires its N-terminal DUSP–Ubl domain to achieve full catalytic turnover. Pre-steady-state kinetics measurements reveal that USP4 catalytic domain activity is strongly inhibited by slow dissociation of ubiquitin after substrate hydrolysis. The DUSP–Ubl domain is able to enhance ubiquitin dissociation, hence promoting efficient turnover. In a mechanism that requires all USP4 domains, binding of the DUSP–Ubl domain promotes a change of a switching loop near the active site. This ‘allosteric regulation of product discharge’ provides a novel way of regulating deubiquitinating enzymes that may have relevance for other enzyme classes. Ubiquitin-specific protease USP4 regulates several cellular signalling pathways. Here, Clerici et al. show that the DUSP–Ubl domain of USP4 is required for full catalytic activity, by enhancing the release of ubiquitin from the catalytic site after substrate hydrolysis.
Collapse
|
25
|
Nakamura N, Harada K, Kato M, Hirose S. Ubiquitin-specific protease 19 regulates the stability of the E3 ubiquitin ligase MARCH6. Exp Cell Res 2014; 328:207-216. [PMID: 25088257 DOI: 10.1016/j.yexcr.2014.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Ubiquitin-specific protease (USP)19 is a recently identified deubiquitinating enzyme (DUB) having multiple splice variants and cellular functions. One variant encodes an endoplasmic reticulum (ER)-anchored DUB that rescues misfolded transmembrane proteins from ER-associated degradation (ERAD), but the underlying mechanism remains to be elucidated. Here, we show that USP19 interacts with the ERAD-associated E3 ubiquitin ligase MARCH6. Overexpression of USP19 delayed the degradation of MARCH6, leading to an increase in its protein level. In contrast, USP19 depletion resulted in decreased expression of MARCH6. We also show that USP19 overexpression reduced ubiquitination of MARCH6, while its knockdown had the opposite effect. In particular, USP19 was found to protect MARCH6 by deubiquitination from the p97-dependent proteasomal degradation. In addition, USP19 knockdown leads to increased expression of mutant ABCB11, an ERAD substrate of MARCH6. Moreover, USP19 is itself subjected to endoproteolytic processing by DUB activity, and the processing cleaves off an N-terminal cytoplasmic region of unknown function. However, elimination of this processing had no evident effect on MARCH6 stabilization. These results suggest that USP19 is involved in the regulation of ERAD by controlling the stability of MARCH6 via deubiquitination.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kumi Harada
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Masako Kato
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
26
|
Harper S, Gratton HE, Cornaciu I, Oberer M, Scott D, Emsley J, Dreveny I. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains. Biochemistry 2014; 53:2966-78. [PMID: 24724799 PMCID: PMC4020902 DOI: 10.1021/bi500116x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/31/2014] [Indexed: 12/17/2022]
Abstract
The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.
Collapse
Affiliation(s)
- Stephen Harper
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Hayley E. Gratton
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Irina Cornaciu
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße
50/3, A-8010 Graz, Austria
| | - Monika Oberer
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße
50/3, A-8010 Graz, Austria
| | - David
J. Scott
- School
of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, United Kingdom
| | - Jonas Emsley
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Ingrid Dreveny
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
27
|
Han KJ, Foster DG, Zhang NY, Kanisha K, Dzieciatkowska M, Sclafani RA, Hansen KC, Peng J, Liu CW. Ubiquitin-specific protease 9x deubiquitinates and stabilizes the spinal muscular atrophy protein-survival motor neuron. J Biol Chem 2012; 287:43741-52. [PMID: 23112048 DOI: 10.1074/jbc.m112.372318] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA), the leading genetic disorder of infant mortality, is caused by low levels of survival motor neuron (SMN) protein. Currently it is not clear how the SMN protein levels are regulated at the post-transcriptional level. In this report, we find that Usp9x, a deubiquitinating enzyme, stably associates with the SMN complex via directly interacting with SMN. Usp9x deubiquitinates SMN that is mostly mono- and di-ubiquitinated. Knockdown of Usp9x promotes SMN degradation and reduces the protein levels of SMN and the SMN complex in cultured mammalian cells. Interestingly, Usp9x does not deubiquitinate nuclear SMNΔ7, the main protein product of the SMN2 gene, which is polyubiquitinated and rapidly degraded by the proteasome. Together, our results indicate that SMN and SMNΔ7 are differently ubiquitinated; Usp9x plays an important role in stabilizing SMN and the SMN complex, likely via antagonizing Ub-dependent SMN degradation.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhao B, Velasco K, Sompallae R, Pfirrmann T, Masucci MG, Lindsten K. The ubiquitin specific protease-4 (USP4) interacts with the S9/Rpn6 subunit of the proteasome. Biochem Biophys Res Commun 2012; 427:490-6. [PMID: 23022198 DOI: 10.1016/j.bbrc.2012.09.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/17/2022]
Abstract
The proteasome is the major non-lysosomal proteolytic machine in cells that, through degradation of ubiquitylated substrates, regulates virtually all cellular functions. Numerous accessory proteins influence the activity of the proteasome by recruiting or deubiquitylating proteasomal substrates, or by maintaining the integrity of the complex. Here we show that the ubiquitin specific protease (USP)-4, a deubiquitylating enzyme with specificity for both Lys48 and Lys63 ubiquitin chains, interacts with the S9/Rpn6 subunit of the proteasome via an internal ubiquitin-like (UBL) domain. S9/Rpn6 acts as a molecular clamp that holds together the proteasomal core and regulatory sub-complexes. Thus, the interaction with USP4 may regulate the structure and function of the proteasome or the turnover of specific proteasomal substrates.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Ubiquitin conjugation and deconjugation provides a powerful signalling system to change the fate of its target enzymes. Ubiquitination levels are organized through a balance between ubiquitinating E1, E2 and E3 enzymes and deubiquitination by DUBs (deubiquitinating enzymes). These enzymes are tightly regulated to control their activity. In the present article, we discuss the different ways in which DUBs of the USP (ubiquitin-specific protease) family are regulated by internal domains with a UBL (ubiquitin-like) fold. The UBL domain in USP14 is important for its localization at the proteasome, which enhances catalysis. In contrast, a UBL domain in USP4 binds to the catalytic domain and competes with ubiquitin binding. In this process, the UBL domain mimics ubiquitin and partially inhibits catalysis. In USP7, there are five consecutive UBL domains, of which the last two affect catalytic activity. Surprisingly, they do not act like ubiquitin and activate catalysis rather than inhibiting it. These C-terminal UBL domains promote a conformational change that allows ubiquitin binding and organizes the catalytic centre. Thus it seems that UBL domains have different functions in different USPs. Other proteins can modulate the roles of UBL domains in USP4 and USP7. On one hand, the inhibition of USP4 can be relieved when the UBL is sequestered by another USP. On the other, the activation of USP7 is increased, when the UBL-activated state is stabilized by allosteric binding of GMP synthetase. Altogether, UBL domains appear to be able to regulate catalytic activity in USPs, but they can use widely different mechanisms of action, in which they may, as in USP4, or may not, as in USP7, use the direct resemblance to ubiquitin.
Collapse
|
30
|
Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 2012; 81:291-322. [PMID: 22482907 DOI: 10.1146/annurev-biochem-051810-094654] [Citation(s) in RCA: 583] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ubiquitin acts as a versatile cellular signal that controls a wide range of biological processes including protein degradation, DNA repair, endocytosis, autophagy, transcription, immunity, and inflammation. The specificity of ubiquitin signaling is achieved by alternative conjugation signals (monoubiquitin and ubiquitin chains) and interactions with ubiquitin-binding proteins (known as ubiquitin receptors) that decode ubiquitinated target signals into biochemical cascades in the cell. Herein, we review the current knowledge pertaining to the structural and functional features of ubiquitin-binding proteins and the mechanisms by which they recognize various types of ubiquitin topologies. The combinatorial use of diverse ubiquitin-binding domains (UBDs) in full-length proteins, selective recognition of chains with distinct linkages and length, and posttranslational modifications of ubiquitin receptors or multivalent interactions within protein complexes illustrate a few mechanisms by which a circuitry of signaling networks can be rewired by ubiquitin-binding proteins to control cellular functions in vivo.
Collapse
Affiliation(s)
- Koraljka Husnjak
- Institute of Biochemistry II, School of Medicine, Goethe University, 60590 Frankfurt am Main, Germany.
| | | |
Collapse
|
31
|
Hänzelmann P, Schäfer A, Völler D, Schindelin H. Structural insights into functional modes of proteins involved in ubiquitin family pathways. Methods Mol Biol 2012; 832:547-76. [PMID: 22350912 DOI: 10.1007/978-1-61779-474-2_39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The conjugation of ubiquitin and related modifiers to selected proteins represents a general mechanism to alter the function of these protein targets, thereby increasing the complexity of the cellular proteome. Ubiquitylation is catalyzed by a hierarchical enzyme cascade consisting of ubiquitin activating, ubiquitin conjugating, and ubiquitin ligating enzymes, and their combined action results in a diverse topology of ubiquitin-linkages on the modified proteins. Counteracting this machinery are various deubiquitylating enzymes while ubiquitin recognition in all its facets is accomplished by numerous ubiquitin-binding elements. In the following chapter, we attempt to provide an overview on enzymes involved in ubiquitylation as well as the removal of ubiquitin and proteins involved in the recognition and binding of ubiquitin from a structural biologist's perspective.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
32
|
Faesen AC, Dirac AMG, Shanmugham A, Ovaa H, Perrakis A, Sixma TK. Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol Cell 2011; 44:147-59. [PMID: 21981925 DOI: 10.1016/j.molcel.2011.06.034] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/06/2011] [Accepted: 06/29/2011] [Indexed: 02/03/2023]
Abstract
The ubiquitin-specific protease USP7/HAUSP regulates p53 and MDM2 levels, and cellular localization of FOXO4 and PTEN, and hence is critically important for their role in cellular processes. Here we show how the 64 kDa C-terminal region of USP7 can positively regulate deubiquitinating activity. We present the crystal structure of this USP7/HAUSP ubiquitin-like domain (HUBL) comprised of five ubiquitin-like (Ubl) domains organized in 2-1-2 Ubl units. The last di-Ubl unit, HUBL-45, is sufficient to activate USP7, through binding to a "switching" loop in the catalytic domain, which promotes ubiquitin binding and increases activity 100-fold. This activation can be enhanced allosterically by the metabolic enzyme GMPS. It binds to the first three Ubl domains (HUBL-123) and hyperactivates USP7 by stabilization of the HUBL-45-dependent active state.
Collapse
Affiliation(s)
- Alex C Faesen
- Division of Biochemistry and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Faesen A, Luna-Vargas M, Geurink P, Clerici M, Merkx R, van Dijk W, Hameed D, El Oualid F, Ovaa H, Sixma T. The Differential Modulation of USP Activity by Internal Regulatory Domains, Interactors and Eight Ubiquitin Chain Types. ACTA ACUST UNITED AC 2011; 18:1550-61. [DOI: 10.1016/j.chembiol.2011.10.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/11/2011] [Accepted: 10/31/2011] [Indexed: 10/14/2022]
|
34
|
Structural variability of the ubiquitin specific protease DUSP-UBL double domains. FEBS Lett 2011; 585:3385-90. [PMID: 22001210 DOI: 10.1016/j.febslet.2011.09.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/09/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
Abstract
USP4, 11 and 15 are three closely related paralogues of the ubiquitin specific protease (USP) family of deubiquitinating enzymes. The DUSP domain and the UBL domain in these proteins are juxtaposed which may provide a functional unit conferring specificity. We determined the structures of the USP15 DUSP-UBL double domain unit in monomeric and dimeric states. We then conducted comparative analysis of the structural and physical properties of all three DUSP-UBL units. We identified structural features that dictate different dispositions between constituent domains, which in turn may influence respective binding properties.
Collapse
|
35
|
Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2011; 31:2373-88. [PMID: 21996736 DOI: 10.1038/onc.2011.443] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
Collapse
Affiliation(s)
- J M Fraile
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
36
|
Harper S, Besong TMD, Emsley J, Scott DJ, Dreveny I. Structure of the USP15 N-terminal domains: a β-hairpin mediates close association between the DUSP and UBL domains. Biochemistry 2011; 50:7995-8004. [PMID: 21848306 DOI: 10.1021/bi200726e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ubiquitin specific protease 15 (USP15) functions in COP9 signalosome mediated regulation of protein degradation and cellular signaling through catalyzing the ubiquitin deconjugation reaction of a discrete number of substrates. It influences the stability of adenomatous polyposis coli, IκBα, caspase-3, and the human papillomavirus type 16 E6. USP15 forms a subfamily with USP4 and USP11 related through a shared presence of N-terminal "domain present in ubiquitin specific proteases" (DUSP) and "ubiquitin-like" (UBL) domains (DU subfamily). Here we report the 1.5 Å resolution crystal structure of the human USP15 N-terminal domains revealing a 80 Å elongated arrangement with the DU domains aligned in tandem. This architecture is generated through formation of a defined interface that is dominated by an intervening β-hairpin structure (DU finger) that engages in an intricate hydrogen-bonding network between the domains. The UBL domain is closely related to ubiquitin among β-grasp folds but is characterized by the presence of longer loop regions and different surface characteristics, indicating that this domain is unlikely to act as ubiquitin mimic. Comparison with the related murine USP4 DUSP-UBL crystal structure reveals that the main DU interdomain contacts are conserved. Analytical ultracentrifugation, small-angle X-ray scattering, and gel filtration experiments revealed that USP15 DU is monomeric in solution. Our data provide a framework to advance study of the structure and function of the DU subfamily.
Collapse
Affiliation(s)
- Stephen Harper
- Centre for Biomolecular Sciences, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, Walden H. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J 2011; 30:2853-67. [PMID: 21694720 DOI: 10.1038/emboj.2011.204] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/26/2011] [Indexed: 11/09/2022] Open
Abstract
Parkin is an E3-ubiquitin ligase belonging to the RBR (RING-InBetweenRING-RING family), and is involved in the neurodegenerative disorder Parkinson's disease. Autosomal recessive juvenile Parkinsonism, which is one of the most common familial forms of the disease, is directly linked to mutations in the parkin gene. However, the molecular mechanisms of Parkin dysfunction in the disease state remain to be established. We now demonstrate that the ubiquitin-like domain of Parkin functions to inhibit its autoubiquitination. Moreover pathogenic Parkin mutations disrupt this autoinhibition, resulting in a constitutively active molecule. In addition, we show that the mechanism of autoregulation involves ubiquitin binding by a C-terminal region of Parkin. Our observations provide important molecular insights into the underlying basis of Parkinson's disease, and in the regulation of RBR E3-ligase activity.
Collapse
Affiliation(s)
- Viduth K Chaugule
- Protein Structure and Function Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain. EMBO Rep 2011; 12:365-72. [PMID: 21415856 PMCID: PMC3077250 DOI: 10.1038/embor.2011.33] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin-specific protease Usp4 contains an autoinhibitory Ubl domain in its catalytic domain. Inhibition can be relieved by interaction with a non-active USP, such as USP39. USP4 is a member of the ubiquitin-specific protease (USP) family of deubiquitinating enzymes that has a role in spliceosome regulation. Here, we show that the crystal structure of the minimal catalytic domain of USP4 has the conserved USP-like fold with its typical ubiquitin-binding site. A ubiquitin-like (Ubl) domain inserted into the catalytic domain has autoregulatory function. This Ubl domain can bind to the catalytic domain and compete with the ubiquitin substrate, partially inhibiting USP4 activity against different substrates. Interestingly, other USPs, such as USP39, could relieve this inhibition.
Collapse
|
39
|
Frappier L, Verrijzer CP. Gene expression control by protein deubiquitinases. Curr Opin Genet Dev 2011; 21:207-13. [PMID: 21411309 DOI: 10.1016/j.gde.2011.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 02/16/2011] [Indexed: 01/09/2023]
Abstract
Protein ubiquitylation is involved in the regulation of virtually all aspects of eukaryotic cell biology, including gene expression. The central function of E3 ubiquitin ligases in target selection is well established. More recently, it has become appreciated that deubiquitylating enzymes (DUBs) are crucial components of ubiquitin-regulated cellular switches. Here, we discuss advances in our understanding of how DUBs regulate chromatin dynamics and gene expression. DUBs are integral components of the transcription machinery, involved in both gene activation and repression. They modulate the ubiquitylation status of histones H2A and H2B, which play pivotal roles in a cascade of molecular events that determine chromatin status. A DUB module in the SAGA coactivator complex is required for gene activation, whereas other DUBs are part of the Polycomb gene-silencing machinery. DUBs also control the level or subcellular compartmentalization of selective transcription factors, including the tumour suppressor p53. Typically, DUB specificity and activity are defined by its partner proteins, enabling remarkably versatile and sophisticated regulation. Recent findings not only underscore the pervasive and pivotal role of DUBs in gene expression control, but also raise paradoxical questions concerning the molecular mechanisms involved.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
40
|
Identification of a deubiquitinating enzyme as a novel AGS3-interacting protein. PLoS One 2010; 5:e9725. [PMID: 20305814 PMCID: PMC2840025 DOI: 10.1371/journal.pone.0009725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022] Open
Abstract
Activator of G protein Signaling 3 (AGS3) is a receptor-independent G protein activator that has been implicated in multiple biological events such as brain development, neuroplasticity and addiction, cardiac function, Golgi structure/function, macroautophagy and metabolism. However, how AGS3 is regulated is little known. We demonstrate here that AGS3 interacts with a ubiquitin specific protease USP9x, and this interaction is at least partially mediated through the C-terminal G protein regulatory domain of AGS3. Knockdown of USP9x causes a moderate reduction in the level of AGS3. In contrast, overexpression of either USP9x or its deubiquitinating domain UCH increases the amount of AGS3, whereas expression of the mutant UCH domain that lacks deubiquitinating activity does not have the same effect. As previously observed in AGS3 knockdown cells, the localization of several marker proteins of the late Golgi compartments is disturbed in cells depleted of USP9x. Taken together, our study suggests that USP9x can modulate the level of a subpopulation of AGS3, and this modulation plays a role in regulating the structure of the late Golgi compartments. Finally, we have found that levels of AGS3 and USP9x are co-regulated in the prefrontal cortex of rats withdrawn from repeated cocaine treatment. In conjunction with the above data, this observation indicates a potential role of USP9X in the regulation of the AGS3 level during cocaine-induced neuroplasticity.
Collapse
|
41
|
Abstract
Removal of ubiquitin from modified proteins is an important process to regulate the ubiquitin system. Roughly 100 dedicated enzymes for this purpose, the deubiquitinases, exist in human cells and are intricately involved in a wide variety of cellular processes, although many enzymes remain unstudied to date. The deubiquitinases consist of five enzyme families that contain USP, OTU, UCH, Josephin, or JAMM/MPN+ domains providing catalytic activity. We now understand the catalytic mechanisms of all deubiquitinase families from structural work and more importantly, have obtained insight into an unanticipated variety of ways to exercise specificity. It emerges that deubiquitinases exploit the entire complexity of the ubiquitin system by recognizing their substrates, particular ubiquitin chain linkages and even the position within a ubiquitin chain. This chapter describes the mechanisms of deubiquitination and the different layers of deubiquitinase specificity. The individual deubiquitinase families are discussed with a focus on structure, regulation and specificity features for selected enzymes.
Collapse
Affiliation(s)
- David Komander
- Protein and Nucleic Acid Chemistry Division, Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK,
| |
Collapse
|
42
|
Abstract
Ubiquitylation is a reversible protein modification that is implicated in many cellular functions. Recently, much progress has been made in the characterization of a superfamily of isopeptidases that remove ubiquitin: the deubiquitinases (DUBs; also known as deubiquitylating or deubiquitinating enzymes). Far from being uniform in structure and function, these enzymes display a myriad of distinct mechanistic features. The small number (<100) of DUBs might at first suggest a low degree of selectivity; however, DUBs are subject to multiple layers of regulation that modulate both their activity and their specificity. Due to their wide-ranging involvement in key regulatory processes, these enzymes might provide new therapeutic targets.
Collapse
|
43
|
Breaking the chains: structure and function of the deubiquitinases. NATURE REVIEWS. MOLECULAR CELL BIOLOGY 2009. [PMID: 19626045 DOI: 10.1038/nrm2731)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Ubiquitylation is a reversible protein modification that is implicated in many cellular functions. Recently, much progress has been made in the characterization of a superfamily of isopeptidases that remove ubiquitin: the deubiquitinases (DUBs; also known as deubiquitylating or deubiquitinating enzymes). Far from being uniform in structure and function, these enzymes display a myriad of distinct mechanistic features. The small number (<100) of DUBs might at first suggest a low degree of selectivity; however, DUBs are subject to multiple layers of regulation that modulate both their activity and their specificity. Due to their wide-ranging involvement in key regulatory processes, these enzymes might provide new therapeutic targets.
Collapse
|
44
|
Ye Y, Scheel H, Hofmann K, Komander D. Dissection of USP catalytic domains reveals five common insertion points. MOLECULAR BIOSYSTEMS 2009; 5:1797-808. [PMID: 19734957 DOI: 10.1039/b907669g] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ubiquitin specific proteases (USPs) are the largest family of deubiquitinating enzymes with approximately 56 members in humans. USPs regulate a wide variety of cellular processes by their ability to remove (poly)ubiquitin from target proteins. Their enzymatic activity is encoded in a common catalytic core of approximately 350 amino acids, however many USPs show significantly larger catalytic domains. Here we have analysed human and yeast USP domains, combining bioinformatics with structural information. We reveal that all USP domains can be divided into six conserved boxes, and we map the conserved boxes onto the USP domain core structure. The boxes are interspersed by insertions, some of which as large as the catalytic core. The two most common insertion points place inserts near the distal ubiquitin binding site, and in many cases ubiquitin binding domains or ubiquitin-like folds are found in these insertions, potentially directly affecting catalytic function. Other inserted sequences are unstructured, and removal of these might aid future structural and functional analysis. Yeast USP domains have a different pattern of inserted sequences, suggesting that the insertions are hotspots for evolutionary diversity to expand USP functionality.
Collapse
Affiliation(s)
- Yu Ye
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Hills Road, Cambridge, UK
| | | | | | | |
Collapse
|
45
|
Bousquet-Dubouch MP, Baudelet E, Guérin F, Matondo M, Uttenweiler-Joseph S, Burlet-Schiltz O, Monsarrat B. Affinity purification strategy to capture human endogenous proteasome complexes diversity and to identify proteasome-interacting proteins. Mol Cell Proteomics 2009; 8:1150-64. [PMID: 19193609 DOI: 10.1074/mcp.m800193-mcp200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An affinity purification strategy was developed to characterize human proteasome complexes diversity as well as endogenous proteasome-interacting proteins (PIPs). This single step procedure, initially used for 20 S proteasome purification, was adapted to purify all existing physiological proteasome complexes associated to their various regulatory complexes and to their interacting partners. The method was applied to the purification of proteasome complexes and their PIPs from human erythrocytes but can be used to purify proteasomes from any human sample as starting material. The benefit of in vivo formaldehyde cross-linking as a stabilizer of protein-protein interactions was studied by comparing the status of purified proteasomes and the identified proteins in both protocols (with or without formaldehyde cross-linking). Subsequent proteomics analyses identified all proteasomal subunits, known regulators, and recently assigned partners. Moreover other proteins implicated at different levels of the ubiquitin-proteasome system were also identified for the first time as PIPs. One of them, the ubiquitin-specific protease USP7, also known as HAUSP, is an important player in the p53-HDM2 pathway. The specificity of the interaction was further confirmed using a complementary approach that consisted of the reverse immunoprecipitation with HAUSP as a bait. Altogether we provide a valuable tool that should contribute, through the identification of partners likely to affect proteasomal function, to a better understanding of this complex proteolytic machinery in any living human cell and/or organ/tissue and in different cell physiological states.
Collapse
|
46
|
Sanchez-Pulido L, Devos D, Sung ZR, Calonje M. RAWUL: a new ubiquitin-like domain in PRC1 ring finger proteins that unveils putative plant and worm PRC1 orthologs. BMC Genomics 2008; 9:308. [PMID: 18588675 PMCID: PMC2447854 DOI: 10.1186/1471-2164-9-308] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycomb group (PcG) proteins are a set of chromatin-modifying proteins that play a key role in epigenetic gene regulation. The PcG proteins form large multiprotein complexes with different activities. The two best-characterized PcG complexes are the PcG repressive complex 1 (PRC1) and 2 (PRC2) that respectively possess histone 2A lysine 119 E3 ubiquitin ligase and histone 3 lysine 27 methyltransferase activities. While PRC2-like complexes are conserved throughout the eukaryotic kingdoms, PRC1-like complexes have only been described in Drosophila and vertebrates. Since both complexes are required for the gene silencing mechanism in Drosophila and vertebrates, how PRC1 function is realized in organisms that apparently lack PRC1 such as plants, is so far unknown. In vertebrates, PRC1 includes three proteins, Ring1B, Ring1A, and Bmi-1 that form an E3 ubiquitin ligase complex. These PRC1 proteins have an N-terminally located Ring finger domain associated to a poorly characterized conserved C-terminal region. RESULTS We obtained statistically significant evidences of sequence similarity between the C-terminal region of the PRC1 Ring finger proteins and the ubiquitin (Ubq)-like family proteins, thus defining a new Ubq-like domain, the RAWUL domain. In addition, our analysis revealed the existence of plant and worm proteins that display the conserved combination of a Ring finger domain at the N-terminus and a RAWUL domain at the C-terminus. CONCLUSION Analysis of the conserved domain architecture among PRC1 Ring finger proteins revealed the existence of long sought PRC1 protein orthologs in these organisms, suggesting the functional conservation of PRC1 throughout higher eukaryotes.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- Centro Nacional de Biotecnología (CNB-CSIC). Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | |
Collapse
|
47
|
Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J 2008; 411:249-60. [PMID: 18254724 DOI: 10.1042/bj20080067] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AMPK (AMP-activated protein kinase)-related kinases regulate cell polarity as well as proliferation and are activated by the LKB1-tumour suppressor kinase. In the present study we demonstrate that the AMPK-related kinases, NUAK1 (AMPK-related kinase 5) and MARK4 (microtubule-affinity-regulating kinase 4), are polyubiquitinated in vivo and interact with the deubiquitinating enzyme USP9X (ubiquitin specific protease-9). Knockdown of USP9X increased polyubiquitination of NUAK1 and MARK4, whereas overexpression of USP9X inhibited ubiquitination. USP9X, catalysed the removal of polyubiquitin chains from wild-type NUAK1, but not from a non-USP9X-binding mutant. Topological analysis revealed that ubiquitin monomers attached to NUAK1 and MARK4 are linked by Lys(29) and/or Lys(33) rather than the more common Lys(48)/Lys(63). We find that AMPK and other AMPK-related kinases are also polyubiquitinated in cells. We identified non-USP9X-binding mutants of NUAK1 and MARK4 and find that these are hyper-ubiquitinated and not phosphorylated at their T-loop residue targeted by LKB1 when expressed in cells, suggesting that polyubiquitination may inhibit these enzymes. The results of the present study demonstrate that NUAK1 and MARK4 are substrates of USP9X and provide the first evidence that AMPK family kinases are regulated by unusual Lys(29)/Lys(33)-linked polyubiquitin chains.
Collapse
|