1
|
Paciotti R, Re N, Storchi L. Combining the Fragment Molecular Orbital and GRID Approaches for the Prediction of Ligand-Metalloenzyme Binding Affinity: The Case Study of hCA II Inhibitors. Molecules 2024; 29:3600. [PMID: 39125005 PMCID: PMC11313991 DOI: 10.3390/molecules29153600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Polarization and charge-transfer interactions play an important role in ligand-receptor complexes containing metals, and only quantum mechanics methods can adequately describe their contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of human Carbonic Anhydrase II (hCA II)-an important druggable target containing a Zn2+ ion in the active site-as a case study to predict the binding free energy in metalloprotein-ligand complexes and designed specialized computational methods that combine the ab initio fragment molecular orbital (FMO) method and GRID approach. To reproduce the experimental binding free energy in these systems, we adopted a machine-learning approach, here named formula generator (FG), considering different FMO energy terms, the hydrophobic interaction energy (computed by GRID) and logP. The main advantage of the FG approach is that it can find nonlinear relations between the energy terms used to predict the binding free energy, explicitly showing their mathematical relation. This work showed the effectiveness of the FG approach, and therefore, it might represent an important tool for the development of new scoring functions. Indeed, our scoring function showed a high correlation with the experimental binding free energy (R2 = 0.76-0.95, RMSE = 0.34-0.18), revealing a nonlinear relation between energy terms and highlighting the relevant role played by hydrophobic contacts. These results, along with the FMO characterization of ligand-receptor interactions, represent important information to support the design of new and potent hCA II inhibitors.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università “G. D’Annunzio” Di Chieti-Pescara, 66100 Chieti, Italy; (N.R.); (L.S.)
| | | | | |
Collapse
|
2
|
Paciotti R, Marrone A. A computational insight on the aromatic amino acids conjugation with [Cp*Rh(H 2O) 3] 2+ by using the meta-dynamics/FMO3 approach. J Mol Model 2023; 30:4. [PMID: 38082186 PMCID: PMC10713709 DOI: 10.1007/s00894-023-05794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
CONTEXT Rh(III) complexes demonstrated to exert promising pharmacological effects with potential applications as anti-cancer, anti-bacterial, and antimicrobial agents. One important Rh(III)-ligand is the pentamethylcyclopentadienyl (Cp*) group forming in water the [Cp*Rh(H2O)3]2+ complex. Among of its attractive chemical properties is the ability to react specifically with Tyr amino acid side chain of G-protein-coupled receptor (GPCR) peptides by means of highly chemoselective bioconjugation reaction, at room temperature and at pH 5-6. In this computational work, in order to deepen the mechanism of this chemoselective conjugation, we study the ligand exchange reaction between [Cp*Rh(H2O)3]2+ and three small molecules, namely p-cresol, 3-methylimidazole, and toluene, selected as mimetic of aromatic side chains of tyrosine (Tyr), tryptophan (Trp) and phenylalanine (Phe), respectively. Our outcomes suggest that the high selectivity for Tyr side chain might be related to OH group able to affect both thermodynamic and kinetic of ligand exchange reaction, due to its ability to act as both H bond acceptor and donor. These mechanistic aspects can be used to design new metal drugs containing the [Cp*Rh]2+ scaffold targeting specifically Tyr residues involved in biological/pathological processes such as phosphorylation by means of Tyr-kinase enzyme and protein-protein interactions. METHODS The geometry of three encounter complexes and product adducts were optimized at the B3LYP//CPCM/ωB97X-D level of theory, adopting the 6-311+G(d,p) basis set for all non-metal atoms and the LANL2DZ pseudopotential for the Rh atom. Meta-dynamics RMSD (MTD(RMSD)) calculations at GFN2-xTB level of theory were performed in NVT conditions at 298.15 K to investigate the bioconjugation reactions (simulation time: 100 ps; integration step 2.0; implicit solvent model: GBSA). The MTD(RMSD) simulation was performed in two replicates for each encounter complex. Final representative subsets of 100 structures for each run were gained with a sampling rate of 1 ps and analyzed by performing single point calculations using the FMO3 method at RI-MP2/6-311G//PCM[1] level of theory, adopting the MCP-TZP core potential for Rh atom.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, I-66100, Chieti, Italy.
| | - Alessandro Marrone
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, I-66100, Chieti, Italy
| |
Collapse
|
3
|
Paciotti R, Marrone A, Coletti C, Re N. Improving the accuracy of the FMO binding affinity prediction of ligand-receptor complexes containing metals. J Comput Aided Mol Des 2023; 37:707-719. [PMID: 37743428 PMCID: PMC10618332 DOI: 10.1007/s10822-023-00532-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Polarization and charge transfer strongly characterize the ligand-receptor interaction when metal atoms are present, as for the Au(I)-biscarbene/DNA G-quadruplex complexes. In a previous work (J Comput Aided Mol Des2022, 36, 851-866) we used the ab initio FMO2 method at the RI-MP2/6-31G* level of theory with the PCM [1] solvation approach to calculate the binding energy (ΔEFMO) of two Au(I)-biscarbene derivatives, [Au(9-methylcaffein-8-ylidene)2]+ and [Au(1,3-dimethylbenzimidazole-2-ylidene)2]+, able to interact with DNA G-quadruplex motif. We found that ΔEFMO and ligand-receptor pair interaction energies (EINT) show very large negative values making the direct comparison with experimental data difficult and related this issue to the overestimation of the embedded charge transfer energy between fragments containing metal atoms. In this work, to improve the accuracy of the FMO method for predicting the binding affinity of metal-based ligands interacting with DNA G-quadruplex (Gq), we assess the effect of the following computational features: (i) the electron correlation, considering the Hartree-Fock (HF) and a post-HF method, namely RI-MP2; (ii) the two (FMO2) and three-body (FMO3) approaches; (iii) the basis set size (polarization functions and double-ζ vs. triple-ζ) and (iv) the embedding electrostatic potential (ESP). Moreover, the partial screening method was systematically adopted to simulate the solvent screening effect for each calculation. We found that the use of the ESP computed using the screened point charges for all atoms (ESP-SPTC) has a critical impact on the accuracy of both ΔEFMO and EINT, eliminating the overestimation of charge transfer energy and leading to energy values with magnitude comparable with typical experimental binding energies. With this computational approach, EINT values describe the binding efficiency of metal-based binders to DNA Gq more accurately than ΔEFMO. Therefore, to study the binding process of metal containing systems with the FMO method, the adoption of partial screening solvent method combined with ESP-SPCT should be considered. This computational protocol is suggested for FMO calculations on biological systems containing metals, especially when the adoption of the default ESP treatment leads to questionable results.
Collapse
Affiliation(s)
- R Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy.
| | - A Marrone
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - C Coletti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - N Re
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Corinti D, Paciotti R, Coletti C, Re N, Chiavarino B, Frison G, Crestoni ME, Fornarini S. IRMPD spectroscopy and quantum-chemical simulations of the reaction products of cisplatin with the dipeptide CysGly. J Inorg Biochem 2023; 247:112342. [PMID: 37536163 DOI: 10.1016/j.jinorgbio.2023.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
The inorganic antineoplastic drug cisplatin was made to react in solution with the dipeptide cysteinylglycine (CysGly), chosen as a functional model of glutathione, and the reaction products were analyzed using electrospray ionization mass spectrometry (ESI-MS). Selected complexes, i.e., the primary substitution product cis-[PtCl(NH3)2(CysGly)]+ and the chelate cis-[PtCl(NH3)(CysGly)]+, were submitted to IR multiple photon dissociation (IRMPD) spectroscopy obtaining their vibrational features. The experimental IR ion spectra were compared with the calculated IR absorptions of different plausible isomeric families, finding CysGly to bind preferentially platinum(II) via its deprotonated thiolic group in the monovalent complex, cis-[PtCl(NH3)2(CysGly)]+, and to evolve in the S,N-bound chelate structure cis-[PtCl(NH3)(CysGly)]+ through the SH and NH2 functionality of the cysteine residue. Moreover, our findings indicate that the platination reaction does not affect the CysGly peptide bond, which remains in its trans configuration. These results provide additional insights into the reactivity of Pt(II)-complexes with glutathione which is involved in cellular cisplatin resistance.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy.
| | - Roberto Paciotti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy.
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Gilles Frison
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F-75005 Paris, France
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
5
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Preventive or promotive effects of PRNP polymorphic heterozygosity on the onset of prion disease. Heliyon 2023; 9:e13974. [PMID: 36915552 PMCID: PMC10006469 DOI: 10.1016/j.heliyon.2023.e13974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
The polymorphic heterozygosity of PRNP at codon 129 or 219 prevents the onset of sporadic Creutzfeldt-Jakob disease (sCJD). We investigated the association between polymorphic genotypes at codon 129 or 219 and comprehensive prion disease onset using non-CJD as a reference. EK heterozygotes at codon 219, versus EE homozygotes, showed a preventive effect on the extensive prion diseases-sCJD, genetic CJD (gCJD) with V180I or M232R mutation, and Gerstmann-Straussler-Scheinker disease with P102L mutation. No preventive effect was observed for E200K-gCJD and dura-grafted CJD (dCJD) in 129 MV and 219 EK heterozygotes. It was suggested that unlike other prion diseases, E200K-gCJD may not benefit from the preventive effect of 219 EK heterozygosity because complementary electrostatic interactions between PrP molecules at K200 and E219 might make homodimer formation easier. Comparison of sCJD and dCJD indicates that 219 EK heterozygosity strongly inhibits de novo synthesis of PrPSc (initial PrPSc formation), but does not inhibit accelerated propagation of existing PrPSc.
Collapse
|
7
|
Gharemirshamloo FR, Majumder R, Kumar S U, Doss C GP, Bamdad K, Frootan F, Un C. Effects of the pathological E200K mutation on human prion protein: A computational screening and molecular dynamics approach. J Cell Biochem 2023; 124:254-265. [PMID: 36565210 DOI: 10.1002/jcb.30359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
The human prion protein gene (PRNP) is mapped to the short arm of chromosome 20 (20pter-12). Prion disease is associated with mutations in the prion protein-encoding gene sequence. Earlier studies found that the mutation G127V in the PRNP increases protein stability. In contrast, the mutation E200K, which has the highest mutation rate in the prion protein, causes Creutzfeldt-Jakob disease (CJD) in humans and induces protein aggregation. We aimed to identify the structural mechanisms of E200k and G127V mutations causing CJD. We used a variety of bioinformatic algorithms, including SIFT, PolyPhen, I-Mutant, PhD-SNP, and SNP& GO, to predict the association of the E200K mutation with prion disease. MD simulation is performed, and graphs for root mean square deviation, root mean square fluctuation, radius of gyration, DSSP, principal component analysis, porcupine, and free energy landscape are generated to confirm and prove the stability of the wild-type and mutant protein structures. The protein is analyzed for aggregation, and the results indicate more fluctuations in the protein structure during the simulation owing to the E200K mutation; however, the G127V mutation makes the protein structure stable against aggregation during the simulation.
Collapse
Affiliation(s)
| | - Ranabir Majumder
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Udhaya Kumar S
- Department of Integrative Biology, Laboratory of Integrative Genomics, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Laboratory of Integrative Genomics, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Kourosh Bamdad
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Fateme Frootan
- Institute of Agricultural Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| | - Cemal Un
- Department of Biology, Division of Molecular Biology, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
Halder P, Mitra P. Human prion protein: exploring the thermodynamic stability and structural dynamics of its pathogenic mutants. J Biomol Struct Dyn 2022; 40:11274-11290. [PMID: 34338141 DOI: 10.1080/07391102.2021.1957715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Human familial prion diseases are known to be associated with different single-point mutants of the gene coding for prion protein with a primary focus at several locations of the globular domain. We have identified 12 different single-point pathogenic mutants of human prion protein (HuPrP) with the help of extensive perturbations/mutation technique at multiple locations of HuPrP sequence related to potentiality towards conformational disorders. Among these, some of the mutants include pathogenic variants that corroborate well with the literature reported proteins while majority include some unique single-point mutants that are either not explicitly studied early or studied for variants with different residues at the specific position. Primarily, our study sheds light on the unfolding mechanism of the above mentioned mutants in depth. Besides, we could identify some mutants under investigation that demonstrates not only unfolding of the helical structures but also extension and generation of the β-sheet structures and or simultaneously have highly exposed hydrophobic surface which is assumed to be linked with the production of aggregate/fibril structures of the prion protein. Among the identified mutants, Q212E needs special attention due to its maximum exposure of hydrophobic core towards solvent and E200Q is found to be important due to its maximum extent of β-content. We are also able to identify different respective structural conformations of the proteins according to their degree of structural unfolding and those conformations can be extracted and further studied in detail. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Puspita Halder
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
9
|
Paciotti R, Coletti C, Marrone A, Re N. The FMO2 analysis of the ligand-receptor binding energy: the Biscarbene-Gold(I)/DNA G-Quadruplex case study. J Comput Aided Mol Des 2022; 36:851-866. [PMID: 36318393 DOI: 10.1007/s10822-022-00484-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022]
Abstract
In this work, the ab initio fragment molecular orbital (FMO) method was applied to calculate and analyze the binding energy of two biscarbene-Au(I) derivatives, [Au(9-methylcaffein-8-ylidene)2]+ and [Au(1,3-dimethylbenzimidazol-2-ylidene)2]+, to the DNA G-Quadruplex structure. The FMO2 binding energy considers the ligand-receptor complex as well as the isolated forms of energy-minimum state of ligand and receptor, providing a better description of ligand-receptor affinity compared with simple pair interaction energies (PIE). Our results highlight important features of the binding process of biscarbene-Au(I) derivatives to DNA G-Quadruplex, indicating that the total deformation-polarization energy and desolvation penalty of the ligands are the main terms destabilizing the binding. The pair interaction energy decomposition analysis (PIEDA) between ligand and nucleobases suggest that the main interaction terms are electrostatic and charge-transfer energies supporting the hypothesis that Au(I) ion can be involved in π-cation interactions further stabilizing the ligand-receptor complex. Moreover, the presence of polar groups on the carbene ring, as C = O, can improve the charge-transfer interaction with K+ ion. These findings can be employed to design new powerful biscarbene-Au(I) DNA-G quadruplex binders as promising anticancer drugs. The procedure described in this work can be applied to investigate any ligand-receptor system and is particularly useful when the binding process is strongly characterized by polarization, charge-transfer and dispersion interactions, properly evaluated by ab initio methods.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy.
| | - Cecilia Coletti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - Alessandro Marrone
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - Nazzareno Re
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Tolbatov I, Storchi L, Marrone A. Structural Reshaping of the Zinc-Finger Domain of the SARS-CoV-2 nsp13 Protein Using Bismuth(III) Ions: A Multilevel Computational Study. Inorg Chem 2022; 61:15664-15677. [PMID: 36125417 PMCID: PMC9514052 DOI: 10.1021/acs.inorgchem.2c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/29/2022]
Abstract
The identification of novel therapeutics against the pandemic SARS-CoV-2 infection is an indispensable new address of current scientific research. In the search for anti-SARS-CoV-2 agents as alternatives to the vaccine or immune therapeutics whose efficacy naturally degrades with the occurrence of new variants, the salts of Bi3+ have been found to decrease the activity of the Zn2+-dependent non-structural protein 13 (nsp13) helicase, a key component of the SARS-CoV-2 molecular tool kit. Here, we present a multilevel computational investigation based on the articulation of DFT calculations, classical MD simulations, and MIF analyses, focused on the examination of the effects of Bi3+/Zn2+ exchange on the structure and molecular interaction features of the nsp13 protein. Our calculations confirmed that Bi3+ ions can replace Zn2+ in the zinc-finger metal centers and cause slight but appreciable structural modifications in the zinc-binding domain of nsp13. Nevertheless, by employing an in-house-developed ATOMIF tool, we evidenced that such a Bi3+/Zn2+ exchange may decrease the extension of a specific hydrophobic portion of nsp13, responsible for the interaction with the nsp12 protein. The present study provides for a detailed, atomistic insight into the potential anti-SARS-CoV-2 activity of Bi3+ and, more generally, evidences the hampering of the nsp13-nsp12 interaction as a plausible therapeutic strategy.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut
de Chimie Moleculaire de L’Université de Bourgogne (ICMUB),
Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, Dijon 21000, France
| | - Loriano Storchi
- Dipartimento
di Farmacia, Università“G
D’Annunzio” di Chieti-Pescara, Via Dei Vestini 31, Chieti 66100, Italy
| | - Alessandro Marrone
- Dipartimento
di Farmacia, Università“G
D’Annunzio” di Chieti-Pescara, Via Dei Vestini 31, Chieti 66100, Italy
| |
Collapse
|
11
|
Paciotti R, Storchi L, Marrone A. Homodimeric complexes of the 90-231 human prion: a multilayered computational study based on FMO/GRID-DRY approach. J Mol Model 2022; 28:241. [PMID: 35918494 PMCID: PMC9345805 DOI: 10.1007/s00894-022-05244-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
Abstract
The molecular interaction properties and aggregation capabilities disclosed by PrP-E200K, a pathogenic mutant of the human prion protein, were investigated in detail using multilayered computational approaches. In a previous work, we reported that the electrostatic complementarity between region1 (negative) and region3 (positive) has been assumed to lead to a head-to tail interaction between 120 and 231 PrP-E200K units and to initiation of the aggregation process. In this work, we extended the PrP-E200K structure by including the unstructured 90-120 segment which was found to assume different conformations. Plausible models of 90-231 PrP-E200K dimers were calculated and analyzed in depth to identify the nature of the involved protein-protein interactions. The unstructured 90-120 segment was found to extend the positively charged region3 involved in the association of PrP-E200K units which resulted to be driven by hydrophobic interactions. The combination of molecular dynamics, protein-protein docking, grid-based mapping, and fragment molecular orbital approaches allowed us to provide a plausible mechanism of the early state of 90-231 PrP-E200K aggregation, considered a preliminary step of amyloid conversion.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Loriano Storchi
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Molecular Discovery Limited, Middlesex, London, UK
| | - Alessandro Marrone
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
12
|
Agamennone M, Storchi L, Marrone A, Paciotti R. Hampering the early aggregation of PrP-E200K protein by charge-based inhibitors: a computational study. J Comput Aided Mol Des 2021; 35:751-770. [PMID: 34110550 PMCID: PMC8213589 DOI: 10.1007/s10822-021-00393-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
A multilayered computational workflow was designed to identify a druggable binding site on the surface of the E200K pathogenic mutant of the human prion protein, and to investigate the effect of the binding of small molecules in the inhibition of the early aggregation of this protein. At this purpose, we developed an efficient computational tool to scan the molecular interaction properties of a whole MD trajectory, thus leading to the characterization of plausible binding regions on the surface of PrP-E200K. These structural data were then employed to drive structure-based virtual screening and fragment-based approaches to the seeking of small molecular binders of the PrP-E200K. Six promising compounds were identified, and their binding stabilities were assessed by MD simulations. Therefore, analyses of the molecular electrostatic potential similarity between the bound complexes and unbound protein evidenced their potential activity as charged-based inhibitors of the PrP-E200K early aggregation.
Collapse
Affiliation(s)
| | - Loriano Storchi
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Molecular Discovery Limited, Middlesex, London, UK
| | - Alessandro Marrone
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Roberto Paciotti
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
13
|
Paciotti R, Agamennone M, Coletti C, Storchi L. Characterization of PD-L1 binding sites by a combined FMO/GRID-DRY approach. J Comput Aided Mol Des 2020; 34:897-914. [PMID: 32185582 DOI: 10.1007/s10822-020-00306-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
The programmed cell death protein 1 (PD-1) and its ligand, PD-L1, constitute an important co-inhibitory immune checkpoint leading to downregulation of immune system. Tumor cells developed a strategy to trigger PD-1/PD-L1 pathway reducing the T cell anticancer activity. Anti-PD-L1 small drugs, generally with improved pharmacokinetic and technological profiles than monoclonal antibodies, became an attractive research topic. Nevertheless, still few works have been published on the chemical features of possible binding sites. In this work, we applied a novel computational protocol based on the combination of the ab initio Fragment Molecular Orbital (FMO) method and a newly developed GRID-DRY approach in order to characterize the PD-L1 binding sites, starting from PD-1/PD-L1 and PD-L1/BMS-ligands (Bristol-Mayers Squibb ligands) complexes. The FMO method allows the calculation of the pair-residues as well as the ligand-residues interactions with ab initio accuracy, whereas the GRID-DRY approach is an effective tool to investigate hydrophobic interactions, not easily detectable by ab initio methods. The present GRID-DRY protocol is able to determine the energy contributions of each ligand atoms to each hydrophobic interaction, both qualitatively and quantitatively. We were also able to identify the three specific hot regions involved in PD-1/PD-L1 protein-protein interaction and in PD-L1/BMS-ligand interactions, in agreement with preceding theoretical/experimental results, and to suggest a specific pharmacophore for PD-L1 inhibitors.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy.
| | | | - Cecilia Coletti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - Loriano Storchi
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy. .,Molecular Discovery Limited, Middlesex, London, UK.
| |
Collapse
|