1
|
Abstract
Expansins comprise an ancient group of cell wall proteins ubiquitous in land plants and their algal ancestors. During cell growth, they facilitate passive yielding of the wall's cellulose networks to turgor-generated tensile stresses, without evidence of enzymatic activity. Expansins are also implicated in fruit softening and other developmental processes and in adaptive responses to environmental stresses and pathogens. The major expansin families in plants include α-expansins (EXPAs), which act on cellulose-cellulose junctions, and β-expansins, which can act on xylans. EXPAs mediate acid growth, which contributes to wall enlargement by auxin and other growth agents. The genomes of diverse microbes, including many plant pathogens, also encode expansins designated expansin-like X. Expansins are proposed to disrupt noncovalent bonding between laterally aligned polysaccharides (notably cellulose), facilitating wall loosening for a variety of biological roles.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
2
|
Haddad Momeni M, Zitting A, Jäämuru V, Turunen R, Penttilä P, Buchko GW, Hiltunen S, Maiorova N, Koivula A, Sapkota J, Marjamaa K, Master ER. Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:56. [PMID: 38654330 DOI: 10.1186/s13068-024-02500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp. RESULTS Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20-25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%. CONCLUSION This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.
Collapse
Affiliation(s)
- Majid Haddad Momeni
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| | - Aleksi Zitting
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Vilma Jäämuru
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Rosaliina Turunen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Salla Hiltunen
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Natalia Maiorova
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Espoo, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Espoo, Finland
| | - Janak Sapkota
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044-VTT, Espoo, Finland
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
3
|
de Sandozequi A, Martínez‐Anaya C. Bacterial surface-exposed lipoproteins and sortase-mediated anchored cell surface proteins in plant infection. Microbiologyopen 2023; 12:e1382. [PMID: 37877658 PMCID: PMC10501053 DOI: 10.1002/mbo3.1382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023] Open
Abstract
The bacterial cell envelope is involved in all stages of infection and the study of its components and structures is important to understand how bacteria interact with the extracellular milieu. Thanks to new techniques that focus on identifying bacterial surface proteins, we now better understand the specific components involved in host-pathogen interactions. In the fight against the deleterious effects of pathogenic bacteria, bacterial surface proteins (at the cell envelope) are important targets as they play crucial roles in the colonization and infection of host tissues. These surface proteins serve functions such as protection, secretion, biofilm formation, nutrient intake, metabolism, and virulence. Bacteria use different mechanisms to associate proteins to the cell surface via posttranslational modification, such as the addition of a lipid moiety to create lipoproteins and attachment to the peptidoglycan layer by sortases. In this review, we focus on these types of proteins (and provide examples of others) that are associated with the bacterial cell envelope by posttranslational modifications and their roles in plant infection.
Collapse
Affiliation(s)
- Andrés de Sandozequi
- Departamento de Ingeniería Celular y BiocatálisisInstituto de BiotecnologíaCuernavacaMéxico
| | - Claudia Martínez‐Anaya
- Departamento de Ingeniería Celular y BiocatálisisInstituto de BiotecnologíaCuernavacaMéxico
| |
Collapse
|
4
|
Cosgrove DJ, Hepler NK, Wagner ER, Durachko DM. Biomechanical Weakening of Paper and Plant Cell Walls by Bacterial Expansins. Methods Mol Biol 2023; 2657:79-88. [PMID: 37149523 DOI: 10.1007/978-1-0716-3151-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Expansins are proteins that loosen plant cell walls but lack enzymatic activity. Here we describe two protocols tailored to measure the biomechanical activity of bacterial expansin. The first assay relies on the weakening of filter paper by expansin. The second assay is based on induction of creep (long-term, irreversible extension) of plant cell wall samples.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Nathan K Hepler
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Edward R Wagner
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Daniel M Durachko
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Samalova M, Gahurova E, Hejatko J. Expansin-mediated developmental and adaptive responses: A matter of cell wall biomechanics? QUANTITATIVE PLANT BIOLOGY 2022; 3:e11. [PMID: 37077967 PMCID: PMC10095946 DOI: 10.1017/qpb.2022.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
Biomechanical properties of the cell wall (CW) are important for many developmental and adaptive responses in plants. Expansins were shown to mediate pH-dependent CW enlargement via a process called CW loosening. Here, we provide a brief overview of expansin occurrence in plant and non-plant species, their structure and mode of action including the role of hormone-regulated CW acidification in the control of expansin activity. We depict the historical as well as recent CW models, discuss the role of expansins in the CW biomechanics and address the developmental importance of expansin-regulated CW loosening in cell elongation and new primordia formation. We summarise the data published so far on the role of expansins in the abiotic stress response as well as the rather scarce evidence and hypotheses on the possible mechanisms underlying expansin-mediated abiotic stress resistance. Finally, we wrap it up by highlighting possible future directions in expansin research.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evelina Gahurova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
de Sandozequi A, Salazar-Cortés JJ, Tapia-Vázquez I, Martínez-Anaya C. Prevalent association with the bacterial cell envelope of prokaryotic expansins revealed by bioinformatics analysis. Protein Sci 2022; 31:e4315. [PMID: 35481628 PMCID: PMC9045087 DOI: 10.1002/pro.4315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Expansins are a group of proteins from diverse organisms from bacteria to plants. Although expansins show structural conservation, their biological roles seem to differ among kingdoms. In plants, these proteins remodel the cell wall during plant growth and other processes. Contrarily, determination of bacterial expansin activity has proven difficult, although genetic evidence of bacterial mutants indicates that expansins participate in bacteria-plant interactions. Nevertheless, a large proportion of expansin genes are found in the genomes of free-living bacteria, suggesting roles that are independent of the interaction with living plants. Here, we analyzed all available sequences of prokaryotic expansins for correlations between surface electric charge, extra protein modules, and sequence motifs for association with the bacteria exterior after export. Additionally, information on the fate of protein after translocation across the membrane also points to bacterial cell association of expansins through six different mechanisms, such as attachment of a lipid molecule for membrane anchoring in diderm species or covalent linking to the peptidoglycan layer in monoderms such as the Bacilliales. Our results have implications for expansin function in the context of bacteria-plant interactions and also for free-living species in which expansins might affect cell-cell or cell-substrate interaction properties and indicate the need to re-examine the roles currently considered for these proteins.
Collapse
Affiliation(s)
- Andrés de Sandozequi
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Juan José Salazar-Cortés
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Irán Tapia-Vázquez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
7
|
Narváez-Barragán DA, Tovar-Herrera OE, Segovia L, Serrano M, Martinez-Anaya C. Expansin-related proteins: biology, microbe-plant interactions and associated plant-defense responses. MICROBIOLOGY-SGM 2020; 166:1007-1018. [PMID: 33141007 DOI: 10.1099/mic.0.000984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Omar E Tovar-Herrera
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, BeerSheva, Israel
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Claudia Martinez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| |
Collapse
|
8
|
Lohoff C, Buchholz PCF, Le Roes-Hill M, Pleiss J. Expansin Engineering Database: A navigation and classification tool for expansins and homologues. Proteins 2020; 89:149-162. [PMID: 32862462 DOI: 10.1002/prot.26001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022]
Abstract
Expansins have the remarkable ability to loosen plant cell walls and cellulose material without showing catalytic activity and therefore have potential applications in biomass degradation. To support the study of sequence-structure-function relationships and the search for novel expansins, the Expansin Engineering Database (ExED, https://exed.biocatnet.de) collected sequence and structure data on expansins from Bacteria, Fungi, and Viridiplantae, and expansin-like homologues such as carbohydrate binding modules, glycoside hydrolases, loosenins, swollenins, cerato-platanins, and EXPNs. Based on global sequence alignment and protein sequence network analysis, the sequences are highly diverse. However, many similarities were found between the expansin domains. Newly created profile hidden Markov models of the two expansin domains enable standard numbering schemes, comprehensive conservation analyses, and genome annotation. Conserved key amino acids in the expansin domains were identified, a refined classification of expansins and carbohydrate binding modules was proposed, and new sequence motifs facilitate the search of novel candidate genes and the engineering of expansins.
Collapse
Affiliation(s)
- Caroline Lohoff
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Valenzuela-Riffo F, Morales-Quintana L. Study of the structure and binding site features of FaEXPA2, an α-expansin protein involved in strawberry fruit softening. Comput Biol Chem 2020; 87:107279. [PMID: 32505880 DOI: 10.1016/j.compbiolchem.2020.107279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Tissue softening accompanies the ripening of many fruits and initiates the processes of irreversible deterioration. Expansins are plant cell wall proteins that have been proposed to disrupt hydrogen bonds within the cell wall polymer matrix. Several authors have shown that FaEXPA2 is a key gene that shows an increased expression level during ripening and softening of the strawberry fruit. For this reason, FaEXPA2 is frequently used as a molecular marker of softening in strawberry fruit, and changes in its relative expression have been related to changes in fruit firmness. In this context, we previously reported that FaEXPA2 has a high accumulation rate during fruit ripening in four different strawberry cultivars; however, the molecular mechanism of FaEXPA2 or expansins in general is not yet clear. Herein, a 3D model of the FaEXPA2 protein was built by comparative modeling to understand how FaEXPA2 interacts with different cell wall components at the molecular level. First, the structure was shown to display two domains characteristic of the other expansins that were previously described. The protein-ligand interaction was evaluated by molecular dynamic (MD) simulation using four different long ligands (a cellulose fiber, two of the more important xyloglucan (XG) fibers found in strawberry (XXXG and XXFG type), and a pectin (homogalacturonic acid type)). The results showed that FaEXPA2 formed a more stable complex with cellulose than other ligands via the different residues present in the open groove surface of its two domains, while FaEXPA2 did not interact with the pectin ligand.
Collapse
Affiliation(s)
- Felipe Valenzuela-Riffo
- Instituto de Ciencias Biológicas, Universidad de Talca, Chile; Programa de Doctorado en Ciencias Mención Ingeniería Genética Vegetal, Universidad de Talca, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
10
|
Narváez-Barragán DA, Tovar-Herrera OE, Torres M, Rodríguez M, Humphris S, Toth IK, Segovia L, Serrano M, Martínez-Anaya C. Expansin-like Exl1 from Pectobacterium is a virulence factor required for host infection, and induces a defence plant response involving ROS, and jasmonate, ethylene and salicylic acid signalling pathways in Arabidopsis thaliana. Sci Rep 2020; 10:7747. [PMID: 32385404 PMCID: PMC7210985 DOI: 10.1038/s41598-020-64529-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Expansins are encoded by some phytopathogenic bacteria and evidence indicates that they act as virulence factors for host infection. Here we analysed the expression of exl1 by Pectobacterium brasiliense and Pectobacterium atrosepticum. In both, exl1 gene appears to be under quorum sensing control, and protein Exl1 can be observed in culture medium and during plant infection. Expression of exl1 correlates with pathogen virulence, where symptoms are reduced in a Δexl1 mutant strain of P. atrosepticum. As well as Δexl1 exhibiting less maceration of potato plants, fewer bacteria are observed at distance from the inoculation site. However, bacteria infiltrated into the plant tissue are as virulent as the wild type, suggesting that this is due to alterations in the initial invasion of the tissue. Additionally, swarming from colonies grown on MacConkey soft agar was delayed in the mutant in comparison to the wild type. We found that Exl1 acts on the plant tissue, probably by remodelling of a cell wall component or altering the barrier properties of the cell wall inducing a plant defence response, which results in the production of ROS and the induction of marker genes of the JA, ET and SA signalling pathways in Arabidopsis thaliana. Exl1 inactive mutants fail to trigger such responses. This defence response is protective against Pectobacterium brasiliense and Botrytis cinerea in more than one plant species.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Omar E Tovar-Herrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Martha Torres
- Centro de Ciencias Genómicas. Universidad Nacional Autónoma de México, 62110, Cuernavaca, Morelos, Mexico
| | - Mabel Rodríguez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Sonia Humphris
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Ian K Toth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas. Universidad Nacional Autónoma de México, 62110, Cuernavaca, Morelos, Mexico
| | - Claudia Martínez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
11
|
Tovar-Herrera OE, Rodríguez M, Olarte-Lozano M, Sampedro-Guerrero JA, Guerrero A, Pinto-Cámara R, Alvarado-Affantranger X, Wood CD, Moran-Mirabal JM, Pastor N, Segovia L, Martínez-Anaya C. Analysis of the Binding of Expansin Exl1, from Pectobacterium carotovorum, to Plant Xylem and Comparison to EXLX1 from Bacillus subtilis. ACS OMEGA 2018; 3:7008-7018. [PMID: 30221235 PMCID: PMC6130903 DOI: 10.1021/acsomega.8b00406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 05/27/2023]
Abstract
The plant xylem is a preferred niche for some important bacterial phytopathogens, some of them encoding expansin proteins, which bind plant cell walls. Yet, the identity of the substrate for bacterial expansins within the plant cell wall and the nature of its interaction with it are poorly known. Here, we determined the localization of two bacterial expansins with differing isoelectric points (and with differing binding patterns to cell wall extracts) on plant tissue through in vitro fluorophore labeling and confocal imaging. Differential localization was observed, in which Exl1 from Pectobacterium carotovorum located into the intercellular spaces between xylem vessels and adjacent cells of the plant xylem, whereas EXLX1 from Bacillus subtilis bound cell walls of most cell types. In isolated vascular tissue, however, both PcExl1 and BsEXLX1 preferentially bound to tracheary elements over the xylem fibers, even though both are composed of secondary cell walls. Fluorescence correlation spectroscopy, employed to analyze the interaction of expansins with isolated xylem, indicates that binding is governed by more than one factor, which could include interaction with more than one type of polymer in the fibers, such as cellulose and hemicellulose or pectin. Binding to different polysaccharides could explain the observed reduction of cellulolytic and xylanolytic activities in the presence of expansin, possibly because of competition for the substrate. Our findings are relevant for the comprehensive understanding of the pathogenesis by P. carotovorum during xylem invasion, a process in which Exl1 might be involved.
Collapse
Affiliation(s)
- Omar E. Tovar-Herrera
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Mabel Rodríguez
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
- Centro
de Investigación en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Mexico
| | - Miguel Olarte-Lozano
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Jimmy Andrés Sampedro-Guerrero
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Adán Guerrero
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Raúl Pinto-Cámara
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Xóchitl Alvarado-Affantranger
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Christopher D. Wood
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Jose M. Moran-Mirabal
- Department
of Chemistry and Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Nina Pastor
- Centro
de Investigación en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Mexico
| | - Lorenzo Segovia
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Claudia Martínez-Anaya
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| |
Collapse
|
12
|
Tancos MA, Lowe‐Power TM, Peritore‐Galve FC, Tran TM, Allen C, Smart CD. Plant-like bacterial expansins play contrasting roles in two tomato vascular pathogens. MOLECULAR PLANT PATHOLOGY 2018; 19:1210-1221. [PMID: 28868644 PMCID: PMC5835177 DOI: 10.1111/mpp.12611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/04/2017] [Accepted: 08/31/2017] [Indexed: 05/27/2023]
Abstract
Expansin proteins, which loosen plant cell walls, play critical roles in normal plant growth and development. The horizontal acquisition of functional plant-like expansin genes in numerous xylem-colonizing phytopathogenic bacteria suggests that bacterial expansins may also contribute to virulence. To investigate the role of bacterial expansins in plant diseases, we mutated the non-chimeric expansin genes (CmEXLX2 and RsEXLX) of two xylem-inhabiting bacterial pathogens, the Actinobacterium Clavibacter michiganensis ssp. michiganensis (Cmm) and the β-proteobacterium Ralstonia solanacearum (Rs), respectively. The Cmm ΔCmEXLX2 mutant caused increased symptom development on tomato, which was characterized by more rapid wilting, greater vascular necrosis and abundant atypical lesions on distant petioles. This increased disease severity correlated with larger in planta populations of the ΔCmEXLX2 mutant, even though the strains grew as well as the wild-type in vitro. Similarly, when inoculated onto tomato fruit, ΔCmEXLX2 caused significantly larger lesions with larger necrotic centres. In contrast, the Rs ΔRsEXLX mutant showed reduced virulence on tomato following root inoculation, but not following direct petiole inoculation, suggesting that the RsEXLX expansin contributes to early virulence at the root infection stage. Consistent with this finding, ΔRsEXLX attached to tomato seedling roots better than the wild-type Rs, which may prevent mutants from invading the plant's vasculature. These contrasting results demonstrate the diverse roles of non-chimeric bacterial expansins and highlight their importance in plant-bacterial interactions.
Collapse
Affiliation(s)
- Matthew A. Tancos
- Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant SciencesCornell UniversityGenevaNY 14456USA
- Present address:
Foreign Disease‐Weed Science Research Unit, USDA‐ARSFort DetrickMD 21702USA
| | | | - F. Christopher Peritore‐Galve
- Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant SciencesCornell UniversityGenevaNY 14456USA
| | - Tuan M. Tran
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI 53706USA
- Present address:
School of Biological SciencesNanyang Technological University639798Singapore
| | - Caitilyn Allen
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI 53706USA
| | - Christine D. Smart
- Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant SciencesCornell UniversityGenevaNY 14456USA
| |
Collapse
|
13
|
Duan Y, Ma Y, Zhao X, Huang R, Su R, Qi W, He Z. Real-time adsorption and action of expansin on cellulose. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:317. [PMID: 30479662 PMCID: PMC6249958 DOI: 10.1186/s13068-018-1318-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/13/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Biological pretreatment is an environmentally safe method for disrupting recalcitrant structures of lignocellulose and thereby improving their hydrolysis efficiency. Expansin and expansin-like proteins act synergistically with cellulases during hydrolysis. A systematic analysis of the adsorption behavior and mechanism of action of expansin family proteins can provide a basis for the development of highly efficient pretreatment methods for cellulosic substrates using expansins. RESULTS Adsorption of Bacillus subtilis expansin (BsEXLX1) onto cellulose film under different conditions was monitored in real time using a quartz crystal microbalance with dissipation. A model was established to describe the adsorption of BsEXLX1 onto the film. High temperatures increased the initial adsorption rate while reducing the maximum amount of BsEXLX1 adsorbed onto the cellulose. Non-ionic surfactants (polyethylene glycol 4000 and Tween 80) at low concentrations enhanced BsEXLX1 adsorption; whereas, high concentrations had the opposite effect. However, sodium dodecyl sulfate inhibited adsorption at both low and high concentrations. We also investigated the structural changes of cellulose upon BsEXLX1 adsorption and found that BsEXLX1 adsorption decreased the crystallinity index, disrupted hydrogen bonding, and increased the surface area of cellulose, indicating greater accessibility of the substrate to the protein. CONCLUSIONS These results increase our understanding of the interaction between expansin and cellulose, and provide evidence for expansin treatment as a promising strategy to enhance enzymatic hydrolysis of lignocellulose.
Collapse
Affiliation(s)
- Yuhao Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory of Tianjin University R&D Center for Petrochemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Xudong Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Renliang Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
14
|
Affiliation(s)
- Daniel J. Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
15
|
Mateluna P, Valenzuela-Riffo F, Morales-Quintana L, Herrera R, Ramos P. Transcriptional and computational study of expansins differentially expressed in response to inclination in radiata pine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:12-24. [PMID: 28300728 DOI: 10.1016/j.plaphy.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Plants have the ability to reorient their vertical growth when exposed to inclination. This response can be as quick as 2 h in inclined young pine (Pinus radiata D. Don) seedlings, with over accumulation of lignin observed after 9 days s. Several studies have identified expansins involved in cell expansion among other developmental processes in plants. Six putative expansin genes were identified in cDNA libraries isolated from inclined pine stems. A differential transcript abundance was observed by qPCR analysis over a time course of inclination. Five genes changed their transcript accumulation in both stem sides in a spatial and temporal manner compared with non-inclined stem. To compare these expansin genes, and to suggest a possible mechanism of action at molecular level, the structures of the predicted proteins were built by comparative modeling methodology. An open groove on the surface of the proteins composed of conserved zresidues was observed. Using a cellulose polymer as ligand the protein-ligand interaction was evaluated, with the results showing differences in the protein-ligand interaction mode. Differences in the binding energy interaction can be explained by changes in some residues that generate differences in electrostatic surface in the open groove region, supporting the participation of six members of multifamily proteins in this specific process. The data suggests participation of different expansin proteins in the dissembling and remodeling of the complex cell wall matrix during the reorientation response to inclination.
Collapse
Affiliation(s)
- Patricio Mateluna
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Felipe Valenzuela-Riffo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Luis Morales-Quintana
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Raúl Herrera
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Patricio Ramos
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|
16
|
Cosgrove DJ, Hepler NK, Wagner ER, Durachko DM. Measuring the Biomechanical Loosening Action of Bacterial Expansins on Paper and Plant Cell Walls. Methods Mol Biol 2017; 1588:157-165. [PMID: 28417367 DOI: 10.1007/978-1-4939-6899-2_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Expansins are proteins that loosen plant cell walls but lack enzymatic activity. Here, we describe two protocols tailored to measure the biomechanical activity of bacterial expansin. The first assay relies on weakening of filter paper by expansin. The second assay is based on induction of creep (long-term, irreversible extension) of plant cell wall samples.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, 350A Frear North Bldg., University Park, PA, 16802, USA.
| | - Nathan K Hepler
- Department of Biology, Pennsylvania State University, 350A Frear North Bldg., University Park, PA, 16802, USA
| | - Edward R Wagner
- Department of Biology, Pennsylvania State University, 350A Frear North Bldg., University Park, PA, 16802, USA
| | - Daniel M Durachko
- Department of Biology, Pennsylvania State University, 350A Frear North Bldg., University Park, PA, 16802, USA
| |
Collapse
|
17
|
Martinez-Anaya C. Understanding the structure and function of bacterial expansins: a prerequisite towards practical applications for the bioenergy and agricultural industries. Microb Biotechnol 2016; 9:727-736. [PMID: 27365165 PMCID: PMC5072189 DOI: 10.1111/1751-7915.12377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/03/2023] Open
Abstract
Since the publication of a landmark article on the structure of EXLX1 from Bacillus subtilis in 2011, our knowledge of bacterial expansins has steadily increased and our view and understanding of these enigmatic proteins has advanced with relation to their structure, phylogenetic relationships and substrate interaction, although the molecular basis for their mechanism of action remains to be determined. Lignocellulosic material represents a source of fermentable sugars for the production of biofuels, and cell‐wall degrading activities are essential to efficiently release such sugars from their polymeric structures. Because expansins from fungi and bacteria seem to be required to properly colonize or cause disease to plant tissues, and because they share some characteristics with their plant counterparts for loosening the cell wall they have been seen as a promising tool to overcome the recalcitrance of these materials. However, microbial expansins activity is at best, very low compared with plant expansins activity. This revision analyses recent work on bacterial expansins structure, function and biological role, emphasizing our need to focus on their mechanism of action as a means to design better strategies for their use, in both in the energy and agricultural industries.
Collapse
Affiliation(s)
- Claudia Martinez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca, 62210, Morelos, México.
| |
Collapse
|
18
|
Artzi L, Morag E, Shamshoum M, Bayer EA. Cellulosomal expansin: functionality and incorporation into the complex. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:61. [PMID: 26973715 PMCID: PMC4788839 DOI: 10.1186/s13068-016-0474-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/02/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Expansins are relatively small proteins that lack enzymatic activity and are found in plants and microorganisms. The function of these proteins is to disrupt the plant cell walls by interfering with the non-covalent interchain bonding of the polysaccharides. Expansins were found to be important for plant growth, but they are also expressed by various bacteria known to have interactions with plants. Clostridium clariflavum is a plant cell wall-degrading bacterium with a highly elaborate cellulosomal system. Among its numerous dockerin-containing genes, two expansin-like proteins, Clocl_1862 and Clocl_1298 (termed herein CclEXL1 and CclEXL2) were identified, and CclEXL1 was found to be expressed as part of the cellulosome system. This is the first time that an expansin-like protein is identified in a cellulosome complex, which implicates its possible role in biomass deconstruction. RESULTS In the present article, we analyzed the functionality of CclEXL1. Its dockerin was characterized and shown to bind selectively to type-I cohesins of C. clariflavum, with preferential binding to the cohesin of ScaG, and additionally to a type-I cohesin of C. cellulolyticum. We demonstrated experimentally that the expansin-like protein binds preferentially to microcrystalline cellulose, but it also binds to acid-swollen cellulose, xylan, and wheat straw. CclEXL1 exhibited a pronounced loosening effect on filter paper, which resulted in substantial decrease in tensile stress. The C. clariflavum expansin-like protein thus enhances significantly enzymatic hydrolysis of cellulose, both by C. clariflavum cellulosomes and two major cellulosomal cellulases from this bacterium: GH48 (exoglucanase) and GH9 (endoglucanase). Finally, we demonstrated CclEXL1-mediated enhancement of microcrystalline cellulose degradation by different cellulosome fractions and the two enzymes. CONCLUSIONS The results of this study confirm that the C. clariflavum expansin-like protein is part of the elaborate cellulosome system of this bacterium with capabilities of cellulose creeping. The data suggest that pretreatment of cellulosic materials with CclEXL1 can bring about substantial improvement of hydrolysis by cellulases.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Molecular Biosciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ely Morag
- Department of Molecular Biosciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Melina Shamshoum
- Department of Molecular Biosciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Edward A. Bayer
- Department of Molecular Biosciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Abstract
The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|