1
|
Coffman RE, Bidone TC. Application of Funnel Metadynamics to the Platelet Integrin αIIbβ3 in Complex with an RGD Peptide. Int J Mol Sci 2024; 25:6580. [PMID: 38928286 PMCID: PMC11203998 DOI: 10.3390/ijms25126580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Integrin αIIbβ3 mediates platelet aggregation by binding the Arginyl-Glycyl-Aspartic acid (RGD) sequence of fibrinogen. RGD binding occurs at a site topographically proximal to the αIIb and β3 subunits, promoting the conformational activation of the receptor from bent to extended states. While several experimental approaches have characterized RGD binding to αIIbβ3 integrin, applying computational methods has been significantly more challenging due to limited sampling and the need for a priori information regarding the interactions between the RGD peptide and integrin. In this study, we employed all-atom simulations using funnel metadynamics (FM) to evaluate the interactions of an RGD peptide with the αIIb and β3 subunits of integrin. FM incorporates an external history-dependent potential on selected degrees of freedom while applying a funnel-shaped restraint potential to limit RGD exploration of the unbound state. Furthermore, it does not require a priori information about the interactions, enhancing the sampling at a low computational cost. Our FM simulations reveal significant molecular changes in the β3 subunit of integrin upon RGD binding and provide a free-energy landscape with a low-energy binding mode surrounded by higher-energy prebinding states. The strong agreement between previous experimental and computational data and our results highlights the reliability of FM as a method for studying dynamic interactions of complex systems such as integrin.
Collapse
Affiliation(s)
- Robert E. Coffman
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Tamara C. Bidone
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Liu Q, Perez A. Assessing a computational pipeline to identify binding motifs to the α2 β1 integrin. Front Chem 2023; 11:1107400. [PMID: 36860646 PMCID: PMC9968975 DOI: 10.3389/fchem.2023.1107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Integrins in the cell surface interact with functional motifs found in the extracellular matrix (ECM) that queue the cell for biological actions such as migration, adhesion, or growth. Multiple fibrous proteins such as collagen or fibronectin compose the ECM. The field of biomechanical engineering often deals with the design of biomaterials compatible with the ECM that will trigger cellular response (e.g., in tissue regeneration). However, there are a relative few number of known integrin binding motifs compared to all the possible peptide epitope sequences available. Computational tools could help identify novel motifs, but have been limited by the challenges in modeling the binding to integrin domains. We revisit a series of traditional and novel computational tools to assess their performance in identifying novel binding motifs for the I-domain of the α2β1 integrin.
Collapse
Affiliation(s)
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
4
|
Lodola A, Callegari D, Scalvini L, Rivara S, Mor M. Design and SAR Analysis of Covalent Inhibitors Driven by Hybrid QM/MM Simulations. Methods Mol Biol 2020; 2114:307-337. [PMID: 32016901 DOI: 10.1007/978-1-0716-0282-9_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) hybrid technique is emerging as a reliable computational method to investigate and characterize chemical reactions occurring in enzymes. From a drug discovery perspective, a thorough understanding of enzyme catalysis appears pivotal to assist the design of inhibitors able to covalently bind one of the residues belonging to the enzyme catalytic machinery. Thanks to the current advances in computer power, and the availability of more efficient algorithms for QM-based simulations, the use of QM/MM methodology is becoming a viable option in the field of covalent inhibitor design. In the present review, we summarized our experience in the field of QM/MM simulations applied to drug design problems which involved the optimization of agents working on two well-known drug targets, namely fatty acid amide hydrolase (FAAH) and epidermal growth factor receptor (EGFR). In this context, QM/MM simulations gave valuable information in terms of geometry (i.e., of transition states and metastable intermediates) and reaction energetics that allowed to correctly predict inhibitor binding orientation and substituent effect on enzyme inhibition. What is more, enzyme reaction modelling with QM/MM provided insights that were translated into the synthesis of new covalent inhibitor featured by a unique combination of intrinsic reactivity, on-target activity, and selectivity.
Collapse
Affiliation(s)
- Alessio Lodola
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy.
| | - Donatella Callegari
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Laura Scalvini
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Silvia Rivara
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Kalli AC, Rog T, Vattulainen I, Campbell ID, Sansom MSP. The Integrin Receptor in Biologically Relevant Bilayers: Insights from Molecular Dynamics Simulations. J Membr Biol 2016; 250:337-351. [PMID: 27465729 PMCID: PMC5579164 DOI: 10.1007/s00232-016-9908-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/25/2016] [Indexed: 11/27/2022]
Abstract
Integrins are heterodimeric (αβ) cell surface receptors that are potential therapeutic targets for a number of diseases. Despite the existence of structural data for all parts of integrins, the structure of the complete integrin receptor is still not available. We have used available structural data to construct a model of the complete integrin receptor in complex with talin F2-F3 domain. It has been shown that the interactions of integrins with their lipid environment are crucial for their function but details of the integrin/lipid interactions remain elusive. In this study an integrin/talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin/talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2-F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction across cell membranes.
Collapse
Affiliation(s)
- Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, 5230, Odense M, Denmark
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Abstract
During the past decade, advanced techniques in structural biology have provided atomic level information on the platelet integrin αIIbβ3 activation mechanism that results in it adopting a high-affinity ligand-binding conformation(s). This review focuses on advances in imaging intact αIIbβ3 in a lipid bilayer in the absence of detergent and new structural insights into the changes in the ligand-binding pocket with receptor activation and ligand binding. It concludes with descriptions of novel therapeutic αIIbβ3 antagonists being developed based on an advanced knowledge of the receptor's structure.
Collapse
Affiliation(s)
- B S Coller
- Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
Flores-Mireles AL, Pinkner JS, Caparon MG, Hultgren SJ. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci Transl Med 2015; 6:254ra127. [PMID: 25232179 DOI: 10.1126/scitranslmed.3009384] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enterococci bacteria are a frequent cause of catheter-associated urinary tract infections, the most common type of hospital-acquired infection. Treatment has become increasingly challenging because of the emergence of multiantibiotic-resistant enterococcal strains and their ability to form biofilms on catheters. We identified and targeted a critical step in biofilm formation and developed a vaccine that prevents catheter-associated urinary tract infections in mice. In the murine model, formation of catheter-associated biofilms by Enterococcus faecalis depends on EbpA, which is the minor subunit at the tip of a heteropolymeric surface fiber known as the endocarditis- and biofilm-associated pilus (Ebp). We show that EbpA is an adhesin that mediates bacterial attachment to host fibrinogen, which is released and deposited on catheters after introduction of the catheter into the mouse bladder. Fibrinogen-binding activity resides in the amino-terminal domain of EbpA (EbpA(NTD)), and vaccination with EbpA and EbpA(NTD), but not its carboxyl-terminal domain or other Ebp subunits, inhibited biofilm formation in vivo and protected against catheter-associated urinary tract infection. Analyses in vitro demonstrated that protection was associated with a serum antibody response that blocked EbpA binding to fibrinogen and the formation of a fibrinogen-dependent biofilm on catheters. This approach may provide a new strategy for the prevention of catheter-associated urinary tract infections.
Collapse
Affiliation(s)
- Ana L Flores-Mireles
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Jerome S Pinkner
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Michael G Caparon
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA.
| | - Scott J Hultgren
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA.
| |
Collapse
|
8
|
Buitrago L, Rendon A, Liang Y, Simeoni I, Negri A, Filizola M, Ouwehand WH, Coller BS. αIIbβ3 variants defined by next-generation sequencing: predicting variants likely to cause Glanzmann thrombasthenia. Proc Natl Acad Sci U S A 2015; 112:E1898-907. [PMID: 25827233 PMCID: PMC4403182 DOI: 10.1073/pnas.1422238112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing is transforming our understanding of human genetic variation but assessing the functional impact of novel variants presents challenges. We analyzed missense variants in the integrin αIIbβ3 receptor subunit genes ITGA2B and ITGB3 identified by whole-exome or -genome sequencing in the ThromboGenomics project, comprising ∼32,000 alleles from 16,108 individuals. We analyzed the results in comparison with 111 missense variants in these genes previously reported as being associated with Glanzmann thrombasthenia (GT), 20 associated with alloimmune thrombocytopenia, and 5 associated with aniso/macrothrombocytopenia. We identified 114 novel missense variants in ITGA2B (affecting ∼11% of the amino acids) and 68 novel missense variants in ITGB3 (affecting ∼9% of the amino acids). Of the variants, 96% had minor allele frequencies (MAF) < 0.1%, indicating their rarity. Based on sequence conservation, MAF, and location on a complete model of αIIbβ3, we selected three novel variants that affect amino acids previously associated with GT for expression in HEK293 cells. αIIb P176H and β3 C547G severely reduced αIIbβ3 expression, whereas αIIb P943A partially reduced αIIbβ3 expression and had no effect on fibrinogen binding. We used receiver operating characteristic curves of combined annotation-dependent depletion, Polyphen 2-HDIV, and sorting intolerant from tolerant to estimate the percentage of novel variants likely to be deleterious. At optimal cut-off values, which had 69-98% sensitivity in detecting GT mutations, between 27% and 71% of the novel αIIb or β3 missense variants were predicted to be deleterious. Our data have implications for understanding the evolutionary pressure on αIIbβ3 and highlight the challenges in predicting the clinical significance of novel missense variants.
Collapse
Affiliation(s)
- Lorena Buitrago
- Allen and Frances Adler Laboratory of Blood and Vascular Biology and
| | - Augusto Rendon
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom; Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge Institute of Public Health, Cambridge, United Kingdom; National Health Service Blood & Transplant, Cambridge, United Kingdom
| | - Yupu Liang
- Research Bioinformatics, The Rockefeller University, New York, NY 10065
| | - Ilenia Simeoni
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom; National Health Service Blood & Transplant, Cambridge, United Kingdom
| | - Ana Negri
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom; National Health Service Blood & Transplant, Cambridge, United Kingdom; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology and
| |
Collapse
|
9
|
Rui X, Mehrbod M, Van Agthoven JF, Anand S, Xiong JP, Mofrad MRK, Arnaout MA. The α-subunit regulates stability of the metal ion at the ligand-associated metal ion-binding site in β3 integrins. J Biol Chem 2014; 289:23256-23263. [PMID: 24975416 DOI: 10.1074/jbc.m114.581470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aspartate in the prototypical integrin-binding motif Arg-Gly-Asp binds the integrin βA domain of the β-subunit through a divalent cation at the metal ion-dependent adhesion site (MIDAS). An auxiliary metal ion at a ligand-associated metal ion-binding site (LIMBS) stabilizes the metal ion at MIDAS. LIMBS contacts distinct residues in the α-subunits of the two β3 integrins αIIbβ3 and αVβ3, but a potential role of this interaction on stability of the metal ion at LIMBS in β3 integrins has not been explored. Equilibrium molecular dynamics simulations of fully hydrated β3 integrin ectodomains revealed strikingly different conformations of LIMBS in unliganded αIIbβ3 versus αVβ3, the result of stronger interactions of LIMBS with αV, which reduce stability of the LIMBS metal ion in αVβ3. Replacing the αIIb-LIMBS interface residue Phe(191) in αIIb (equivalent to Trp(179) in αV) with Trp strengthened this interface and destabilized the metal ion at LIMBS in αIIbβ3; a Trp(179) to Phe mutation in αV produced the opposite but weaker effect. Consistently, an F191/W substitution in cellular αIIbβ3 and a W179/F substitution in αVβ3 reduced and increased, respectively, the apparent affinity of Mn(2+) to the integrin. These findings offer an explanation for the variable occupancy of the metal ion at LIMBS in αVβ3 structures in the absence of ligand and provide new insights into the mechanisms of integrin regulation.
Collapse
Affiliation(s)
- Xianliang Rui
- Leukocyte Biology and Inflammation Program and Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Mehrdad Mehrbod
- Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720
| | - Johannes F Van Agthoven
- Structural Biology Program, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Saurabh Anand
- Leukocyte Biology and Inflammation Program and Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Jian-Ping Xiong
- Structural Biology Program, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Mohammad R K Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720.
| | - M Amin Arnaout
- Leukocyte Biology and Inflammation Program and Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129; Structural Biology Program, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 and.
| |
Collapse
|
10
|
Raborn J, Fu T, Wu X, Xiu Z, Li G, Luo BH. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity. PLoS One 2013; 8:e76793. [PMID: 24116162 PMCID: PMC3792891 DOI: 10.1371/journal.pone.0076793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/29/2013] [Indexed: 01/06/2023] Open
Abstract
The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS) divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS) of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.
Collapse
Affiliation(s)
- Joel Raborn
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Ting Fu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xue Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, PR China
| | - Zhilong Xiu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, PR China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- * E-mail: (GL); (BL)
| | - Bing-Hao Luo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail: (GL); (BL)
| |
Collapse
|
11
|
Gohlke H, Schmitz B, Sommerfeld A, Reinehr R, Häussinger D. α5 β1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology 2013; 57:1117-29. [PMID: 22865233 DOI: 10.1002/hep.25992] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/21/2012] [Indexed: 01/02/2023]
Abstract
UNLABELLED Ursodeoxycholic acid, which in vivo is converted to its taurine conjugate tauroursodeoxycholic acid (TUDC), is a mainstay for the treatment of cholestatic liver disease. Earlier work showed that TUDC exerts its choleretic properties in the perfused rat liver in an α5 β1 integrin-mediated way. However, the molecular basis of TUDC-sensing in the liver is unknown. We herein show that TUDC (20 μmol/L) induces in perfused rat liver and human HepG2 cells the rapid appearance of the active conformation of the β1 subunit of α5 β1 integrins, followed by an activating phosphorylation of extracellular signal-regulated kinases. TUDC-induced kinase activation was no longer observed after β1 integrin knockdown in isolated rat hepatocytes or in the presence of an integrin-antagonistic hexapeptide in perfused rat liver. TUDC-induced β1 integrin activation occurred predominantly inside the hepatocyte and required TUDC uptake by way of the Na(+) /taurocholate cotransporting peptide. Molecular dynamics simulations of a 3D model of α5 β1 integrin with TUDC bound revealed significant conformational changes within the head region that have been linked to integrin activation before. CONCLUSIONS TUDC can directly activate intrahepatocytic β1 integrins, which trigger signal transduction pathways toward choleresis. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
12
|
Fukunishi H. Influence of ionization states of antigen on anti-fluorescein antibodies. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Abstract
Integrins are a family of α/β heterodimeric adhesion metalloprotein receptors and their functions are highly dependent on and regulated by different divalent cations. Recently advanced studies have revolutionized our perception of integrin metal ion-binding sites and their specific functions. Ligand binding to integrins is bridged by a divalent cation bound at the MIDAS motif on top of either α I domain in I domain-containing integrins or β I domain in α I domain-less integrins. The MIDAS motif in β I domain is flanked by ADMIDAS and SyMBS, the other two crucial metal ion binding sites playing pivotal roles in the regulation of integrin affinity and bidirectional signaling across the plasma membrane. The β-propeller domain of α subunit contains three or four β-hairpin loop-like Ca(2+)-binding motifs that have essential roles in integrin biogenesis. The function of another Ca(2+)-binding motif located at the genu of α subunit remains elusive. Here, we provide an overview of the integrin metal ion-binding sites and discuss their roles in the regulation of integrin functions.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
14
|
Fukunishi H, Shimada J, Shiraishi K. Antigen-antibody interactions and structural flexibility of a femtomolar-affinity antibody. Biochemistry 2012; 51:2597-605. [PMID: 22390639 DOI: 10.1021/bi3000319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The femtomolar-affinity mutant antibody (4M5.3) generated by directed evolution is interesting because of the potential of antibody engineering. In this study, the mutant and its wild type (4-4-20) were compared in terms of antigen-antibody interactions and structural flexibility to elucidate the effects of directed evolution. For this purpose, multiple steered molecular dynamics (SMD) simulations were performed. The pulling forces of SMD simulations elucidated the regions that form strong attractive interactions in the binding pocket. Structural analysis in these regions showed two important mutations for improving attractive interactions. First, mutation of Tyr102(H) to Ser (sequence numbering of Protein Data Bank entry 1FLR ) played a role in resolving the steric hindrance on the pathway of the antigen in the binding pocket. Second, mutation of Asp31(H) to His played a role in resolving electrostatic repulsion. Potentials of mean force (PMFs) of both the wild type and the mutant showed landscapes that do not include obvious intermediate states and go directly to the bound state. These landscapes were regarded as funnel-like binding free energy landscapes. Furthermore, the structural flexibility based on the fluctuations of the positions of atoms was analyzed. It was shown that the fluctuations in the positions of the antigen and residues in contact with antigen tend to be smaller in the mutant than in the wild type. This result suggested that structural flexibility decreases as affinity is improved by directed evolution. This suggestion is similar to the relationship between affinity and flexibility for in vivo affinity maturation, which was suggested by Romesberg and co-workers [Jimenez, R., et al. (2003) Proc. Natl. Acad. Sci. U.S.A.100, 92-97]. Consequently, the relationship was found to be applicable up to femotomolar affinity levels.
Collapse
Affiliation(s)
- Hiroaki Fukunishi
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan.
| | | | | |
Collapse
|
15
|
Raborn J, Luo BH. Mutagenesis studies of the β I domain metal ion binding sites on integrin αVβ3 ligand binding affinity. J Cell Biochem 2012; 113:1190-7. [DOI: 10.1002/jcb.23448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Combined QM/MM study of thyroid and steroid hormone analogue interactions with αvβ3 integrin. J Biomed Biotechnol 2012; 2012:959057. [PMID: 22547930 PMCID: PMC3323866 DOI: 10.1155/2012/959057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 11/17/2022] Open
Abstract
Recent biochemical studies have identified a cell surface receptor for thyroid and steroid hormones that bind near the arginine-glycine-aspartate (RGD) recognition site on the heterodimeric αvβ3 integrin. To further characterize the intermolecular interactions for a series of hormone analogues, combined quantum mechanical and molecular mechanical (QM/MM) methods were used to calculate their interaction energies. All calculations were performed in the presence of either calcium (Ca(2+)) or magnesium (Mg(2+)) ions. These data reveal that 3,5'-triiodothyronine (T(3)) and 3,5,3',5'-tetraiodothyroacetic acid (T(4)ac) bound in two different modes, occupying two alternate sites, one of which is along the Arg side chain of the RGD cyclic peptide site. These orientations differ from those of the other ligands whose alternate binding modes placed the ligands deeper within the RGD binding pocket. These observations are consistent with biological data that indicate the presence of two discrete binding sites that control distinct downstream signal transduction pathways for T(3).
Collapse
|
17
|
Allen DL, Abrahamsson S, Murphy MF, Roberts DJ. Human platelet antigen 1a epitopes are dependent on the cation-regulated conformation of integrin α(IIb)β(3) (GPIIb/IIIa). J Immunol Methods 2011; 375:166-75. [PMID: 22036924 DOI: 10.1016/j.jim.2011.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/18/2011] [Accepted: 10/07/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND The HPA-1a (Leu(33)) polymorphism of platelet integrin αIIbβ3 is the target of alloantibodies in 70-80% cases of neonatal alloimmune thrombocytopenia (NAIT) in Caucasians and reliable detection of these antibodies is essential for appropriate clinical management. However, the ability to detect such antibodies is highly variable between laboratories and, in a number of clinical cases where there is a HPA-1 genotype mismatch between mother and neonate, HPA-1a antibodies are undetectable. Furthermore, some studies have not shown a consistent relationship between maternal anti-HPA-1a level and neonatal platelet count. Since the integrity and conformation of the αIIbβ3 complex are dependent on divalent cations, we investigated whether HPA-1a epitope integrity and/or conformation might be affected by the presence of the cation chelator EDTA in patient samples or in assay buffers, thus providing a possible explanation for the variable sensitivity of current assays. PRINCIPLE FINDINGS Exposure of the αIIbβ3 complex to EDTA resulted in reduced reactivity of three anti-HPA-1a mAbs (B2, 19-7 and 23-15). More significantly, cation chelation adversely affected detection of polyclonal anti-HPA-1a, not only in the platelet immunofluorescence assay, where alloantibody binding was reduced compared to control platelets (mean MFI reduction 44.5%, range 17.3-69.7%, n=4), but also in the commonly used monoclonal antibody specific immobilisation of platelet antigens assay (MAIPA) where both alloantibody and monoclonal capture antibody binding were reduced (mean OD reduction 82.8%, range 68.3-96.6%, n=9). CONCLUSIONS These data show that HPA-1a antibodies recognise epitopes on αIIbβ3 that are sensitive to EDTA treatment and that cation chelation grossly reduces the sensitivity of the MAIPA assay by diminishing not only HPA-1a alloantibody binding but also 'capture' monoclonal antibody binding. These findings may, in part, explain the current variability in antibody measurement and will guide the development of more sensitive tests for anti-integrin antibodies in NAIT and other conditions.
Collapse
Affiliation(s)
- David L Allen
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK.
| | | | | | | |
Collapse
|
18
|
Fukunishi H, Yagi H, Kamijo K, Shimada J. Role of a Mutated Residue at the Entrance of the Substrate Access Channel in Cytochrome P450 Engineered for Vitamin D3 Hydroxylation Activity. Biochemistry 2011; 50:8302-10. [DOI: 10.1021/bi2006493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hiroaki Fukunishi
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| | - Hirotaka Yagi
- VALWAY
Technology Center, NEC Soft, Ltd., 1-18-7,
Shinkiba, Koto-ku, Tokyo 136-8627,
Japan
| | - Ken’ichi Kamijo
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| | - Jiro Shimada
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| |
Collapse
|
19
|
Kendall T, Mukai L, Jannuzi AL, Bunch TA. Identification of integrin beta subunit mutations that alter affinity for extracellular matrix ligand. J Biol Chem 2011; 286:30981-30993. [PMID: 21757698 DOI: 10.1074/jbc.m111.254797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We examined over 50 mutations in the Drosophila βPS integrin subunit that alter integrin function in situ for their ability to bind a soluble monovalent ligand, TWOW-1. Surprisingly, very few of the mutations, which were selected for conditional lethality in the fly, reduce the ligand binding ability of the integrin. The most prevalent class of mutations activates the integrin heterodimer. These findings emphasize the importance of integrin affinity regulation and point out how molecular interactions throughout the integrin molecule are important in keeping the integrin in a low affinity state. Mutations strongly support the controversial deadbolt hypothesis, where the CD loop in the β tail domain acts to restrain the I domain in the inactive, bent conformation. Site-directed mutations in the cytoplasmic domains of βPS and αPS2C reveal different effects on ligand binding from those observed for αIIbβ3 integrins and identify for the first time a cytoplasmic cysteine residue, conserved in three human integrins, as being important in affinity regulation. In the fly, we find that genetic interactions of the βPS mutations with reduction in talin function are consistent with the integrin affinity differences measured in cells. Additionally, these genetic interactions report on increased and decreased integrin functions that do not result in affinity changes in the PS2C integrin measured in cultured cells.
Collapse
Affiliation(s)
- Timmy Kendall
- Department of Molecular and Cellular Biology, Arizona Cancer Center, Tucson, Arizona 85724
| | - Leona Mukai
- Department of Molecular and Cellular Biology, Arizona Cancer Center, Tucson, Arizona 85724
| | - Alison L Jannuzi
- Department of Molecular and Cellular Biology, Arizona Cancer Center, Tucson, Arizona 85724
| | - Thomas A Bunch
- Department of Molecular and Cellular Biology, Arizona Cancer Center, Tucson, Arizona 85724.
| |
Collapse
|
20
|
Raborn J, Wang W, Luo BH. Regulation of integrin αIIbβ3 ligand binding and signaling by the metal ion binding sites in the β I domain. Biochemistry 2011; 50:2084-91. [PMID: 21309594 DOI: 10.1021/bi2000092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of αIIbβ3 to bind ligands and undergo outside-in signaling is regulated by three divalent cation binding sites in the β I domain. Specifically, the metal ion-dependent adhesion site (MIDAS) and the synergistic metal binding site (SyMBS) are thought to be required for ligand binding due to their synergy between Ca(2+) and Mg(2+). The adjacent to MIDAS (ADMIDAS) is an important ligand binding regulatory site that also acts as a critical link between the β I and hybrid domains for signaling. Mutations in this site have provided conflicting results for ligand binding and adhesion in different integrins. We have mutated the β3 SyMBS and ADMIDAS. The SyMBS mutant abolished ligand binding and outside-in signaling, but when an activating glycosylation mutation in the αIIb Calf 2 domain was introduced, the ligand binding affinity and signaling were restored. Thus, the SyMBS is important but not absolutely required for integrin bidirectional signaling. The ADMIDAS mutants showed reduced ligand binding affinity and abolished outside-in signaling, and the activating glycosylation mutation could fully restore integrin signaling of the ADMIDAS mutant. We propose that the ADMIDAS ion stabilizes the low-affinity state when the integrin headpiece is in the closed conformation, whereas it stabilizes the high-affinity state when the headpiece is in the open conformation with the swung-out hybrid domain.
Collapse
Affiliation(s)
- Joel Raborn
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | | |
Collapse
|
21
|
Gaillard T, Dejaegere A, Stote RH. Dynamics of beta3 integrin I-like and hybrid domains: insight from simulations on the mechanism of transition between open and closed forms. Proteins 2009; 76:977-94. [PMID: 19350618 DOI: 10.1002/prot.22404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conformational dynamics of the I-like and Hybrid domains from the beta3 integrin headpiece were studied by molecular dynamics simulation and normal mode analysis. Crystallographic structures of integrins show that the integrin headpiece can exist in largely different conformations manifested by a significant difference in the angle between the I-like and Hybrid domains. The relative orientation of these two domains is believed to be a crucial element of integrin function, as it may relate local structural modifications induced by ligand binding into large-scale conformational changes. To investigate the detailed mechanisms responsible for this coupling, we carried out molecular dynamics simulations of the I-like/Hybrid system and employed quasi-harmonic and normal mode analyses to characterize the large-scale motions. Our results show that the conformational transition of I-like and Hybrid domains inferred from crystallographic data is contained in the low-frequency dynamics of the system. Using targeted molecular dynamics simulations, we investigated the roles played by two structural elements of the I-like domain, the alpha7 and alpha1 helices, in the interdomain transition. From our results, we propose that these two helices function in tandem to initiate large-scale, interdomain conformational transition apparent in integrin activation and signaling.
Collapse
Affiliation(s)
- Thomas Gaillard
- Laboratoire de Biophysicochimie Moléculaire, Institut de Chimie de Strasbourg, Université de Strasbourg, Strasbourg, France
| | | | | |
Collapse
|
22
|
Valdramidou D, Humphries MJ, Mould AP. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1. J Biol Chem 2008; 283:32704-14. [PMID: 18820259 PMCID: PMC3329621 DOI: 10.1074/jbc.m802066200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.
Collapse
Affiliation(s)
- Dimitra Valdramidou
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
23
|
Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 2008; 112:3011-25. [PMID: 18840725 PMCID: PMC2569161 DOI: 10.1182/blood-2008-06-077891] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/21/2008] [Indexed: 01/24/2023] Open
Abstract
Starting 90 years ago with a clinical description by Glanzmann of a bleeding disorder associated with a defect in platelet function, technologic advances helped investigators identify the defect as a mutation(s) in the integrin family receptor, alphaIIbbeta3, which has the capacity to bind fibrinogen (and other ligands) and support platelet-platelet interactions (aggregation). The receptor's activation state was found to be under exquisite control, with activators, inhibitors, and elaborate inside-out signaling mechanisms controlling its conformation. Structural biology has produced high-resolution images defining the ligand binding site at the atomic level. Research on alphaIIbbeta3 has been bidirectional, with basic insights resulting in improved Glanzmann thrombasthenia carrier detection and prenatal diagnosis, assays to identify single nucleotide polymorphisms responsible for alloimmune neonatal thrombocytopenia, and the development of alphaIIbbeta3 antagonists, the first rationally designed antiplatelet agents, to prevent and treat thrombotic cardiovascular disease. The future looks equally bright, with the potential for improved drugs and the application of gene therapy and stem cell biology to address the genetic abnormalities. The alphaIIbbeta3 saga serves as a paradigm of rigorous science growing out of careful clinical observations of a rare disorder yielding both important new scientific information and improved diagnosis, therapy, and prevention of other disorders.
Collapse
Affiliation(s)
- Barry S Coller
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY, USA.
| | | |
Collapse
|