1
|
Sousa LRD, Amparo TR, de Souza GHB, Ferraz AT, Fonseca KDS, de Azevedo AS, do Nascimento AM, Andrade ÂL, Seibert JB, Valverde TM, Braga SFP, Vieira PMDA, dos Santos VMR. Anti- Trypanosoma cruzi Potential of Vestitol Isolated from Lyophilized Red Propolis. Molecules 2023; 28:7812. [PMID: 38067542 PMCID: PMC10708512 DOI: 10.3390/molecules28237812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chagas disease (CD) is a worldwide public health problem, and the drugs available for its treatment have severe limitations. Red propolis is a natural extract known for its high content of phenolic compounds and for having activity against T. cruzi. The aim of this study was to investigate the trypanocidal potential of red propolis to isolate, identify, and indicate the mode of action of the bioactive compounds. The results revealed that the total phenolic content was 15.4 mg GAE/g, and flavonoids were 7.2 mg QE/g. The extract was fractionated through liquid-liquid partitioning, and the trypanocidal potential of the samples was evaluated using the epimastigote forms of the Y strain of T. cruzi. In this process, one compound was characterized by MS, 1H, and 13C NMR and identified as vestitol. Cytotoxicity was evaluated employing MRC-5 fibroblasts and H9C2 cardiomyocytes, showing cytotoxic concentrations above 15.62 μg/mL and 31.25 μg/mL, respectively. In silico analyses were applied, and the data suggested that the substance had a membrane-permeation-enhancing effect, which was confirmed through an in vitro assay. Finally, a molecular docking analysis revealed a higher affinity of vestitol with farnesyl diphosphate synthase (FPPS). The identified isoflavan appears to be a promising lead compound for further development to treat Chagas disease.
Collapse
Affiliation(s)
- Lucas Resende Dutra Sousa
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (T.R.A.); (G.H.B.d.S.)
| | - Tatiane Roquete Amparo
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (T.R.A.); (G.H.B.d.S.)
| | - Gustavo Henrique Bianco de Souza
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (T.R.A.); (G.H.B.d.S.)
| | - Aline Tonhela Ferraz
- Morphopathology Laboratory, Center for Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.T.F.); (K.d.S.F.)
| | - Kátia da Silva Fonseca
- Morphopathology Laboratory, Center for Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.T.F.); (K.d.S.F.)
| | - Amanda Scofield de Azevedo
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| | - Andréa Mendes do Nascimento
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| | - Ângela Leão Andrade
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| | - Janaína Brandão Seibert
- Natural Products Laboratory, Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Sao Carlos 13565-905, SP, Brazil;
| | - Thalita Marcolan Valverde
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Saulo Fehelberg Pinto Braga
- Medicinal Chemistry and Bioassays Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil;
| | - Paula Melo de Abreu Vieira
- Morphopathology Laboratory, Center for Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.T.F.); (K.d.S.F.)
| | - Viviane Martins Rebello dos Santos
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| |
Collapse
|
2
|
Sandomierski M, Jakubowski M, Ratajczak M, Buchwald T, Przekop RE, Majchrzycki Ł, Voelkel A. Calcium and strontium phytate particles as a potential drug delivery system for prolonged release of risedronate. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Teixeira S, Santos MM, Branco LC, Costa-Rodrigues J. Etidronate-based organic salts and ionic liquids: In vitro effects on bone metabolism. Int J Pharm 2021; 610:121262. [PMID: 34748807 DOI: 10.1016/j.ijpharm.2021.121262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Bisphosphonates are a class of drugs widely used for the treatment of several pathologies associated with increased bone resorption. Although displaying low oral bioavailability, these drugs have the ability to accumulate in bone matrix, where the biological effects are exerted. In the present work, four mono- and dianionic Etidronate-based Organic Salts and Ionic Liquids (Eti-OSILs) were developed by combination of this drug with the superbases 1,1,3,3-tetramethylguanidine (TMG) and 1,5-diazabicyclo(4.3.0)non-5-ene (DBN) as cations, aiming to improve not only the physicochemical properties of this seminal bisphosphonate, but also its efficacy in the modulation of cellular behavior, particularly on human osteoclasts and osteoblasts. It was observed that some of the developed compounds, in particular the dianionic ones, presented very high water solubility and diminished or absent polymorphism. Also, several of them appeared to be more cytotoxic against human breast and osteosarcoma cancer cell lines while retaining low toxicity to normal cells. Regarding bone cells, a promotion of an anabolic state was observed for all Eti-OSILs, primarily for the dianionic ones, which leads to an inhibition of osteoclastogenesis and an increase in osteoblastogenesis. The observed effects resulted from differential modulation of intracellular signaling pathways by the Eti-OSILs in comparison with Etidronate. Hence, these results pave the way for the development of more efficient and bioavailable ionic formulations of bisphosphonates aiming to effectively modulate bone metabolism, particularly in the case of increased bone resorption.
Collapse
Affiliation(s)
- Sónia Teixeira
- Instituto de Ciências Biomédicas Abel Salazar, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Miguel M Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Luís C Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - João Costa-Rodrigues
- ESS - Escola Superior de Saúde, Politécnico do Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Rua D. Moisés Alves Pinho 190, 4900-314 Viana do Castelo, Portugal; i3S, Instituto de Inovação e Investigação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
4
|
Park J, Pandya VR, Ezekiel SJ, Berghuis AM. Phosphonate and Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthases: A Structure-Guided Perspective. Front Chem 2021; 8:612728. [PMID: 33490038 PMCID: PMC7815940 DOI: 10.3389/fchem.2020.612728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphonates and bisphosphonates have proven their pharmacological utility as inhibitors of enzymes that metabolize phosphate and pyrophosphate substrates. The blockbuster class of drugs nitrogen-containing bisphosphonates represent one of the best-known examples. Widely used to treat bone-resorption disorders, these drugs work by inhibiting the enzyme farnesyl pyrophosphate synthase. Playing a key role in the isoprenoid biosynthetic pathway, this enzyme is also a potential anticancer target. Here, we provide a comprehensive overview of the research efforts to identify new inhibitors of farnesyl pyrophosphate synthase for various therapeutic applications. While the majority of these efforts have been directed against the human enzyme, some have been targeted on its homologs from other organisms, such as protozoan parasites and insects. Our particular focus is on the structures of the target enzymes and how the structural information has guided the drug discovery efforts.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Vishal R Pandya
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sean J Ezekiel
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
5
|
Repositioned Drugs for Chagas Disease Unveiled via Structure-Based Drug Repositioning. Int J Mol Sci 2020; 21:ijms21228809. [PMID: 33233837 PMCID: PMC7699892 DOI: 10.3390/ijms21228809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, affects millions of people in South America. The current treatments are limited, have severe side effects, and are only partially effective. Drug repositioning, defined as finding new indications for already approved drugs, has the potential to provide new therapeutic options for Chagas. In this work, we conducted a structure-based drug repositioning approach with over 130,000 3D protein structures to identify drugs that bind therapeutic Chagas targets and thus represent potential new Chagas treatments. The screening yielded over 500 molecules as hits, out of which 38 drugs were prioritized following a rigorous filtering process. About half of the latter were already known to have trypanocidal activity, while the others are novel to Chagas disease. Three of the new drug candidates—ciprofloxacin, naproxen, and folic acid—showed a growth inhibitory activity in the micromolar range when tested ex vivo on T. cruzi trypomastigotes, validating the prediction. We show that our drug repositioning approach is able to pinpoint relevant drug candidates at a fraction of the time and cost of a conventional screening. Furthermore, our results demonstrate the power and potential of structure-based drug repositioning in the context of neglected tropical diseases where the pharmaceutical industry has little financial interest in the development of new drugs.
Collapse
|
6
|
Maheshwari S, Kim YS, Aripirala S, Murphy M, Amzel LM, Gabelli SB. Identifying Structural Determinants of Product Specificity in Leishmania major Farnesyl Diphosphate Synthase. Biochemistry 2020; 59:2751-2759. [PMID: 32584028 PMCID: PMC8049779 DOI: 10.1021/acs.biochem.0c00432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Farnesyl diphosphate synthase (FPPS) is an isoprenoid chain elongation enzyme that catalyzes the sequential condensation of dimethylallyl diphosphate (C5) with isopentenyl diphosphate (IPP; C5) and the resulting geranyl diphosphate (GPP; C10) with another molecule of IPP, eventually producing farnesyl diphosphate (FPP; C15), which is a precursor for the biosynthesis of a vast majority of isoprenoids. Previous studies of FPPS have highlighted the importance of the structure around the hydrophobic chain elongation path in determining product specificity. To investigate what structural features define the final chain length of the product in FPPS from Leishmania major, we designed and expressed six mutants of LmFPPS by replacing small amino acids around the binding pocket with bulky residues. Using enzymatic assays, binding kinetics, and crystallographic studies, we analyzed the effects of these mutations on the activity and product specificity of FPPS. Our results revealed that replacement of Thr-164 with tryptophan and phenylalanine completely abolished the activity of FPPS. Intriguingly, the T164Y substitution displayed dual product specificity and produced a mixture GPP and FPP as final products, with an activity for FPP synthesis that was lower than that of the wild-type enzyme. These data indicate that Thr-164 is a potential regulator of product specificity.
Collapse
Affiliation(s)
- Sweta Maheshwari
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Seon Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srinivas Aripirala
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
7
|
Branco Santos JC, de Melo JA, Maheshwari S, de Medeiros WMTQ, de Freitas Oliveira JW, Moreno CJ, Mario Amzel L, Gabelli SB, Sousa Silva M. Bisphosphonate-Based Molecules as Potential New Antiparasitic Drugs. Molecules 2020; 25:E2602. [PMID: 32503272 PMCID: PMC7321420 DOI: 10.3390/molecules25112602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Neglected tropical diseases such as Chagas disease and leishmaniasis affect millions of people around the world. Both diseases affect various parts of the globe and drugs traditionally used in therapy against these diseases have limitations, especially with regard to low efficacy and high toxicity. In this context, the class of bisphosphonate-based compounds has made significant advances regarding the chemical synthesis process as well as the pharmacological properties attributed to these compounds. Among this spectrum of pharmacological activity, bisphosphonate compounds with antiparasitic activity stand out, especially in the treatment of Chagas disease and leishmaniasis caused by Trypanosoma cruzi and Leishmania spp., respectively. Some bisphosphonate compounds can inhibit the mevalonate pathway, an essential metabolic pathway, by interfering with the synthesis of ergosterol, a sterol responsible for the growth and viability of these parasites. Therefore, this review aims to present the information about the importance of these compounds as antiparasitic agents and as potential new drugs to treat Chagas disease and leishmaniasis.
Collapse
Affiliation(s)
- Joice Castelo Branco Santos
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - Jonathas Alves de Melo
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - Sweta Maheshwari
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.M.); (L.M.A.)
| | - Wendy Marina Toscano Queiroz de Medeiros
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - Johny Wysllas de Freitas Oliveira
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - Cláudia Jassica Moreno
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
| | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.M.); (L.M.A.)
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.M.); (L.M.A.)
- Department of Medicine and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marcelo Sousa Silva
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil; (J.C.B.S.); (J.A.d.M.); (W.M.T.Q.d.M.); (J.W.d.F.O.); (C.J.M.)
- Postgraduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
- Postgraduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, 59012-570 Natal, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, New University of Lisbon, 1800-166 Lisbon, Portugal
| |
Collapse
|
8
|
Opassi G, Nordström H, Lundin A, Napolitano V, Magari F, Dzus T, Klebe G, Danielson UH. Establishing Trypanosoma cruzi farnesyl pyrophosphate synthase as a viable target for biosensor driven fragment-based lead discovery. Protein Sci 2020; 29:991-1003. [PMID: 31994261 PMCID: PMC7096706 DOI: 10.1002/pro.3834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Procedures for producing and exploring Trypanosoma cruzi farnesyl pyrophosphate synthase (tcFPPS) for surface plasmon resonance (SPR) biosensor‐driven fragment‐based discovery have been established. The method requires functional sensor surfaces with high sensitivity for extended times and appropriate controls. Initial problems with protein stability and lack of useful reference compounds motivated optimization of experimental procedures and conditions. The improved methods enabled the production of pure, folded and dimeric protein, and identified procedures for storage and handling. A new coupled enzymatic assay, using luciferase for detection of pyrophosphate, was developed and used to confirm that the purified enzyme was active after purification and storage. It also confirmed that sensor surfaces prepared with structurally intact protein was active. An SPR‐biosensor assay for fragment library screening and hit confirmation was developed. A thermal shift assay was used in parallel. A library of 90 fragments was efficiently screened by both assays at a single concentration in the presence and absence of the catalytic cofactor Mg2+. Hits were selected on the basis of response levels or ΔTm > 1°C and selectivity for tcFPPS in the presence of Mg2+. Characterization of hits by SPR showed that all had low affinities and the relationships between steady‐state responses and concentrations were not sufficiently hyperbolic for determination of KD‐values. Instead, ranking could be performed from the slope of the linear relationship at low concentrations. This pilot screen confirms that the procedures developed herein enables SPR‐biosensor driven fragment‐based discovery of leads targeting tcFPPS, despite the lack of a reference compound. Significance Statement To enable the discovery of drugs, it is essential to have access to relevant forms of the target protein and valid biochemical methods for studying the protein and effects of compounds that may be evolved into drugs. We have established methods for the discovery of drugs for treatment of American Trypanosomiasis (Chagas disease), using farnesyl pyrophosphate synthase from Trypanosoma cruzi as a target.
Collapse
Affiliation(s)
- Giulia Opassi
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Helena Nordström
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.,SciLifeLab, Uppsala, Sweden
| | | | - Valeria Napolitano
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa, Krakow, Poland
| | - Francesca Magari
- Institut für Pharmazeutische Chemie, Phillips-Universität Marburg, Marburg, Germany
| | - Tom Dzus
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Phillips-Universität Marburg, Marburg, Germany
| | - U Helena Danielson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.,SciLifeLab, Uppsala, Sweden
| |
Collapse
|
9
|
Gałęzowska J, Chmielewska E. Thermodynamics of the Interactions of Aminobisphosphonates and Their Calcium Complexes with Bovine Serum Albumin. Chem Biodivers 2018; 15:e1800272. [PMID: 29989308 DOI: 10.1002/cbdv.201800272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022]
Abstract
Binding of bisphosphonates (BPs) to plasma proteins was investigated in the 1990s as a pharmacokinetic issue in order to fully understand bio-distribution of BP drugs which are successfully used for the treatment of several bone-related diseases. It has been hypothesized that binding to these proteins occurs with low to moderate affinity despite of unfavorable hydrophilicity of BPs, and Ca2+ was identified as a strong catalyst of this binding. However, these studies mainly consisted in the separation and quantification of bound and unbound drug or protein fractions using chromatographic techniques without an outcome on the molecular level. Presented thermodynamic studies analyze the interactions of three N-BPs as well as their Ca2+ complexes with bovine serum albumine (BSA) by means of isothermal calorimetry. The studies reveal spontaneous enthalpy favored interactions of N-BPs (amino-containing BPs) with BSA, which are enhanced by the presence of Ca2+ ions up to ~15-fold, strongly depending on N-BP. Those are low affinity binding events, comparable to Ca2+ -N-BP interactions, which most likely occur at Ca2+ binding site(s). It is a first example of estimation of thermodynamic forces of interactions of free and calcium-bound N-BPs with albumin.
Collapse
Affiliation(s)
- Joanna Gałęzowska
- Department of Inorganic Chemistry, Wrocław Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Ewa Chmielewska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
10
|
Antiparasitic Activity of Sulfur- and Fluorine-Containing Bisphosphonates against Trypanosomatids and Apicomplexan Parasites. Molecules 2017; 22:molecules22010082. [PMID: 28054995 PMCID: PMC6155738 DOI: 10.3390/molecules22010082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 11/17/2022] Open
Abstract
Based on crystallographic data of the complexes 2-alkyl(amino)ethyl-1,1-bisphosphonates-Trypanosoma cruzi farnesyl diphosphate synthase, some linear 1,1-bisphosphonic acids and other closely related derivatives were designed, synthesized and biologically evaluated against T. cruzi, the responsible agent of Chagas disease and against Toxoplasma gondii, the etiologic agent of toxoplasmosis and also towards the target enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T gondii (TgFPPS), respectively. The isoprenoid-containing 1,1-bisphosphonates exhibited modest antiparasitic activity, whereas the linear α-fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates were unexpectedly devoid of antiparasitic activity. In spite of not presenting efficient antiparasitic activity, these data turned out to be very important to establish a structural activity relationship.
Collapse
|
11
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
12
|
Abstract
Background:
Bisphosphonates are drugs commonly used for the medication and prevention of diseases caused by decreased mineral density. Despite such important medicinal use, they display a variety of physiologic activities, which make them promising anti-cancer, anti-protozoal, antibacterial and antiviral agents.
Objective:
To review physiological activity of bisphosphonates with special emphasis on their ongoing and potential applications in medicine and agriculture.
Method:
Critical review of recent literature data.
Results:
Comprehensive review of activities revealed by bisphosphonates.
Conclusion:
although bisphosphonates are mostly recognized by their profound effects on bone physiology their medicinal potential has not been fully evaluated yet. Literature data considering enzyme inhibition suggest possibilities of far more wide application of these compounds. These applications are, however, limited by their low bioavailability and therefore intensive search for new chemical entities overcoming this shortage are carried out.
Collapse
|
13
|
Rodriguez JB, Falcone BN, Szajnman SH. Approaches for Designing new Potent Inhibitors of Farnesyl Pyrophosphate Synthase. Expert Opin Drug Discov 2016; 11:307-20. [DOI: 10.1517/17460441.2016.1143814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Schmidberger JW, Schnell R, Schneider G. Structural characterization of substrate and inhibitor binding to farnesyl pyrophosphate synthase from Pseudomonas aeruginosa. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:721-31. [PMID: 25760619 PMCID: PMC4356374 DOI: 10.1107/s1399004715001121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/19/2015] [Indexed: 12/23/2022]
Abstract
Locus PA4043 in the genome of Pseudomonas aeruginosa PAO1 has been annotated as coding for a farnesyl pyrophosphate synthase (FPPS). This open reading frame was cloned and expressed recombinantly in Escherichia coli. The dimeric enzyme shows farnesyl pyrophosphate synthase activity and is strongly inhibited by ibandronate and zoledronate, drugs that are presently in clinical use. The structures of the unliganded enzyme and complexes with the substrate geranyl diphosphate (GPP), the inhibitor ibandronate and two compounds obtained from a differential scanning fluorimetry-based screen of a fragment library were determined by X-ray crystallography to resolutions of better than 2.0 Å. The enzyme shows the typical α-helical fold of farnesyl pyrophosphate synthases. The substrate GPP binds in the S1 substrate site in an open conformation of the enzyme. In the enzyme-ibandronate complex three inhibitor molecules are bound in the active site of the enzyme. One inhibitor molecule occupies the allylic substrate site (S1) of each subunit, as observed in complexes of nitrogen-containing bisphosphonate inhibitors of farnesyl synthases from other species. Two (in subunit A) and one (in subunit B) additional ibandronate molecules are bound in the active site. The structures of the fragment complexes show two molecules bound in a hydrophobic pocket adjacent to the active site. This allosteric pocket, which has previously only been described for FPPS from eukaryotic organisms, is thus also present in enzymes from pathogenic prokaryotes and might be utilized for the design of inhibitors of bacterial FPPS with a different chemical scaffold to the highly charged bisphosphonates, which are less likely to pass bacterial membranes.
Collapse
Affiliation(s)
- Jason W. Schmidberger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
15
|
Park J, Lin YS, Tsantrizos YS, Berghuis AM. Structure of human farnesyl pyrophosphate synthase in complex with an aminopyridine bisphosphonate and two molecules of inorganic phosphate. Acta Crystallogr F Struct Biol Commun 2014; 70:299-304. [PMID: 24598914 PMCID: PMC3944689 DOI: 10.1107/s2053230x14002106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/29/2014] [Indexed: 12/12/2022] Open
Abstract
Human farnesyl pyrophosphate synthase (hFPPS) produces farnesyl pyrophosphate, an isoprenoid essential for a variety of cellular processes. The enzyme has been well established as the molecular target of the nitrogen-containing bisphosphonates (N-BPs), which are best known for their antiresorptive effects in bone but are also known for their anticancer properties. Crystal structures of hFPPS in ternary complexes with a novel bisphosphonate, YS0470, and the secondary ligands inorganic phosphate (Pi), inorganic pyrophosphate (PPi) and isopentenyl pyrophosphate (IPP) have recently been reported. Only the co-binding of the bisphosphonate with either PPi or IPP resulted in the full closure of the C-terminal tail of the enzyme, a conformational change that is required for catalysis and that is also responsible for the potent in vivo efficacy of N-BPs. In the present communication, a co-crystal structure of hFPPS in complex with YS0470 and two molecules of Pi is reported. The unusually close proximity between these ligands, which was confirmed by anomalous diffraction data, suggests that they interact with one another, with their anionic charges neutralized in their bound state. The structure also showed the tail of the enzyme to be fully disordered, indicating that simultaneous binding of two Pi molecules with a bisphosphonate cannot induce the tail-closing conformational change in hFPPS. Examination of homologous FPPSs suggested that this ligand-dependent tail closure is only conserved in the mammalian proteins. The prevalence of Pi-bound hFPPS structures in the PDB raises a question regarding the in vivo relevance of Pi binding to the function of the enzyme.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Yih-Shyan Lin
- Department of Chemistry, McGill University, 801 Rue Sherbrooke Ouest, Montreal, QC H3A 0B8, Canada
| | - Youla S. Tsantrizos
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Department of Chemistry, McGill University, 801 Rue Sherbrooke Ouest, Montreal, QC H3A 0B8, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Albert M. Berghuis
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
16
|
Aripirala S, Gonzalez-Pacanowska D, Oldfield E, Kaiser M, Amzel LM, Gabelli SB. Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:802-10. [PMID: 24598749 PMCID: PMC3949514 DOI: 10.1107/s1399004713033221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/08/2013] [Indexed: 11/10/2022]
Abstract
Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Å are reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca(2+) ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg(2+) ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS-46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.
Collapse
Affiliation(s)
- Srinivas Aripirala
- Institute for Multiscale Modeling of Biological Interactions and Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210, USA
| | | | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marcel Kaiser
- University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205, USA
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205, USA
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Kawasaki Y, Sekiguchi M, Kawasaki M, Hirakura Y. Thermodynamic Evaluation of the Binding of Bisphosphonates to Human Farnesyl Pyrophosphate Synthase. Chem Pharm Bull (Tokyo) 2014; 62:77-83. [DOI: 10.1248/cpb.c13-00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuko Kawasaki
- Institute for Drug Discovery Research, Astellas Pharma Inc
| | | | | | | |
Collapse
|
18
|
Ferrer-Casal M, Li C, Galizzi M, Stortz CA, Szajnman SH, Docampo R, Moreno SNJ, Rodriguez JB. New insights into molecular recognition of 1,1-bisphosphonic acids by farnesyl diphosphate synthase. Bioorg Med Chem 2013; 22:398-405. [PMID: 24300918 DOI: 10.1016/j.bmc.2013.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
As part of our project pointed at the search of new antiparasitic agents against American trypanosomiasis (Chagas disease) and toxoplasmosis a series of 2-alkylaminoethyl-1-hydroxy-1,1-bisphosphonic acids has been designed, synthesized and biologically evaluated against the etiologic agents of these parasitic diseases, Trypanosoma cruzi and Toxoplasma gondii, respectively, and also towards their target enzymes, T. cruzi and T. gondii farnesyl pyrophosphate synthase (FPPS), respectively. Surprisingly, while most pharmacologically active bisphosphonates have a hydroxyl group at the C-1 position, the additional presence of an amino group at C-3 resulted in decreased activity towards either T. cruzi cells or TcFPPS. Density functional theory calculations justify this unexpected behavior. Although these compounds were devoid of activity against T. cruzi cells and TcFPPS, they were efficient growth inhibitors of tachyzoites of T. gondii. This activity was associated with a potent inhibition of the enzymatic activity of TgFPPS. Compound 28 arises as a main example of this family of compounds exhibiting an ED₅₀ value of 4.7 μM against tachyzoites of T. gondii and an IC₅₀ of 0.051 μM against TgFPPS.
Collapse
Affiliation(s)
- Mariana Ferrer-Casal
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Catherine Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Melina Galizzi
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Carlos A Stortz
- Departamento de Química Orgánica and CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Juan B Rodriguez
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
19
|
Recher M, Barboza AP, Li ZH, Galizzi M, Ferrer-Casal M, Szajnman SH, Docampo R, Moreno SNJ, Rodriguez JB. Design, synthesis and biological evaluation of sulfur-containing 1,1-bisphosphonic acids as antiparasitic agents. Eur J Med Chem 2012; 60:431-40. [PMID: 23318904 DOI: 10.1016/j.ejmech.2012.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
As part of our efforts aimed at searching for new antiparasitic agents, 2-alkylmercaptoethyl-1,1-bisphosphonate derivatives were synthesized and evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease, and Toxoplasma gondii, the responsible agent for toxoplasmosis. Many of these sulfur-containing bisphosphonates were potent inhibitors against the intracellular form of T. cruzi, the clinically more relevant replicative form of this parasite, and tachyzoites of T. gondii targeting T. cruzi or T. gondii farnesyl diphosphate synthases (FPPSs), which constitute valid targets for the chemotherapy of these parasitic diseases. Interestingly, long chain length sulfur-containing bisphosphonates emerged as relevant antiparasitic agents. Taking compounds 37, 38, and 39 as representative members of this class of drugs, they exhibited ED(50) values of 15.8 μM, 12.8 μM, and 22.4 μM, respectively, against amastigotes of T. cruzi. These cellular activities matched the inhibition of the enzymatic activity of the target enzyme (TcFPPS) having IC(50) values of 6.4 μM, 1.7 μM, and 0.097 μM, respectively. In addition, these compounds were potent anti-Toxoplasma agents. They had ED(50) values of 2.6 μM, 1.2 μM, and 1.8 μM, respectively, against T. gondii tachyzoites, while they exhibited a very potent inhibitory action against the target enzyme (TgFPPS) showing IC(50) values of 0.024 μM, 0.025 μM, and 0.021 μM, respectively. Bisphosphonates bearing a sulfoxide unit at C-3 were also potent anti-Toxoplasma agents, particularly those bearing long aliphatic chains such as 43-45, which were also potent antiproliferative drugs against tachyzoites of T. gondii. These compounds inhibited the enzymatic activity of the target enzyme (TgFPPS) at the very low nanomolar range. These bisphosphonic acids have very good prospective not only as lead drugs but also as potential chemotherapeutic agents.
Collapse
Affiliation(s)
- Marion Recher
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Aripirala S, Szajnman SH, Jakoncic J, Rodriguez JB, Docampo R, Gabelli SB, Amzel LM. Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase. J Med Chem 2012; 55:6445-54. [PMID: 22715997 DOI: 10.1021/jm300425y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Linear 2-alkylaminoethyl-1,1-bisphosphonates are effective agents against proliferation of Trypanosoma cruzi , the etiologic agent of American trypanosomiasis (Chagas disease), exhibiting IC(50) values in the nanomolar range against the parasites. This activity is associated with inhibition at the low nanomolar level of the T. cruzi farnesyl diphosphate synthase (TcFPPS). X-ray structures and thermodynamic data of the complexes TcFPPS with five compounds of this family show that the inhibitors bind to the allylic site of the enzyme, with their alkyl chain occupying the cavity that binds the isoprenoid chain of the substrate. The compounds bind to TcFPPS with unfavorable enthalpy compensated by a favorable entropy that results from a delicate balance between two opposing effects: the loss of conformational entropy due to freezing of single bond rotations and the favorable burial of the hydrophobic alkyl chains. The data suggest that introduction of strategically placed double bonds and methyl branches should increase affinity substantially.
Collapse
Affiliation(s)
- Srinivas Aripirala
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
22
|
Szajnman SH, Rosso VS, Malayil L, Smith A, Moreno SNJ, Docampo R, Rodriguez JB. 1-(Fluoroalkylidene)-1,1-bisphosphonic acids are potent and selective inhibitors of the enzymatic activity of Toxoplasma gondii farnesyl pyrophosphate synthase. Org Biomol Chem 2012; 10:1424-33. [PMID: 22215028 PMCID: PMC3458512 DOI: 10.1039/c1ob06602a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Fluorinated-1,1-bisphosphonic acids derived from fatty acids were designed, synthesized and biologically evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease, and against Toxoplasma gondii, the agent responsible for toxoplasmosis, and also towards the target parasitic enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T. gondii (TgFPPS). Interestingly, 1-fluorononylidene-1,1-bisphosphonic acid (compound 43) proved to be an extremely potent inhibitor of the enzymatic activity of TgFPPS at the low nanomolar range, exhibiting an IC(50) of 30 nM. This compound was two-fold more potent than risedronate (IC(50) = 74 nM) that was taken as a positive control. This enzymatic activity was associated with a strong cell growth inhibition against tachyzoites of T. gondii, with an IC(50) value of 2.7 μM.
Collapse
Affiliation(s)
- Sergio H Szajnman
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
23
|
NMR, potentiometric and ESI-MS combined studies on the zinc(II) magnesium(II) and calcium(II) complexation by (morpholin-1-yl)methane-1,1-diphosphonic acid and its thio-analog. Polyhedron 2012. [DOI: 10.1016/j.poly.2011.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Durrant JD, Cao R, Gorfe AA, Zhu W, Li J, Sankovsky A, Oldfield E, McCammon JA. Non-bisphosphonate inhibitors of isoprenoid biosynthesis identified via computer-aided drug design. Chem Biol Drug Des 2011; 78:323-32. [PMID: 21696546 PMCID: PMC3155669 DOI: 10.1111/j.1747-0285.2011.01164.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relaxed complex scheme, a virtual-screening methodology that accounts for protein receptor flexibility, was used to identify a low-micromolar, non-bisphosphonate inhibitor of farnesyl diphosphate synthase. Serendipitously, we also found that several predicted farnesyl diphosphate synthase inhibitors were low-micromolar inhibitors of undecaprenyl diphosphate synthase. These results are of interest because farnesyl diphosphate synthase inhibitors are being pursued as both anti-infective and anticancer agents, and undecaprenyl diphosphate synthase inhibitors are antibacterial drug leads.
Collapse
Affiliation(s)
- Jacob D Durrant
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ebetino FH, Hogan AML, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RGG. The relationship between the chemistry and biological activity of the bisphosphonates. Bone 2011; 49:20-33. [PMID: 21497677 DOI: 10.1016/j.bone.2011.03.774] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 11/20/2022]
Abstract
The ability of bisphosphonates ((HO)(2)P(O)CR(1)R(2)P(O)(OH)(2)) to inhibit bone resorption has been known since the 1960s, but it is only recently that a detailed molecular understanding of the relationship between chemical structures and biological activity has begun to emerge. The early development of chemistry in this area was largely empirical and based on modifying R(2) groups in a variety of ways. Apart from the general ability of bisphosphonates to chelate Ca(2+) and thus target the calcium phosphate mineral component of bone, attempts to refine clear structure-activity relationships had led to ambiguous or seemingly contradictory results. However, there was increasing evidence for cellular effects, and eventually the earliest bisphosphonate drugs, such as clodronate (R(1)=R(2)=Cl) and etidronate (R(1)=OH, R(2)=CH(3)), were shown to exert intracellular actions via the formation in vivo of drug derivatives of ATP. The observation that pamidronate, a bisphosphonate with R(1)=OH and R(2)=CH(2)CH(2)NH(2), exhibited higher potency than previously known bisphosphonate drugs represented the first step towards the later recognition of the critical importance of having nitrogen in the R(2) side chain. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates took place particularly in the 1980s, but still with an incomplete understanding of their structure-activity relationships. A major advance was the discovery that the anti-resorptive effects of the nitrogen-containing bisphosphonates (including alendronate, risedronate, ibandronate, and zoledronate) on osteoclasts appear to result from their potency as inhibitors of the enzyme farnesyl pyrophosphate synthase (FPPS), a key branch-point enzyme in the mevalonate pathway. FPPS generates isoprenoid lipids utilized in sterol synthesis and for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Effects on other cellular targets, such as osteocytes, may also be important. Over the years many hundreds of bisphosphonates have been synthesized and studied. Interest in expanding the structural scope of the bisphosphonate class has also motivated new approaches to the chemical synthesis of these compounds. Recent chemical innovations include the synthesis of fluorescently labeled bisphosphonates, which has enabled studies of the biodistribution of these drugs. As a class, bisphosphonates share common properties. However, as with other classes of drugs, there are chemical, biochemical, and pharmacological differences among the individual compounds. Differences in mineral binding affinities among bisphosphonates influence their differential distribution within bone, their biological potency, and their duration of action. The overall pharmacological effects of bisphosphonates on bone, therefore, appear to depend upon these two key properties of affinity for bone mineral and inhibitory effects on osteoclasts. The relative contributions of these properties differ among individual bisphosphonates and help determine their clinical behavior and effectiveness.
Collapse
Affiliation(s)
- Frank H Ebetino
- Warner Chilcott Ltd., Discovery, Research & Development, Dundalk, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The need for better drugs to treat patients with Chagas disease remains urgent. This review summarizes the advancements in drug development over the past 2 years. RECENT FINDINGS Drug development efforts are almost exclusively occurring as preclinical research, although phase II studies for the antifungal drug, posaconazole, and a prodrug of ravuconazole are being planned. Several recent laboratory investigations demonstrate anti-Trypanosoma cruzi activity of novel small molecules in animal models. These include nonpeptidic cruzain inhibitors, novel inhibitors of the sterol 14α-demethylase enzyme, new compounds (arylimidamides) related to pentamidine, derivatives of nifurtimox, compounds using ruthenium complexes, and several natural products. The recent implementation of a high-throughput screen of more than 300 000 compounds against intracellular T. cruzi amastigotes done at the Broad Institute is an important development, yielding approximately 300 selective inhibitors, many of which may serve as leads for medicinal chemistry efforts. SUMMARY Progress is slow, but recent advancements in both drug development and advocacy for research on neglected diseases are encouraging. Efforts to define a target product profile and to harmonize methodologies for testing drugs for Chagas disease are described herein.
Collapse
|
27
|
Rosso VS, Szajnman SH, Malayil L, Galizzi M, Moreno SNJ, Docampo R, Rodriguez JB. Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem 2011; 19:2211-7. [PMID: 21419634 PMCID: PMC3071284 DOI: 10.1016/j.bmc.2011.02.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
Abstract
The effect of long-chain 2-alkylaminoethyl-1,1-bisphosphonates against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii was investigated. Particularly, compound 26 proved to be an extremely potent inhibitor against the intracellular form of T. cruzi, exhibiting IC(50) values at the nanomolar range. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 26 was an effective agent against T. cruzi (amastigotes) exhibiting an IC(50) value of 0.67 μM, while this compound showed an IC(50) value of 0.81 μM against the target enzyme TcFPPS. This drug was less effective against the enzymatic activity of T. cruzi solanesyl diphosphate synthase TcSPPS showing an IC(50) value of 3.2 μM. Interestingly, compound 26 was also very effective against T. gondii (tachyzoites) exhibiting IC(50) values of 6.23 μM. This cellular activity was also related to the inhibition of the enzymatic activity towards the target enzyme TgFPPS (IC(50)=0.093 μM) As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control different tropical diseases.
Collapse
Affiliation(s)
- Valeria S Rosso
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
28
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:568-80. [PMID: 21030841 DOI: 10.1097/med.0b013e328341311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|