1
|
Woltz RL, Zheng Y, Choi W, Ngo K, Trinh P, Ren L, Thai PN, Harris BJ, Han Y, Rouen KC, Mateos DL, Jian Z, Chen-Izu Y, Dickson EJ, Yamoah EN, Yarov-Yarovoy V, Vorobyov I, Zhang XD, Chiamvimonvat N. Atomistic mechanisms of the regulation of small-conductance Ca 2+-activated K + channel (SK2) by PIP2. Proc Natl Acad Sci U S A 2024; 121:e2318900121. [PMID: 39288178 PMCID: PMC11441529 DOI: 10.1073/pnas.2318900121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.
Collapse
Grants
- OT2 OD026580 NIH HHS
- T32 HL086350 NHLBI NIH HHS
- NIH R01 DC016099 HHS | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)
- I01 CX001490 CSRD VA
- T32 GM136597 NIGMS NIH HHS
- R01 DC016099 NIDCD NIH HHS
- NIH F32 HL151130 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Anton 2 allocation MCB210014P Pittsburgh Supercomputing Center
- NIH T32 HL86350 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL158961 NHLBI NIH HHS
- R01 HL137228 NHLBI NIH HHS
- T32 GM007377 NIGMS NIH HHS
- R01 HL174001 NHLBI NIH HHS
- F32 HL151130 NHLBI NIH HHS
- R01 HL128537 NHLBI NIH HHS
- NIH R01 HL085727 NIH R01 HL085844 NIH R01 HL137228 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL152681 NHLBI NIH HHS
- R01 HL085727 NHLBI NIH HHS
- R01 GM116961 NIGMS NIH HHS
- NIH R01 HL152681 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 AG060504 NIA NIH HHS
- R35 GM149211 NIGMS NIH HHS
- I01 BX000576 BLRD VA
- NIH R01 AG060504 and NIH 2P01 AG051443 HHS | NIH | National Institute on Aging (NIA)
- R01 HL085844 NHLBI NIH HHS
- NIH R01 HL158961 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH R35 GM149211 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P01 AG051443 NIA NIH HHS
- NIH R01 HL128537 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R56 HL138392 NHLBI NIH HHS
Collapse
Affiliation(s)
- Ryan L. Woltz
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Yang Zheng
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Woori Choi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Khoa Ngo
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Pauline Trinh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Lu Ren
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA94305
| | - Phung N. Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Brandon J. Harris
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Yanxiao Han
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Kyle C. Rouen
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Diego Lopez Mateos
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, CA95616
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA95616
| | - Eamonn J. Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Ebenezer N. Yamoah
- Department of Translational Neuroscience, University of Arizona College of Medicine, Phoenix, AZ85004
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Anesthesiology and Pain Medicine, University of California, Davis, CA95616
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Pharmacology, University of California, Davis, CA95616
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
- Department of Pharmacology, University of California, Davis, CA95616
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA95655
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ85004
| |
Collapse
|
2
|
Singh S, Pandey AK, Malemnganba T, Prajapati VK. Technological advancements in viral vector designing and optimization for therapeutic applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:57-87. [PMID: 38448144 DOI: 10.1016/bs.apcsb.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Viral vector engineering is critical to the advancement of several sectors of biotechnology, gene therapy, and vaccine development. These vectors were produced from viruses, were employed to deliver therapeutic genes or to alter biological processes. The potential for viral vectors to improve the precision, safety, and efficiency of therapeutic interventions has boosted their demand. The dynamic interplay between technological advancements and computational tools in establishing the landscape of viral vector engineering and vector optimization for therapeutic reasons is discussed in this chapter. It also emphasizes the importance of in silico techniques in maximizing vector potential for therapeutics and many phases of viral vector engineering, from genomic analysis to computer modelling and advancements to improve precise gene delivery. High-throughput screening propels the expedited process of vector selection, and computational techniques to analyze complex omics data to further enhance vector capabilities have been discussed. As in silico models reveal insights into off-target effects and integration sites, vector safety (biodistribution and toxicity) remains a crucial part and bridges the gap between preclinical and clinical investigations. Despite the limitations, this chapter depicts a future in which technology and computing merge to catapult viral vector therapy into an era of boundless possibilities.
Collapse
Affiliation(s)
- Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Anurag Kumar Pandey
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | | | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
3
|
Ji X, Huang Y, Sheng J. Structural modeling of Na v1.5 pore domain in closed state. BIOPHYSICS REPORTS 2021; 7:341-354. [PMID: 37287760 PMCID: PMC10233475 DOI: 10.52601/bpr.2021.200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/21/2021] [Indexed: 06/09/2023] Open
Abstract
The voltage-dependent cardiac sodium channel plays a key role in cardiac excitability and conduction and it is the drug target of medically important. However, its atomic- resolution structure is still lack. Here, we report a modeled structure of Nav1.5 pore domain in closed state. The structure was constructed by Rosetta-membrane homology modeling method based on the template of eukaryotic Nav channel NavPaS and selected by energy and direct coupling analysis (DCA). Moreover, this structure was optimized through molecular dynamical simulation in the lipid membrane bilayer. Finally, to validate the constructed model, the binding energy and binding sites of closed-state local anesthetics (LAs) in the modeled structure were computed by the MM-GBSA method and the results are in agreement with experiments. The modeled structure of Nav1.5 pore domain in closed state may be useful to explore molecular mechanism of a state-dependent drug binding and helpful for new drug development.
Collapse
Affiliation(s)
- Xiaofeng Ji
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Yanzhao Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Sheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| |
Collapse
|
4
|
Refinement of a cryo-EM structure of hERG: Bridging structure and function. Biophys J 2021; 120:738-748. [PMID: 33476597 DOI: 10.1016/j.bpj.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
The human-ether-a-go-go-related gene (hERG) encodes the voltage-gated potassium channel (KCNH2 or Kv11.1, commonly known as hERG). This channel plays a pivotal role in the stability of phase 3 repolarization of the cardiac action potential. Although a high-resolution cryo-EM structure is available for its depolarized (open) state, the structure surprisingly did not feature many functionally important interactions established by previous biochemical and electrophysiology experiments. Using molecular dynamics flexible fitting (MDFF), we refined the structure and recovered the missing functionally relevant salt bridges in hERG in its depolarized state. We also performed electrophysiology experiments to confirm the functional relevance of a novel salt bridge predicted by our refinement protocol. Our work shows how refinement of a high-resolution cryo-EM structure helps to bridge the existing gap between the structure and function in the voltage-sensing domain (VSD) of hERG.
Collapse
|
5
|
Gunay BC, Yurtsever M, Durdagi S. Elucidation of interaction mechanism of hERG1 potassium channel with scorpion toxins BeKm-1 and BmTx3b. J Mol Graph Model 2019; 96:107504. [PMID: 31901677 DOI: 10.1016/j.jmgm.2019.107504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/10/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
The human ether-a-go-go related gene 1 (hERG1) K+ channels play crucial role in the heart, different regions of brain, endocrine cells, smooth muscle cells, and numerous tumor cells. It is known that the inherited mutations of hERG1 gene may lead to the disorder of cardiac repolarization (i.e., long QT syndrome (LQTS)), which may result in sudden cardiac death. It is known that K+ ion channels involved in signaling pathways lead to cell proliferation or apoptosis and some specific toxins were investigated for diverse therapeutic applications on targeting the hERG1 K+ channel. Thus, investigation of channel/toxin interactions mechanisms in atomic level is an important topic for the development of toxin-based therapeutics. Thus, in this work, the interaction mechanisms of two toxins named as BeKm-1 and BmTx3b with the closed-state hERG1 channel have been studied by using different molecular modeling techniques including protein-protein docking and molecular dynamics (MD) simulations. The crucial residues of toxins in channel interactions have been elucidated. It is found that R1, K6, K18, R20, K23 and R27 residues in BeKm-1 and F1, K7, K19, K20 and K28 in BmTx3b are the important residues involved in the strong interactions with the closed-state hERG1 K+ channel. The results of this study can be used by medicinal chemists in the designing of diverse therapeutic applications of natural or synthetic peptides targeting the closed state hERG1 K+ channels.
Collapse
Affiliation(s)
- Beril Colak Gunay
- Department of Chemistry, Istanbul Technical University, Istanbul, 34469, Turkey; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, 34353, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, 34469, Turkey.
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, 34353, Turkey.
| |
Collapse
|
6
|
Coppola G, Corrado E, Curnis A, Maglia G, Oriente D, Mignano A, Brugada P. Update on Brugada Syndrome 2019. Curr Probl Cardiol 2019; 46:100454. [PMID: 31522883 DOI: 10.1016/j.cpcardiol.2019.100454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Brugada syndrome (BrS) was first described in 1992 as an aberrant pattern of ST segment elevation in right precordial leads with a high incidence of sudden cardiac death (SCD) in patients with structurally normal heart. It represents 4% ∼ 12% of all SCD and 20% of SCD in patients with structurally normal heart. The extremely wide genetic heterogeneity of BrS and other inherited cardiac disorders makes this new area of genetic arrhytmology a fascinating one. This review shows the state of art in diagnosis, management, and treatment of BrS focusing all the aspects regarding genetics and Preimplant Genetic Diagnosis (PGD) of embryos, overlapping syndromes, risk stratification, familial screening, and future perspectives. Moreover the review analyzes key points like electrocardiogram (ECG) criteria, the role of electrophysiological study (the role of ventricular programmed stimulation and the need of universal accepted protocol) and the importance of a correct risk stratification to clarify when implantable cardioverter defibrillator or a close follow-up is needed. In recent years, cardiovascular studies have been focused on personalized risk assessment and to determine the most optimal therapy for an individual. The BrS syndrome has also benefited of these advances although there remain several key points to be elucidated. We will review the present knowledge, progress made, and future research directions on BrS.
Collapse
|
7
|
Kudaibergenova M, Perissinotti LL, Noskov SY. Lipid roles in hERG function and interactions with drugs. Neurosci Lett 2019; 700:70-77. [DOI: 10.1016/j.neulet.2018.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/29/2023]
|
8
|
Durdagi S, Aksoydan B, Erol I, Kantarcioglu I, Ergun Y, Bulut G, Acar M, Avsar T, Liapakis G, Karageorgos V, Salmas RE, Sergi B, Alkhatib S, Turan G, Yigit BN, Cantasir K, Kurt B, Kilic T. Integration of multi-scale molecular modeling approaches with experiments for the in silico guided design and discovery of novel hERG-Neutral antihypertensive oxazalone and imidazolone derivatives and analysis of their potential restrictive effects on cell proliferation. Eur J Med Chem 2017; 145:273-290. [PMID: 29329002 DOI: 10.1016/j.ejmech.2017.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
AT1 antagonists is the most recent drug class of molecules against hypertension and they mediate their actions through blocking detrimental effects of angiotensin II (A-II) when acts on type I (AT1) A-II receptor. The effects of AT1 antagonists are not limited to cardiovascular diseases. AT1 receptor blockers may be used as potential anti-cancer agents - due to the inhibition of cell proliferation stimulated by A-II. Therefore, AT1 receptors and the A-II biosynthesis mechanisms are targets for the development of new synthetic drugs and therapeutic treatment of various cardiovascular and other diseases. In this work, multi-scale molecular modeling approaches were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. In silico-guided designed hit molecules were then synthesized and tested for their binding affinities to human AT1 receptor in radioligand binding studies, using [125I-Sar1-Ile8] AngII. Among the compounds tested, 19d and 9j molecules bound to receptor in a dose response manner and with relatively high affinities. Next, cytotoxicity and wound healing assays were performed for these hit molecules. Since hit molecule 19d led to deceleration of cell motility in all three cell lines (NIH3T3, A549, and H358) tested in this study, this molecule is investigated in further tests. In two cell lines (HUVEC and MCF-7) tested, 19d induced G2/M cell cycle arrest in a concentration dependent manner. Adherent cells detached from the plates and underwent cell death possibly due to apoptosis at 19d concentrations that induced cell cycle arrest.
Collapse
Affiliation(s)
- Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey.
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Isik Kantarcioglu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Bioengineering Program, Graduate School of Natural and Applied Sciences, Bahcesehir University, Istanbul, Turkey
| | - Yavuz Ergun
- Department of Chemistry, Dokuz Eylul University, Izmir, Turkey
| | - Gulay Bulut
- Department of Molecular Biology and Genetics, Bahcesehir University, Istanbul, Turkey
| | - Melih Acar
- Department of Medical Biology, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - George Liapakis
- Department of Pharmacology, Faculty of Medicine, University of Crete, Greece
| | - Vlasios Karageorgos
- Department of Pharmacology, Faculty of Medicine, University of Crete, Greece
| | - Ramin E Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Barış Sergi
- Department of Molecular Biology and Genetics, Bahcesehir University, Istanbul, Turkey
| | - Sara Alkhatib
- Bioengineering Program, Graduate School of Natural and Applied Sciences, Bahcesehir University, Istanbul, Turkey
| | - Gizem Turan
- Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Berfu Nur Yigit
- Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Kutay Cantasir
- School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Bahar Kurt
- School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Turker Kilic
- Department of Neurosurgery, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
9
|
Aksoydan B, Kantarcioglu I, Erol I, Salmas RE, Durdagi S. Structure-based design of hERG-neutral antihypertensive oxazalone and imidazolone derivatives. J Mol Graph Model 2017; 79:103-117. [PMID: 29156380 DOI: 10.1016/j.jmgm.2017.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Angiotensin II receptor type 1 (AT1) antagonists are the most recent drug class against hypertension. Recently first crystal structure of AT1 receptor is deposited to the protein data bank (PDB ID: 4YAY). In this work, several molecular screening methods such as molecular docking and de novo design studies were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. A database consisting of 3500-fragments were used to enumerate de novo designed imidazolone and oxazolone derivatives and hereby more than 50000 novel small molecules were generated. These derivatives were then used in high throughput virtual screening simulations (Glide/HTVS) to find potent hit molecules. In addition, virtual screening of around 18 million small drug-like compounds from ZINC database were screened at the binding pocket of the AT1 receptor via Glide/HTVS method. Filtered structures were then used in more sophisticated molecular docking simulations protocols (i.e., Glide/SP; Glide/XP; Glide/IFD; Glide/QPLD, and GOLD). However, the K+ ion channel/drug interactions should also be considered in studies implemented in molecular level against their cardiovascular risks. Thus, selected compounds with high docking scores via all diverse docking algorithms are also screened at the pore domain regions of human ether-a-go-go-related gene (hERG1) K+ channel to remove the high affinity hERG1 blocking compounds. High docking scored compounds at the AT1 with low hERG1 affinity is considered for long molecular dynamics (MD) simulations. Post-processing analysis of MD simulations assisted for better understanding of molecular mechanism of studied compounds at the binding cavity of AT1 receptor. Results of this study can be useful for designing of novel and safe AT1 inhibitors.
Collapse
Affiliation(s)
- Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Isik Kantarcioglu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey; Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey.
| |
Collapse
|
10
|
Kayık G, Tüzün NŞ, Durdagi S. Structural investigation of vesnarinone at the pore domains of open and open-inactivated states of hERG1 K + channel. J Mol Graph Model 2017; 77:399-412. [DOI: 10.1016/j.jmgm.2017.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
|
11
|
Publisher's note. J Mol Graph Model 2017; 77:240-249. [DOI: 10.1016/j.jmgm.2017.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/17/2022]
|
12
|
Musgaard M, Paramo T, Domicevica L, Andersen OJ, Biggin PC. Insights into channel dysfunction from modelling and molecular dynamics simulations. Neuropharmacology 2017; 132:20-30. [PMID: 28669899 DOI: 10.1016/j.neuropharm.2017.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/06/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
Developments in structural biology mean that the number of different ion channel structures has increased significantly in recent years. Structures of ion channels enable us to rationalize how mutations may lead to channelopathies. However, determining the structures of ion channels is still not trivial, especially as they necessarily exist in many distinct functional states. Therefore, the use of computational modelling can provide complementary information that can refine working hypotheses of both wild type and mutant ion channels. The simplest but still powerful tool is homology modelling. Many structures are available now that can provide suitable templates for many different types of ion channels, allowing a full three-dimensional interpretation of mutational effects. These structural models, and indeed the structures themselves obtained by X-ray crystallography, and more recently cryo-electron microscopy, can be subjected to molecular dynamics simulations, either as a tool to help explore the conformational dynamics in detail or simply as a means to refine the models further. Here we review how these approaches have been used to improve our understanding of how diseases might be linked to specific mutations in ion channel proteins. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Maria Musgaard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Teresa Paramo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Laura Domicevica
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Ole Juul Andersen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
13
|
Beaugrand M, Arnold AA, Bourgault S, Williamson PTF, Marcotte I. Comparative study of the structure and interaction of the pore helices of the hERG and Kv1.5 potassium channels in model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:549-559. [PMID: 28314880 DOI: 10.1007/s00249-017-1201-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 10/19/2022]
Abstract
The hERG channel is a voltage-gated potassium channel found in cardiomyocytes that contributes to the repolarization of the cell membrane following the cardiac action potential, an important step in the regulation of the cardiac cycle. The lipids surrounding K+ channels have been shown to play a key role in their regulation, with anionic lipids shown to alter gating properties. In this study, we investigate how anionic lipids interact with the pore helix of hERG and compare the results with those from Kv1.5, which possesses a pore helix more typical of K+ channels. Circular dichroism studies of the pore helix secondary structure reveal that the presence of the anionic lipid DMPS within the bilayer results in a slight unfolding of the pore helices from both hERG and Kv1.5, albeit to a lesser extent for Kv1.5. In the presence of anionic lipids, the two pore helices exhibit significantly different interactions with the lipid bilayer. We demonstrate that the pore helix from hERG causes significant perturbation to the order in lipid bicelles, which contrasts with only small changes observed for Kv1.5. These observations suggest that the atypical sequence of the pore helix of hERG may play a key role in determining how anionic lipids influence its gating.
Collapse
Affiliation(s)
- Maïwenn Beaugrand
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada
| | - Philip T F Williamson
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada.
| |
Collapse
|
14
|
Kayık G, Tüzün NŞ, Durdagi S. Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development. J Enzyme Inhib Med Chem 2017; 32:311-330. [PMID: 28150511 PMCID: PMC6009860 DOI: 10.1080/14756366.2016.1250756] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The essential biological function of phosphodiesterase (PDE) type enzymes is to regulate the cytoplasmic levels of intracellular second messengers, 3′,5′-cyclic guanosine monophosphate (cGMP) and/or 3′,5′-cyclic adenosine monophosphate (cAMP). PDE targets have 11 isoenzymes. Of these enzymes, PDE5 has attracted a special attention over the years after its recognition as being the target enzyme in treating erectile dysfunction. Due to the amino acid sequence and the secondary structural similarity of PDE6 and PDE11 with the catalytic domain of PDE5, first-generation PDE5 inhibitors (i.e. sildenafil and vardenafil) are also competitive inhibitors of PDE6 and PDE11. Since the major challenge of designing novel PDE5 inhibitors is to decrease their cross-reactivity with PDE6 and PDE11, in this study, we attempt to identify potent tadalafil-like PDE5 inhibitors that have PDE5/PDE6 and PDE5/PDE11 selectivity. For this aim, the similarity-based virtual screening protocol is applied for the “clean drug-like subset of ZINC database” that contains more than 20 million small compounds. Moreover, molecular dynamics (MD) simulations of selected hits complexed with PDE5 and off-targets were performed in order to get insights for structural and dynamical behaviors of the selected molecules as selective PDE5 inhibitors. Since tadalafil blocks hERG1 K channels in concentration dependent manner, the cardiotoxicity prediction of the hit molecules was also tested. Results of this study can be useful for designing of novel, safe and selective PDE5 inhibitors.
Collapse
Affiliation(s)
- Gülru Kayık
- a Department of Chemistry , Istanbul Technical University , Istanbul , Turkey.,b Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Nurcan Ş Tüzün
- a Department of Chemistry , Istanbul Technical University , Istanbul , Turkey
| | - Serdar Durdagi
- c Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey
| |
Collapse
|
15
|
Grandi E, Sanguinetti MC, Bartos DC, Bers DM, Chen-Izu Y, Chiamvimonvat N, Colecraft HM, Delisle BP, Heijman J, Navedo MF, Noskov S, Proenza C, Vandenberg JI, Yarov-Yarovoy V. Potassium channels in the heart: structure, function and regulation. J Physiol 2016; 595:2209-2228. [PMID: 27861921 DOI: 10.1113/jp272864] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
This paper is the outcome of the fourth UC Davis Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias Symposium, a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2016 symposium was 'K+ Channels and Regulation'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies and challenges on the topic of cardiac K+ channels. This paper summarizes the topics of formal presentations and informal discussions from the symposium on the structural basis of voltage-gated K+ channel function, as well as the mechanisms involved in regulation of K+ channel gating, expression and membrane localization. Given the critical role for K+ channels in determining the rate of cardiac repolarization, it is hardly surprising that essentially every aspect of K+ channel function is exquisitely regulated in cardiac myocytes. This regulation is complex and highly interrelated to other aspects of myocardial function. K+ channel regulatory mechanisms alter, and are altered by, physiological challenges, pathophysiological conditions, and pharmacological agents. An accompanying paper focuses on the integrative role of K+ channels in cardiac electrophysiology, i.e. how K+ currents shape the cardiac action potential, and how their dysfunction can lead to arrhythmias, and discusses K+ channel-based therapeutics. A fundamental understanding of K+ channel regulatory mechanisms and disease processes is fundamental to reveal new targets for human therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, 84112, USA
| | - Daniel C Bartos
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA.,Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Sergei Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado - Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Role of the pH in state-dependent blockade of hERG currents. Sci Rep 2016; 6:32536. [PMID: 27731415 PMCID: PMC5059635 DOI: 10.1038/srep32536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023] Open
Abstract
Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide’s mode of action.
Collapse
|
17
|
Kayık G, Tüzün NŞ, Durdagi S. In silico design of novel hERG-neutral sildenafil-like PDE5 inhibitors. J Biomol Struct Dyn 2016; 35:2830-2852. [PMID: 27581752 DOI: 10.1080/07391102.2016.1231634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cyclic nucleotide phosphodiesterase enzymes (PDEs) have functions in regulating the levels of intracellular second messengers, 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), via hydrolysis and decomposing mechanisms in cells. They take essential roles in modulating various cellular activities such as memory and smooth muscle functions. PDE type 5 (PDE5) inhibitors enhance the vasodilatory effects of cGMP in the corpus cavernosum and they are used to treat erectile dysfunction. Patch clamp experiments showed that the IC50 values of the human ether-à-go-go-related gene (hERG1) potassium (K) ion channel blocking affinity of PDE5 inhibitors sildenafil, vardenafil, and tadalafil as 33, 12, and 100 μM, respectively. hERG1 channel is responsible for the regulation of the action potential of human ventricular myocyte by contributing the rapid component of delayed rectifier K+ current (IKr) component of the cardiac action potential. In this work, interaction patterns and binding affinity predictions of selected PDE5 inhibitors against the hERG1 channel are studied. It is attempted to develop PDE5 inhibitor analogs with lower binding affinity to hERG1 ion channel while keeping their pharmacological activity against their principal target PDE5 using in silico methods. Based on detailed analyses of docking poses and predicted interaction energies, novel analogs of PDE5 inhibitors with lower predicted binding affinity to hERG1 channels without loosing their principal target activity were proposed. Moreover, molecular dynamics (MD) simulations and post-processing MD analyses (i.e. Molecular Mechanics/Generalized Born Surface Area calculations) were performed. Detailed analysis of molecular simulations helped us to better understand the PDE5 inhibitor-target binding interactions in the atomic level. Results of this study can be useful for designing of novel and safe PDE5 inhibitors with enhanced activity and other tailored properties.
Collapse
Affiliation(s)
- Gülru Kayık
- a Department of Chemistry , Istanbul Technical University , Istanbul 34469 , Turkey
| | - Nurcan Ş Tüzün
- a Department of Chemistry , Istanbul Technical University , Istanbul 34469 , Turkey
| | - Serdar Durdagi
- b Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey
| |
Collapse
|
18
|
Ekhteiari Salmas R, Unlu A, Bektaş M, Yurtsever M, Mestanoglu M, Durdagi S. Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies. J Biomol Struct Dyn 2016; 35:1899-1915. [DOI: 10.1080/07391102.2016.1199328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Ayhan Unlu
- Faculty of Medicine, Department of Biophysics, Trakya University, Edirne, Turkey
| | - Muhammet Bektaş
- Istanbul Faculty of Medicine, Department of Biophysics, Istanbul University, Istanbul, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | | | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
19
|
Guo J, Cheng YM, Lees-Miller JP, Perissinotti LL, Claydon TW, Hull CM, Thouta S, Roach DE, Durdagi S, Noskov SY, Duff HJ. NS1643 interacts around L529 of hERG to alter voltage sensor movement on the path to activation. Biophys J 2016; 108:1400-1413. [PMID: 25809253 DOI: 10.1016/j.bpj.2014.12.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/25/2014] [Accepted: 12/08/2014] [Indexed: 12/17/2022] Open
Abstract
Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (-34 ± 4 mV) is similar to wild-type (WT) (-37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (-131 ± 4 mV for K525C and -120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed.
Collapse
Affiliation(s)
- Jiqing Guo
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada
| | - James P Lees-Miller
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Laura L Perissinotti
- Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christina M Hull
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Samrat Thouta
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Daniel E Roach
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Serdar Durdagi
- Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sergei Y Noskov
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Henry J Duff
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
20
|
Salmas RE, Unlu A, Yurtsever M, Noskov SY, Durdagi S. In silicoinvestigation of PARP-1 catalytic domains inholoandapostates for the design of high-affinity PARP-1 inhibitors. J Enzyme Inhib Med Chem 2015; 31:112-20. [DOI: 10.3109/14756366.2015.1005011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Abstract
The voltage-gated potassium channel encoded by hERG carries a delayed rectifying potassium current (IKr) underlying repolarization of the cardiac action potential. Pharmacological blockade of the hERG channel results in slowed repolarization and therefore prolongation of action potential duration and an increase in the QT interval as measured on an electrocardiogram. Those are possible to cause sudden death, leading to the withdrawals of many drugs, which is the reason for hERG screening. Computational in silico prediction models provide a rapid, economic way to screen compounds during early drug discovery. In this review, hERG prediction models are classified as 2D and 3D quantitative structure–activity relationship models, pharmacophore models, classification models, and structure based models (using homology models of hERG).
Collapse
|
22
|
Leman JK, Ulmschneider MB, Gray JJ. Computational modeling of membrane proteins. Proteins 2015; 83:1-24. [PMID: 25355688 PMCID: PMC4270820 DOI: 10.1002/prot.24703] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 02/06/2023]
Abstract
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Martin B. Ulmschneider
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
23
|
Chaudhari R, Heim AJ, Li Z. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions. J Comput Aided Mol Des 2014; 29:413-20. [PMID: 25503850 DOI: 10.1007/s10822-014-9823-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/06/2014] [Indexed: 01/19/2023]
Abstract
Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of "modeling first, refinement next". In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of "refined restraints first, modeling next", provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.
Collapse
Affiliation(s)
- Rajan Chaudhari
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, Box 48, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
24
|
Li Q, Wong YL, Ng HQ, Gayen S, Kang C. Structural insight into the transmembrane segments 3 and 4 of the hERG potassium channel. J Pept Sci 2014; 20:935-44. [PMID: 25331429 DOI: 10.1002/psc.2704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022]
Abstract
The hERG (human ether-a-go-go related gene) potassium channel is a voltage-gated potassium channel containing an N-terminal domain, a voltage-sensor domain, a pore domain and a C-terminal domain. The transmembrane segment 4 (S4) is important for sensing changes of membrane potentials through positively charge residues. A construct containing partial S2-S3 linker, S3, S4 and the S4-S5 linker of the hERG channel was purified into detergent micelles. This construct exhibits good quality NMR spectrum when it was purified in lyso-myristoyl phosphatidylglycerol (LMPG) micelles. Structural study showed that S3 contains two short helices with a negatively charged surface. The S4 and S4-S5 linker adopt helical structures. The six positively charged residues in S4 localize at different sides, suggesting that they may have different functions in channel gating. Relaxation studies indicated that S3 is more flexible than S4. The boundaries of S3-S4 and S4-S4-S5 linker were identified. Our results provided structural information of the S3 and S4, which will be helpful to understand their roles in channel gating.
Collapse
Affiliation(s)
- Qingxin Li
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | | | | | | |
Collapse
|
25
|
Guo J, Durdagi S, Changalov M, Perissinotti LL, Hargreaves JM, Back TG, Noskov SY, Duff HJ. Structure driven design of novel human ether-a-go-go-related-gene channel (hERG1) activators. PLoS One 2014; 9:e105553. [PMID: 25191697 PMCID: PMC4156305 DOI: 10.1371/journal.pone.0105553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023] Open
Abstract
One of the main culprits in modern drug discovery is apparent cardiotoxicity of many lead-candidates via inadvertent pharmacologic blockade of K+, Ca2+ and Na+ currents. Many drugs inadvertently block hERG1 leading to an acquired form of the Long QT syndrome and potentially lethal polymorphic ventricular tachycardia. An emerging strategy is to rely on interventions with a drug that may proactively activate hERG1 channels reducing cardiovascular risks. Small molecules-activators have a great potential for co-therapies where the risk of hERG-related QT prolongation is significant and rehabilitation of the drug is impractical. Although a number of hERG1 activators have been identified in the last decade, their binding sites, functional moieties responsible for channel activation and thus mechanism of action, have yet to be established. Here, we present a proof-of-principle study that combines de-novo drug design, molecular modeling, chemical synthesis with whole cell electrophysiology and Action Potential (AP) recordings in fetal mouse ventricular myocytes to establish basic chemical principles required for efficient activator of hERG1 channel. In order to minimize the likelihood that these molecules would also block the hERG1 channel they were computationally engineered to minimize interactions with known intra-cavitary drug binding sites. The combination of experimental and theoretical studies led to identification of functional elements (functional groups, flexibility) underlying efficiency of hERG1 activators targeting binding pocket located in the S4–S5 linker, as well as identified potential side-effects in this promising line of drugs, which was associated with multi-channel targeting of the developed drugs.
Collapse
Affiliation(s)
- Jiqing Guo
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Serdar Durdagi
- Centre for Molecular Simulation, Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mohamed Changalov
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Laura L. Perissinotti
- Centre for Molecular Simulation, Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | - Thomas G. Back
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (TGB); (SYN); (HJD)
| | - Sergei Y. Noskov
- Centre for Molecular Simulation, Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (TGB); (SYN); (HJD)
| | - Henry J. Duff
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (TGB); (SYN); (HJD)
| |
Collapse
|
26
|
Cheng YM, Hull CM, Niven CM, Qi J, Allard CR, Claydon TW. Functional interactions of voltage sensor charges with an S2 hydrophobic plug in hERG channels. ACTA ACUST UNITED AC 2014; 142:289-303. [PMID: 23980197 PMCID: PMC3753600 DOI: 10.1085/jgp.201310992] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human ether-à-go-go–related gene (hERG, Kv11.1) potassium channels have unusually slow activation and deactivation kinetics. It has been suggested that, in fast-activating Shaker channels, a highly conserved Phe residue (F290) in the S2 segment forms a putative gating charge transfer center that interacts with S4 gating charges, i.e., R362 (R1) and K374 (K5), and catalyzes their movement across the focused electric field. F290 is conserved in hERG (F463), but the relevant residues in the hERG S4 are reversed, i.e., K525 (K1) and R537 (R5), and there is an extra positive charge adjacent to R537 (i.e., K538). We have examined whether hERG channels possess a transfer center similar to that described in Shaker and if these S4 charge differences contribute to slow gating in hERG channels. Of five hERG F463 hydrophobic substitutions tested, F463W and F463Y shifted the conductance–voltage (G-V) relationship to more depolarized potentials and dramatically slowed channel activation. With the S4 residue reversals (i.e., K525, R537) taken into account, the closed state stabilization by F463W is consistent with a role for F463 that is similar to that described for F290 in Shaker. As predicted from results with Shaker, the hERG K525R mutation destabilized the closed state. However, hERG R537K did not stabilize the open state as predicted. Instead, we found the neighboring K538 residue to be critical for open state stabilization, as K538R dramatically slowed and right-shifted the voltage dependence of activation. Finally, double mutant cycle analysis on the G-V curves of F463W/K525R and F463W/K538R double mutations suggests that F463 forms functional interactions with K525 and K538 in the S4 segment. Collectively, these data suggest a role for F463 in mediating closed–open equilibria, similar to that proposed for F290 in Shaker channels.
Collapse
Affiliation(s)
- Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Durdagi S, Randall T, Duff HJ, Chamberlin A, Noskov SY. Rehabilitating drug-induced long-QT promoters: in-silico design of hERG-neutral cisapride analogues with retained pharmacological activity. BMC Pharmacol Toxicol 2014; 15:14. [PMID: 24606761 PMCID: PMC4016140 DOI: 10.1186/2050-6511-15-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/24/2014] [Indexed: 02/05/2023] Open
Abstract
Background The human ether-a-go-go related gene 1 (hERG1), which codes for a potassium ion channel, is a key element in the cardiac delayed rectified potassium current, IKr, and plays an important role in the normal repolarization of the heart’s action potential. Many approved drugs have been withdrawn from the market due to their prolongation of the QT interval. Most of these drugs have high potencies for their principal targets and are often irreplaceable, thus “rehabilitation” studies for decreasing their high hERG1 blocking affinities, while keeping them active at the binding sites of their targets, have been proposed to enable these drugs to re-enter the market. Methods In this proof-of-principle study, we focus on cisapride, a gastroprokinetic agent withdrawn from the market due to its high hERG1 blocking affinity. Here we tested an a priori strategy to predict a compound’s cardiotoxicity using de novo drug design with molecular docking and Molecular Dynamics (MD) simulations to generate a strategy for the rehabilitation of cisapride. Results We focused on two key receptors, a target interaction with the (adenosine) receptor and an off-target interaction with hERG1 channels. An analysis of the fragment interactions of cisapride at human A2A adenosine receptors and hERG1 central cavities helped us to identify the key chemical groups responsible for the drug activity and hERG1 blockade. A set of cisapride derivatives with reduced cardiotoxicity was then proposed using an in-silico two-tier approach. This set was compared against a large dataset of commercially available cisapride analogs and derivatives. Conclusions An interaction decomposition of cisapride and cisapride derivatives allowed for the identification of key active scaffolds and functional groups that may be responsible for the unwanted blockade of hERG1.
Collapse
Affiliation(s)
- Serdar Durdagi
- Centre for Molecular Simulations and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | |
Collapse
|
28
|
Buturak B, Durdagi S, Noskov SY, Ildeniz ATO. Designing of multi-targeted molecules using combination of molecular screening and in silico drug cardiotoxicity prediction approaches. J Mol Graph Model 2014; 50:16-34. [PMID: 24699019 DOI: 10.1016/j.jmgm.2014.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 01/25/2023]
Abstract
We have previously investigated and reported a set of phenol- and indole-based derivatives at the binding pockets of carbonic anhydrase isoenzymes using in silico and in vitro analyses. In this study, we extended our analysis to explore multi-targeted molecules from this set of compounds. Thus, 26 ligands are screened at the binding sites of 229 proteins from 5 main enzyme family classes using molecular docking algorithms. Derived docking scores are compared with reported results of ligands at carbonic anhydrase I and II isoenzymes. Results showed potency of multi-targeted drugs of a few compounds from investigated ligand set. These promising ligands are then tested in silico for their cardiotoxicity risks. Results of this work can be used to improve the desired effects of these compounds by molecular engineering studies. In addition these results may lead to further investigation of studied molecules by medicinal chemists to explore different therapeutic aims.
Collapse
Affiliation(s)
- Birce Buturak
- Computational Biology and Bioinformatics, Graduate School of Science and Engineering, Kadir Has University, Istanbul, Turkey
| | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Sergei Y Noskov
- Institute for Biocomplexity and Informatics, University of Calgary, Calgary, AB, Canada.
| | - A Tugba Ozal Ildeniz
- Computational Biology and Bioinformatics, Graduate School of Science and Engineering, Kadir Has University, Istanbul, Turkey; Department of Bioinformatics and Genetics, Kadir Has University, Istanbul, Turkey.
| |
Collapse
|
29
|
Abstract
Voltage-gated proton (Hv1) channels play important roles in the respiratory burst, in pH regulation, in spermatozoa, in apoptosis, and in cancer metastasis. Unlike other voltage-gated cation channels, the Hv1 channel lacks a centrally located pore formed by the assembly of subunits. Instead, the proton permeation pathway in the Hv1 channel is within the voltage-sensing domain of each subunit. The gating mechanism of this pathway is still unclear. Mutagenic and fluorescence studies suggest that the fourth transmembrane (TM) segment (S4) functions as a voltage sensor and that there is an outward movement of S4 during channel activation. Using thermodynamic mutant cycle analysis, we find that the conserved positively charged residues in S4 are stabilized by countercharges in the other TM segments both in the closed and open states. We constructed models of both the closed and open states of Hv1 channels that are consistent with the mutant cycle analysis. These structural models suggest that electrostatic interactions between TM segments in the closed state pull hydrophobic residues together to form a hydrophobic plug in the center of the voltage-sensing domain. Outward S4 movement during channel activation induces conformational changes that remove this hydrophobic plug and instead insert protonatable residues in the center of the channel that, together with water molecules, can form a hydrogen bond chain across the channel for proton permeation. This suggests that salt bridge networks and the hydrophobic plug function as the gate in Hv1 channels and that outward movement of S4 leads to the opening of this gate.
Collapse
|
30
|
Durdagi S, Scozzafava G, Vullo D, Sahin H, Kolayli S, Supuran CT. Inhibition of mammalian carbonic anhydrases I-XIV with grayanotoxin III: solution and in silico studies. J Enzyme Inhib Med Chem 2013; 29:469-75. [DOI: 10.3109/14756366.2013.804072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Serdar Durdagi
- University of Calgary, Institute for Biocomplexity and Informatics
Calgary, ABCanada
- Bahcesehir University, Faculty of Medicine, Department of Biophysics
IstanbulTurkey
| | - Gabriele Scozzafava
- University of Florence, Dipartimento di Economia, Ingegneria, Scienze e Tecnologie Agrarie e Forestali
FlorenceItaly
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, Sesto Fiorentino
FlorenceItaly
| | - Hüseyin Sahin
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University
TrabzonTurkey
| | - Sevgi Kolayli
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University
TrabzonTurkey
| | - Claudiu T. Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, Sesto Fiorentino
FlorenceItaly
- University of Florence, Neurofarba Department, Sezione di Scienze Farmaceutiche
Via Ugo Schiff 6, 50019 Sesto Fiorentino, FlorenceItaly
| |
Collapse
|
31
|
Colenso CK, Sessions RB, Zhang YH, Hancox JC, Dempsey CE. Interactions between voltage sensor and pore domains in a hERG K+ channel model from molecular simulations and the effects of a voltage sensor mutation. J Chem Inf Model 2013; 53:1358-70. [PMID: 23672495 DOI: 10.1021/ci4000739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The hERG K(+) channel is important for establishing normal electrical activity in the human heart. The channel's unique gating response to membrane potential changes indicates specific interactions between voltage sensor and pore domains that are poorly understood. In the absence of a crystal structure we constructed a homology model of the full hERG membrane domain and performed 0.5 μs molecular dynamics (MD) simulations in a hydrated membrane. The simulations identify potential interactions involving residues at the extracellular surface of S1 in the voltage sensor and at the N-terminal end of the pore helix in the hERG model. In addition, a diffuse interface involving hydrophobic residues on S4 (voltage sensor) and pore domain S5 of an adjacent subunit was stable during 0.5 μs of simulation. To assess the ability of the model to give insight into the effects of channel mutation we simulated a hERG mutant that contains a Leu to Pro substitution in the voltage sensor S4 helical segment (hERG L532P). Consistent with the retention of gated K(+) conductance, the L532P mutation was accommodated in the S4 helix with little disruption of helical structure. The mutation reduced the extent of interaction across the S4-S5 interface, suggesting a structural basis for the greatly enhanced deactivation rate in hERG L532P. The study indicates that pairwise comparison of wild-type and mutated channel models is a useful approach to interpreting functional data where uncertainty in model structures exist.
Collapse
Affiliation(s)
- Charlotte K Colenso
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
32
|
Moorthy NSHN, Ramos MJ, Fernandes PA. Predictive QSAR models development and validation for human ether-a-go-go related gene (hERG) blockers using newer tools. J Enzyme Inhib Med Chem 2013; 29:317-24. [DOI: 10.3109/14756366.2013.779264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
| | - Maria J. Ramos
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto
PortoPortugal
| | - Pedro A. Fernandes
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto
PortoPortugal
| |
Collapse
|
33
|
Feng J, Hu Y, Yi H, Yin S, Han S, Hu J, Chen Z, Yang W, Cao Z, De Waard M, Sabatier JM, Li W, Wu Y. Two conserved arginine residues from the SK3 potassium channel outer vestibule control selectivity of recognition by scorpion toxins. J Biol Chem 2013; 288:12544-53. [PMID: 23511633 DOI: 10.1074/jbc.m112.433888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potassium channel functions are often deciphered by using selective and potent scorpion toxins. Among these toxins, only a limited subset is capable of selectively blocking small conductance Ca(2+)-activated K(+) (SK) channels. The structural bases of this selective SK channel recognition remain unclear. In this work, we demonstrate the key role of the electric charges of two conserved arginine residues (Arg-485 and Arg-489) from the SK3 channel outer vestibule in the selective recognition by the SK3-blocking BmP05 toxin. Indeed, individually substituting these residues with histidyl or lysyl (maintaining the positive electric charge partially or fully), although decreasing BmP05 affinity, still preserved the toxin sensitivity profile of the SK3 channel (as evidenced by the lack of recognition by many other types of potassium channel-sensitive charybdotoxin). In contrast, when Arg-485 or Arg-489 of the SK3 channel was mutated to an acidic (Glu) or alcoholic (Ser) amino acid residue, the channel lost its sensitivity to BmP05 and became susceptible to the "new" blocking activity by charybdotoxin. In addition to these SK3 channel basic residues important for sensitivity, two acidic residues, Asp-492 and Asp-518, also located in the SK3 channel outer vestibule, were identified as being critical for toxin affinity. Furthermore, molecular modeling data indicate the existence of a compact SK3 channel turret conformation (like a peptide screener), where the basic rings of Arg-485 and Arg-489 are stabilized by strong ionic interactions with Asp-492 and Asp-518. In conclusion, the unique properties of Arg-485 and Arg-489 (spatial orientations and molecular interactions) in the SK3 channel account for its toxin sensitivity profile.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang Z, Dou Y, Goodchild SJ, Es-Salah-Lamoureux Z, Fedida D. Components of gating charge movement and S4 voltage-sensor exposure during activation of hERG channels. ACTA ACUST UNITED AC 2013; 141:431-43. [PMID: 23478995 PMCID: PMC3607828 DOI: 10.1085/jgp.201210942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The human ether-á-go-go–related gene (hERG) K+ channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological importance, fundamental mechanistic properties of hERG channel activation gating remain unclear, including how voltage-sensor movement rate limits pore opening. Here, we study this directly by recording voltage-sensor domain currents in mammalian cells for the first time and measuring the rates of voltage-sensor modification by [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET). Gating currents recorded from hERG channels expressed in mammalian tsA201 cells using low resistance pipettes show two charge systems, defined as Q1 and Q2, with V1/2’s of −55.7 (equivalent charge, z = 1.60) and −54.2 mV (z = 1.30), respectively, with the Q2 charge system carrying approximately two thirds of the overall gating charge. The time constants for charge movement at 0 mV were 2.5 and 36.2 ms for Q1 and Q2, decreasing to 4.3 ms for Q2 at +60 mV, an order of magnitude faster than the time constants of ionic current appearance at these potentials. The voltage and time dependence of Q2 movement closely correlated with the rate of MTSET modification of I521C in the outermost region of the S4 segment, which had a V1/2 of −64 mV and time constants of 36 ± 8.5 ms and 11.6 ± 6.3 ms at 0 and +60 mV, respectively. Modeling of Q1 and Q2 charge systems showed that a minimal scheme of three transitions is sufficient to account for the experimental findings. These data point to activation steps further downstream of voltage-sensor movement that provide the major delays to pore opening in hERG channels.
Collapse
Affiliation(s)
- Zhuren Wang
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
35
|
Ng HQ, Kim YM, Huang Q, Gayen S, Yildiz AA, Yoon HS, Sinner EK, Kang C. Purification and structural characterization of the voltage-sensor domain of the hERG potassium channel. Protein Expr Purif 2012; 86:98-104. [PMID: 23041462 DOI: 10.1016/j.pep.2012.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/15/2022]
Abstract
The hERG (human ether à go-go related gene) potassium channel is a voltage-gated potassium channel playing important roles in the heart by controlling the rapid delayed rectifier potassium current. The hERG protein contains a voltage-sensor domain (VSD) that is important for sensing voltage changes across the membrane. Mutations in this domain contribute to serious heart diseases. To study the structure of the VSD, it was over-expressed in Escherichia coli and purified into detergent micelles. Lyso-myristoyl phosphatidylglycerol (LMPG) was shown to be a suitable detergent for VSD purification and folding. Secondary structural analysis using circular dichroism (CD) spectroscopy indicated that the purified VSD in LMPG micelles adopted α-helical structures. Purified VSD in LMPG micelles produced dispersed cross-peaks in a (15)N-HSQC spectrum. Backbone resonance assignments for residues from transmembrane segments S3 and S4 of VSD also confirmed the presence of α-helical structures in this domain. Our results demonstrated that structure of VSD can be investigated using NMR spectroscopy.
Collapse
Affiliation(s)
- Hui Qi Ng
- Experimental Therapeutics Centre, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Durdagi S, Deshpande S, Duff HJ, Noskov SY. Modeling of open, closed, and open-inactivated states of the hERG1 channel: structural mechanisms of the state-dependent drug binding. J Chem Inf Model 2012; 52:2760-74. [PMID: 22989185 DOI: 10.1021/ci300353u] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human ether-a-go-go related gene 1 (hERG1) K ion channel is a key element for the rapid component of the delayed rectified potassium current in cardiac myocytes. Since there are no crystal structures for hERG channels, creation and validation of its reliable atomistic models have been key targets in molecular cardiology for the past decade. In this study, we developed and vigorously validated models for open, closed, and open-inactivated states of hERG1 using a multistep protocol. The conserved elements were derived using multiple-template homology modeling utilizing available structures for Kv1.2, Kv1.2/2.1 chimera, and KcsA channels. Then missing elements were modeled with the ROSETTA De Novo protein-designing suite and further refined with all-atom molecular dynamics simulations. The final ensemble of models was evaluated for consistency to the reported experimental data from biochemical, biophysical, and electrophysiological studies. The closed state models were cross-validated against available experimental data on toxin footprinting with protein-protein docking using hERG state-selective toxin BeKm-1. Poisson-Boltzmann calculations were performed to determine gating charge and compare it to electrophysiological measurements. The validated structures offered us a unique chance to assess molecular mechanisms of state-dependent drug binding in three different states of the channel.
Collapse
Affiliation(s)
- Serdar Durdagi
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
37
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
38
|
Durdagi S, Guo J, Lees-Miller JP, Noskov SY, Duff HJ. Structure-guided topographic mapping and mutagenesis to elucidate binding sites for the human ether-a-go-go-related gene 1 potassium channel (KCNH2) activator NS1643. J Pharmacol Exp Ther 2012; 342:441-52. [PMID: 22573844 DOI: 10.1124/jpet.111.189159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Loss-of -function mutations in human ether-a-go-go-related gene 1 (hERG1) is associated with life-threatening arrhythmias. hERG1 activators are being developed as treatments for acquired or genetic forms of long QT syndrome. The locations of the putative binding pockets for activators are still being elucidated. In silico docking of the activator 1,3-bis-(2-hydroxy-5-trifluoromethylphenyl)-urea (NS1643) to an S1-S6 transmembrane homology model of hERG1 predicted putative binding sites. The predictions of the in silico docking guided subsequent in vitro mutagenesis and electrophysiological measurements. The novel interacting site for NS1643 is predicted around Asn629 at the outer mouth of the channel. The applied N629H mutation is the sole amino acid replacement in the literature that abrogates the NS1643-induced left shift of the V(1/2) of activation. In contrast, both N629T and N629D showed pharmacologic responses similar to wild type. Another important interacting pocket is predicted at the intracellular surface in the S4-S5 linker. Mutagenesis of the residues critical to interactions in this pocket had major effects on the pharmacologic response to NS1643. The inward conductance elicited by hyperpolarization of D540K hERG1 was abrogated by NS1643 treatment, suggesting that it alters the inward movement of the S4 segment. The neighboring E544L mutation markedly exaggerated tail-current responses to NS1643. However, an L564A substitution inhibited drug response. Structure-guided mutagenesis identified widespread clusters of amino acids modulating drug-induced shifts in inactivation; such modulation may reflect allosteric changes in tertiary structure. Model-guided mutagenesis led to the discovery of a range of novel interacting residues that modify NS1643-induced pharmacologic responses.
Collapse
Affiliation(s)
- Serdar Durdagi
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | | | | | | |
Collapse
|
39
|
Cheng YM, Claydon TW. Voltage-dependent gating of HERG potassium channels. Front Pharmacol 2012; 3:83. [PMID: 22586397 PMCID: PMC3347040 DOI: 10.3389/fphar.2012.00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/16/2012] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.
Collapse
Affiliation(s)
- Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | | |
Collapse
|
40
|
Ng CA, Torres AM, Pagès G, Kuchel PW, Vandenberg JI. Insights into hERG K+ channel structure and function from NMR studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:71-9. [DOI: 10.1007/s00249-012-0808-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/07/2012] [Accepted: 03/13/2012] [Indexed: 01/09/2023]
|
41
|
Structural modelling and dynamics of proteins for insights into drug interactions. Adv Drug Deliv Rev 2012; 64:323-43. [PMID: 22155026 DOI: 10.1016/j.addr.2011.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/17/2011] [Accepted: 11/24/2011] [Indexed: 12/27/2022]
Abstract
Proteins are the workhorses of biomolecules and their function is affected by their structure and their structural rearrangements during ligand entry, ligand binding and protein-protein interactions. Hence, the knowledge of protein structure and, importantly, the dynamic behaviour of the structure are critical for understanding how the protein performs its function. The predictions of the structure and the dynamic behaviour can be performed by combinations of structure modelling and molecular dynamics simulations. The simulations also need to be sensitive to the constraints of the environment in which the protein resides. Standard computational methods now exist in this field to support the experimental effort of solving protein structures. This review presents a comprehensive overview of the basis of the calculations and the well-established computational methods used to generate and understand protein structure and function and the study of their dynamic behaviour with the reference to lung-related targets.
Collapse
|
42
|
Abstract
Molecular dynamics (MD) simulation holds the promise of revealing the mechanisms of biological processes in their ultimate detail. It is carried out by computing the interaction forces acting on each atom and then propagating the velocities and positions of the atoms by numerical integration of Newton's equations of motion. In this review, we present an overview of how the MD simulation can be conducted to address computational toxicity problems. The study cases will cover a standard MD simulation performed to investigate the overall flexibility of a cytochrome P450 (CYP) enzyme and a set of more advanced MD simulations to examine the barrier to ion conduction in a human α7 nicotinic acetylcholine receptor (nAChR).
Collapse
|
43
|
In silico analysis of conformational changes induced by mutation of aromatic binding residues: consequences for drug binding in the hERG K+ channel. PLoS One 2011; 6:e28778. [PMID: 22194911 PMCID: PMC3240635 DOI: 10.1371/journal.pone.0028778] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/15/2011] [Indexed: 01/24/2023] Open
Abstract
Pharmacological inhibition of cardiac hERG K+ channels is associated with increased risk of lethal arrhythmias. Many drugs reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic residues (F656 and Y652) substantially decreases the potency of numerous structurally diverse compounds. Nevertheless, some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations reveal conformational changes in the binding site induced by mutation Y652A. Loss of π-π-stacking between the two aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation. Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of mutation Y652A and provide a new structural interpretation for the sensitivity differences.
Collapse
|
44
|
Gayen S, Li Q, Kang C. The solution structure of the S4-S5 linker of the hERG potassium channel. J Pept Sci 2011; 18:140-5. [DOI: 10.1002/psc.1427] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/15/2011] [Accepted: 09/22/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Shovanlal Gayen
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore 138669 Singapore
| | - Qingxin Li
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore 138669 Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore 138669 Singapore
| |
Collapse
|
45
|
Durdagi S, Duff HJ, Noskov SY. Combined Receptor and Ligand-Based Approach to the Universal Pharmacophore Model Development for Studies of Drug Blockade to the hERG1 Pore Domain. J Chem Inf Model 2011; 51:463-74. [DOI: 10.1021/ci100409y] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Serdar Durdagi
- Department of Biological Sciences, University of Calgary, Institute for Biocomplexity and Informatics Calgary, Alberta, Canada
| | - Henry J. Duff
- Faculty of Medicine, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Sergei Yu. Noskov
- Department of Biological Sciences, University of Calgary, Institute for Biocomplexity and Informatics Calgary, Alberta, Canada
| |
Collapse
|