1
|
Lee H, Park H, Kwak K, Lee CE, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. J Enzyme Inhib Med Chem 2025; 40:2435365. [PMID: 39714271 DOI: 10.1080/14756366.2024.2435365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.
Collapse
Affiliation(s)
- Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chae-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Banerjee D, Rath SL, Darji SA, Mandal N. Mutations in V84I & A184V of blaTEM cluster plays a pivotal role in the dynamics of Ω-loop leading to genesis of IR-TEM. J Biomol Struct Dyn 2025; 43:1116-1128. [PMID: 38063029 DOI: 10.1080/07391102.2023.2291168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2025]
Abstract
The Enterobacteriaceae family exhibits resistance to antibiotics by producing β-Lactamase. Mutations in β-Lactamase, have led to the generation of inhibitor resistant variants known as IR-TEM. In the present study, IR-TEM β-Lactamase of Enterobacter hormaechei and Enterobacter asburiae was compared. To investigate the mechanism behind the conferred mutation, we studied its interaction with Clavulanic acid, (β-Lactamase inhibitor) with different lineages of TEM and IR-TEM. We found that Clavulanic acid quickly left the binding pockets of both variants using molecular dynamics (MD) simulations. Interestingly, mutations at the V84I and A184V positions were found to drastically influence the protein dynamics. Mutating the residues at V84I and A184V positions by computational mutagenesis in Enterobacter hormaechei, it was observed that the residues on the Ω-loop as well as a few downstream residues were primarily involved in generating resistance towards inhibitors by conferring increased flexibility to the loop. This further strongly supports the notion that inhibitor resistance in β-Lactamase is conferred through allosteric regulation, wherein mutations in positions 84 and 184 may play an important role in regulating the movement of the Ω-loop. These two positions determine the lineage pattern between two clusters in TEM-1 and TEM-116. To date, no reports have been made regarding the importance of these mutations and their dynamics in Ω-loop.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Devjani Banerjee
- Department of Biotechnology, School of Sciences, GSFC University, Vadodara, India
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Soumya Lipsa Rath
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, India
| | - Siddhi A Darji
- Department of Biotechnology, School of Sciences, GSFC University, Vadodara, India
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Nabanita Mandal
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, India
| |
Collapse
|
3
|
Gwyther REA, Côté S, Lee CS, Miao H, Ramakrishnan K, Palma M, Dafydd Jones D. Optimising CNT-FET biosensor design through modelling of biomolecular electrostatic gating and its application to β-lactamase detection. Nat Commun 2024; 15:7482. [PMID: 39209826 PMCID: PMC11362306 DOI: 10.1038/s41467-024-51325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Carbon nanotube field effect transistors (CNT-FET) hold great promise as next generation miniaturised biosensors. One bottleneck is modelling how proteins, with their distinctive electrostatic surfaces, interact with the CNT-FET to modulate conductance. Using advanced sampling molecular dynamics combined with non-canonical amino acid chemistry, we model protein electrostatic potential imparted on single walled CNTs (SWCNTs). We focus on using β-lactamase binding protein (BLIP2) as the receptor as it binds the antibiotic degrading enzymes, β-lactamases (BLs). BLIP2 is attached via the single selected residue to SWCNTs using genetically encoded phenyl azide photochemistry. Our devices detect two different BLs, TEM-1 and KPC-2, with each BL generating distinct conductance profiles due to their differing surface electrostatic profiles. Changes in conductance match the model electrostatic profile sampled by the SWCNTs on BL binding. Thus, our modelling approach combined with residue-specific receptor attachment could provide a general approach for systematic CNT-FET biosensor construction.
Collapse
Affiliation(s)
- Rebecca E A Gwyther
- Molecular Biosciences Division, School of Biosciences Cardiff University, Cardiff, UK
| | - Sébastien Côté
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC, Canada.
- Département de Physique, Cégep de Saint-Jérôme, Saint-Jérôme, QC, Canada.
| | - Chang-Seuk Lee
- Department of Chemistry, Queen Mary University of London, London, UK
- Department of Chemistry, Seoul Women's University, Seoul, Republic of Korea
| | - Haosen Miao
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Krithika Ramakrishnan
- Molecular Biosciences Division, School of Biosciences Cardiff University, Cardiff, UK
| | - Matteo Palma
- Department of Chemistry, Queen Mary University of London, London, UK.
| | - D Dafydd Jones
- Molecular Biosciences Division, School of Biosciences Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Jabeen H, Beer M, Spencer J, van der Kamp MW, Bunzel HA, Mulholland AJ. Electric Fields Are a Key Determinant of Carbapenemase Activity in Class A β-Lactamases. ACS Catal 2024; 14:7166-7172. [PMID: 38721371 PMCID: PMC11075022 DOI: 10.1021/acscatal.3c05302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 01/06/2025]
Abstract
Resistance to antibiotics is a public health crisis. Although carbapenems are less susceptible to resistance than other β-lactam antibiotics, β-lactamases mediating resistance against these drugs are spreading. Here, we dissect the contributions of electric fields to carbapenemase activity in class A β-lactamases. We perform QM/MM molecular dynamics simulations of meropenem acyl-enzyme hydrolysis that correctly discriminate carbapenemases. Electric field analysis shows that active-site fields in the deacylation transition state and tetrahedral intermediate are important determinants of activity. The active-site fields identify several residues, some distal, that distinguish efficient carbapenemases. Our field analysis script (www.github.com/bunzela/FieldTools) may help in understanding and combating antibiotic resistance.
Collapse
Affiliation(s)
- Hira Jabeen
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
| | - Michael Beer
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
- School
of Cellular and Molecular Medicine, University
of Bristol, BS8 1TD Bristol, United Kingdom
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, BS8 1TD Bristol, United Kingdom
| | - Marc W. van der Kamp
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
- School
of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - H. Adrian Bunzel
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
- Department
of Biosystem Science and Engineering, ETH
Zurich, 4056 Basel, Switzerland
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
| |
Collapse
|
5
|
Yehorova D, Crean RM, Kasson PM, Kamerlin SCL. Key interaction networks: Identifying evolutionarily conserved non-covalent interaction networks across protein families. Protein Sci 2024; 33:e4911. [PMID: 38358258 PMCID: PMC10868456 DOI: 10.1002/pro.4911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Protein structure (and thus function) is dictated by non-covalent interaction networks. These can be highly evolutionarily conserved across protein families, the members of which can diverge in sequence and evolutionary history. Here we present KIN, a tool to identify and analyze conserved non-covalent interaction networks across evolutionarily related groups of proteins. KIN is available for download under a GNU General Public License, version 2, from https://www.github.com/kamerlinlab/KIN. KIN can operate on experimentally determined structures, predicted structures, or molecular dynamics trajectories, providing insight into both conserved and missing interactions across evolutionarily related proteins. This provides useful insight both into protein evolution, as well as a tool that can be exploited for protein engineering efforts. As a showcase system, we demonstrate applications of this tool to understanding the evolutionary-relevant conserved interaction networks across the class A β-lactamases.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Rory M. Crean
- Department of Chemistry—BMCUppsala UniversityUppsalaSweden
| | - Peter M. Kasson
- Department of Molecular PhysiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Shina C. L. Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Chemistry—BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Villanueva M, Vostal LE, Cohen DN, Biesbrock D, Kuwaye EP, Driver SG, Hart KM. Differential effects of disulfide bond formation in TEM-1 versus CTX-M-9 β-lactamase. Protein Sci 2024; 33:e4816. [PMID: 37897253 PMCID: PMC10731493 DOI: 10.1002/pro.4816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
To investigate how disulfide bonds can impact protein energy landscapes, we surveyed the effects of adding or removing a disulfide in two β-lactamase enzymes, TEM-1 and CTX-M-9. The homologs share a structure and 38% sequence identity, but only TEM-1 contains a native disulfide bond. They also differ in thermodynamic stability and in the number of states populated at equilibrium: CTX-M-9 is two-state whereas TEM-1 has an additional intermediate state. We hypothesized that the disulfide bond is the major underlying determinant for these observed differences in their energy landscapes. To test this, we removed the disulfide bridge from TEM-1 and introduced a disulfide bridge at the same location in CTX-M-9. This modest change to sequence modulates the stabilities-and therefore populations-of TEM-1's equilibrium states and, more surprisingly, creates a novel third state in CTX-M-9. Unlike TEM-1's partially folded intermediate, this third state is a higher-order oligomer with reduced cysteines that retains the native fold and is fully active. Sub-denaturing concentrations of urea shifts the equilibrium to the monomeric form, allowing the disulfide bond to form. Interestingly, comparing the stability of the oxidized monomer with a variant lacking cysteines reveals the disulfide is neither stabilizing nor destabilizing in CTX-M-9, in contrast with the observed stabilization in TEM-1. Thus, we can conclude that engineering disulfide bonds is not always an effective stabilization strategy even when analogous disulfides exist in more stable structural homologs. This study also illustrates how homo-oligomerization can result from a small number of mutations, suggesting complex formation might be easily accessed during a protein family's evolution.
Collapse
Affiliation(s)
- Miranda Villanueva
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Biological Chemistry DepartmentDavid Geffen School of Medicine, UCLALos AngelesCaliforniaUSA
| | - Lauren E. Vostal
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Laboratory of Chemistry and Cell BiologyThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Drew N. Cohen
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Devin Biesbrock
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Laboratory of Cellular and Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Elise P. Kuwaye
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Sasha G. Driver
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
| | - Kathryn M. Hart
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
| |
Collapse
|
7
|
Agarwal V, Yadav TC, Tiwari A, Varadwaj P. Detailed investigation of catalytically important residues of class A β-lactamase. J Biomol Struct Dyn 2023; 41:2046-2073. [PMID: 34986744 DOI: 10.1080/07391102.2021.2023645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An increasing global health challenge is antimicrobial resistance. Bacterial infections are often treated by using β-lactam antibiotics. But several resistance mechanisms have evolved in clinically mutated bacteria, which results in resistance against such antibiotics. Among which production of novel β-lactamase is the major one. This results in bacterial resistance against penicillin, cephalosporin, and carbapenems, which are considered to be the last resort of antibacterial treatment. Hence, β-lactamase enzymes produced by such bacteria are called extended-spectrum β-lactamase and carbapenemase enzymes. Further, these bacteria have developed resistance against many β-lactamase inhibitors as well. So, investigation of important residues that play an important role in altering and expanding the spectrum activity of these β-lactamase enzymes becomes necessary. This review aims to gather knowledge about the role of residues and their mutations in class A β-lactamase, which could be responsible for β-lactamase mediated resistance. Class A β-lactamase enzymes contain most of the clinically significant and expanded spectrum of β-lactamase enzymes. Ser70, Lys73, Ser130, Glu166, and Asn170 residues are mostly conserved and have a role in the enzyme's catalytic activity. In-depth investigation of 69, 130, 131, 132, 164, 165, 166, 170, 171, 173, 176, 178, 179, 182, 237, 244, 275 and 276 residues were done along with its kinetic analysis for knowing its significance. Further, detailed information from many previous studies was gathered to know the effect of mutations on the kinetic activity of class A β-lactamase enzymes with β-lactam antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vidhu Agarwal
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Akhilesh Tiwari
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Pritish Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| |
Collapse
|
8
|
Rosignoli S, Paiardini A. Boosting the Full Potential of PyMOL with Structural Biology Plugins. Biomolecules 2022; 12:biom12121764. [PMID: 36551192 PMCID: PMC9775141 DOI: 10.3390/biom12121764] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Over the past few decades, the number of available structural bioinformatics pipelines, libraries, plugins, web resources and software has increased exponentially and become accessible to the broad realm of life scientists. This expansion has shaped the field as a tangled network of methods, algorithms and user interfaces. In recent years PyMOL, widely used software for biomolecules visualization and analysis, has started to play a key role in providing an open platform for the successful implementation of expert knowledge into an easy-to-use molecular graphics tool. This review outlines the plugins and features that make PyMOL an eligible environment for supporting structural bioinformatics analyses.
Collapse
|
9
|
Lu S, Hu L, Lin H, Judge A, Rivera P, Palaniappan M, Sankaran B, Wang J, Prasad BVV, Palzkill T. An active site loop toggles between conformations to control antibiotic hydrolysis and inhibition potency for CTX-M β-lactamase drug-resistance enzymes. Nat Commun 2022; 13:6726. [PMID: 36344533 PMCID: PMC9640584 DOI: 10.1038/s41467-022-34564-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
β-lactamases inactivate β-lactam antibiotics leading to drug resistance. Consequently, inhibitors of β-lactamases can combat this resistance, and the β-lactamase inhibitory protein (BLIP) is a naturally occurring inhibitor. The widespread CTX-M-14 and CTX-M-15 β-lactamases have an 83% sequence identity. In this study, we show that BLIP weakly inhibits CTX-M-14 but potently inhibits CTX-M-15. The structure of the BLIP/CTX-M-15 complex reveals that binding is associated with a conformational change of an active site loop of β-lactamase. Surprisingly, the loop structure in the complex is similar to that in a drug-resistant variant (N106S) of CTX-M-14. We hypothesized that the pre-established favorable loop conformation of the N106S mutant would facilitate binding. The N106S substitution results in a ~100- and 10-fold increase in BLIP inhibition potency for CTX-M-14 and CTX-M-15, respectively. Thus, this indicates that an active site loop in β-lactamase toggles between conformations that control antibiotic hydrolysis and inhibitor susceptibility. These findings highlight the role of accessible active site conformations in controlling enzyme activity and inhibitor susceptibility as well as the influence of mutations in selectively stabilizing discrete conformations.
Collapse
Affiliation(s)
- Shuo Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hanfeng Lin
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Allison Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Paola Rivera
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Murugesan Palaniappan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Grigorenko VG, Petrova TE, Carolan C, Rubtsova MY, Uporov IV, Pereira J, Chojnowski G, Samygina VR, Lamzin VS, Egorov AM. Crystal structures of the molecular class A β-lactamase TEM-171 and its complexes with tazobactam. Acta Crystallogr D Struct Biol 2022; 78:825-834. [DOI: 10.1107/s2059798322004879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
The resistance of bacteria to β-lactam antibiotics is primarily caused by the production of β-lactamases. Here, novel crystal structures of the native β-lactamase TEM-171 and two complexes with the widely used inhibitor tazobactam are presented, alongside complementary data from UV spectroscopy and fluorescence quenching. The six chemically identical β-lactamase molecules in the crystallographic asymmetric unit displayed different degrees of disorder. The tazobactam intermediate was covalently bound to the catalytic Ser70 in the trans-enamine configuration. While the conformation of tazobactam in the first complex resembled that in published β-lactamase–tazobactam structures, in the second complex, which was obtained after longer soaking of the native crystals in the inhibitor solution, a new and previously unreported tazobactam conformation was observed. It is proposed that the two complexes correspond to different stages along the deacylation path of the acyl-enzyme intermediate. The results provide a novel structural basis for the rational design of new β-lactamase inhibitors.
Collapse
|
11
|
Xu X, Bowen BJ, Gwyther REA, Freeley M, Grigorenko B, Nemukhin AV, Eklöf‐Österberg J, Moth‐Poulsen K, Jones DD, Palma M. Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:20346-20351. [PMID: 38504924 PMCID: PMC10946871 DOI: 10.1002/ange.202104044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/24/2021] [Indexed: 11/08/2022]
Abstract
The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important β-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.
Collapse
Affiliation(s)
- Xinzhao Xu
- Department of Chemistry and Materials Research InstituteQueen Mary University of LondonLondonE1 4NSUK
| | - Benjamin J. Bowen
- Molecular Biosciences DivisionSchool of BiosciencesSir Martin Evans BuildingCardiff UniversityCardiffCF10 3AXUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences DivisionSchool of BiosciencesSir Martin Evans BuildingCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of Chemistry and Materials Research InstituteQueen Mary University of LondonLondonE1 4NSUK
| | - Bella Grigorenko
- Department of ChemistryLomonosov Moscow State UniversityMoscow119991Russian Federation
- Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscow119991Russian Federation
| | - Alexander V. Nemukhin
- Department of ChemistryLomonosov Moscow State UniversityMoscow119991Russian Federation
- Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscow119991Russian Federation
| | - Johnas Eklöf‐Österberg
- Department of Chemistry and Chemical EngineeringChalmers University of Technology41296GothenburgSweden
| | - Kasper Moth‐Poulsen
- Department of Chemistry and Chemical EngineeringChalmers University of Technology41296GothenburgSweden
| | - D. Dafydd Jones
- Molecular Biosciences DivisionSchool of BiosciencesSir Martin Evans BuildingCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of Chemistry and Materials Research InstituteQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
12
|
Xu X, Bowen BJ, Gwyther REA, Freeley M, Grigorenko B, Nemukhin AV, Eklöf‐Österberg J, Moth‐Poulsen K, Jones DD, Palma M. Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices. Angew Chem Int Ed Engl 2021; 60:20184-20189. [PMID: 34270157 PMCID: PMC8457214 DOI: 10.1002/anie.202104044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/24/2021] [Indexed: 11/07/2022]
Abstract
The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important β-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.
Collapse
Affiliation(s)
- Xinzhao Xu
- Department of Chemistry and Materials Research InstituteQueen Mary University of LondonLondonE1 4NSUK
| | - Benjamin J. Bowen
- Molecular Biosciences DivisionSchool of BiosciencesSir Martin Evans BuildingCardiff UniversityCardiffCF10 3AXUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences DivisionSchool of BiosciencesSir Martin Evans BuildingCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of Chemistry and Materials Research InstituteQueen Mary University of LondonLondonE1 4NSUK
| | - Bella Grigorenko
- Department of ChemistryLomonosov Moscow State UniversityMoscow119991Russian Federation
- Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscow119991Russian Federation
| | - Alexander V. Nemukhin
- Department of ChemistryLomonosov Moscow State UniversityMoscow119991Russian Federation
- Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscow119991Russian Federation
| | - Johnas Eklöf‐Österberg
- Department of Chemistry and Chemical EngineeringChalmers University of Technology41296GothenburgSweden
| | - Kasper Moth‐Poulsen
- Department of Chemistry and Chemical EngineeringChalmers University of Technology41296GothenburgSweden
| | - D. Dafydd Jones
- Molecular Biosciences DivisionSchool of BiosciencesSir Martin Evans BuildingCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of Chemistry and Materials Research InstituteQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
13
|
Assessment of Phenotype Relevant Amino Acid Residues in TEM-β-Lactamases by Mathematical Modelling and Experimental Approval. Microorganisms 2021; 9:microorganisms9081726. [PMID: 34442804 PMCID: PMC8399295 DOI: 10.3390/microorganisms9081726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Single substitutions or combinations of them alter the hydrolytic activity towards specific β-lactam-antibiotics and β-lactamase inhibitors of TEM-β-lactamases. The sequences and phenotypic classification of allelic TEM variants, as provided by the NCBI National Database of Antibiotic Resistant Organisms, does not attribute phenotypes to all variants. Some entries are doubtful as the data assessment differs strongly between the studies or no data on the methodology are provided at all. This complicates mathematical and bioinformatic predictions of phenotypes that rely on the database. The present work aimed to prove the role of specific substitutions on the resistance phenotype of TEM variants in, to our knowledge, the most extensive mutagenesis study. In parallel, the predictive power of extrapolation algorithms was assessed. Most well-known substitutions with direct impact on the phenotype could be reproduced, both mathematically and experimentally. Most discrepancies were found for supportive substitutions, where some resulted in antagonistic effects in contrast to previously described synergism. The mathematical modelling proved to predict the strongest phenotype-relevant substitutions accurately but showed difficulties in identifying less prevalent but still phenotype transforming ones. In general, mutations increasing cephalosporin resistance resulted in increased sensitivity to β-lactamase inhibitors and vice versa. Combining substitutions related to cephalosporin and β-lactamase inhibitor resistance in almost all cases increased BLI susceptibility, indicating the rarity of the combined phenotype.
Collapse
|
14
|
Elings W, Chikunova A, van Zanten DB, Drenth R, Ahmad MUD, Blok AJ, Timmer M, Perrakis A, Ubbink M. Two β-Lactamase Variants with Reduced Clavulanic Acid Inhibition Display Different Millisecond Dynamics. Antimicrob Agents Chemother 2021; 65:e0262820. [PMID: 34031049 PMCID: PMC8284444 DOI: 10.1128/aac.02628-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
The β-lactamase of Mycobacterium tuberculosis, BlaC, is susceptible to inhibition by clavulanic acid. The ability of this enzyme to escape inhibition through mutation was probed using error-prone PCR combined with functional screening in Escherichia coli. The variant that was found to confer the most inhibitor resistance, K234R, as well as variant G132N that was found previously were characterized using X-ray crystallography and nuclear magnetic resonance (NMR) relaxation experiments to probe structural and dynamic properties. The G132N mutant exists in solution in two almost equally populated conformations that exchange with a rate of ca. 88 s-1. The conformational change affects a broad region of the enzyme. The crystal structure reveals that the Asn132 side chain forces the peptide bond between Ser104 and Ile105 in a cis-conformation. The crystal structure suggests multiple conformations for several side chains (e.g., Ser104 and Ser130) and a short loop (positions 214 to 216). In the K234R mutant, the active-site dynamics are significantly diminished with respect to the wild-type enzyme. These results show that multiple evolutionary routes are available to increase inhibitor resistance in BlaC and that active-site dynamics on the millisecond time scale are not required for catalytic function.
Collapse
Affiliation(s)
- Wouter Elings
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | - Ralphe Drenth
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Misbha Ud Din Ahmad
- Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Anneloes J. Blok
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
15
|
An in vivo selection system with tightly regulated gene expression enables directed evolution of highly efficient enzymes. Sci Rep 2021; 11:11669. [PMID: 34083677 PMCID: PMC8175713 DOI: 10.1038/s41598-021-91204-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
In vivo selection systems are powerful tools for directed evolution of enzymes. The selection pressure of the systems can be tuned by regulating the expression levels of the catalysts. In this work, we engineered a selection system for laboratory evolution of highly active enzymes by incorporating a translationally suppressing cis repressor as well as an inducible promoter to impart stringent and tunable selection pressure. We demonstrated the utility of our selection system by performing directed evolution experiments using TEM β-lactamase as the model enzyme. Five evolutionary rounds afforded a highly active variant exhibiting 440-fold improvement in catalytic efficiency. We also showed that, without the cis repressor, the selection system cannot provide sufficient selection pressure required for evolving highly efficient TEM β-lactamase. The selection system should be applicable for the exploration of catalytic perfection of a wide range of enzymes.
Collapse
|
16
|
Chikunova A, Manley MP, Ud Din Ahmad M, Bilman T, Perrakis A, Ubbink M. Conserved residues Glu37 and Trp229 play an essential role in protein folding of β‐lactamase. FEBS J 2021; 288:5708-5722. [PMID: 33792206 PMCID: PMC8518976 DOI: 10.1111/febs.15854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/26/2021] [Accepted: 03/30/2021] [Indexed: 01/27/2023]
Abstract
Evolutionary robustness requires that the number of highly conserved amino acid residues in proteins is minimized. In enzymes, such conservation is observed for catalytic residues but also for some residues in the second shell or even further from the active site. β‐Lactamases evolve in response to changing antibiotic selection pressures and are thus expected to be evolutionarily robust, with a limited number of highly conserved amino acid residues. As part of the effort to understand the roles of conserved residues in class A β‐lactamases, we investigate the reasons leading to the conservation of two amino acid residues in the β‐lactamase BlaC, Glu37, and Trp229. Using site‐directed mutagenesis, we have generated point mutations of these residues and observed a drastic decrease in the levels of soluble protein produced in Escherichia coli, thus abolishing completely the resistance of bacteria against β‐lactam antibiotics. However, the purified proteins are structurally and kinetically very similar to the wild‐type enzyme, only differing by exhibiting a slightly lower melting temperature. We conclude that conservation of Glu37 and Trp229 is solely caused by an essential role in the folding process, and we propose that during folding Glu37 primes the formation of the central β‐sheet and Trp229 contributes to the hydrophobic collapse into a molten globule.
Collapse
Affiliation(s)
| | - Max P. Manley
- Leiden Institute of Chemistry Leiden University the Netherlands
| | - Misbha Ud Din Ahmad
- Oncode Institute and Division of Biochemistry the Netherlands Cancer Institute Amsterdam the Netherlands
| | - Tuğçe Bilman
- Leiden Institute of Chemistry Leiden University the Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry the Netherlands Cancer Institute Amsterdam the Netherlands
| | | |
Collapse
|
17
|
Modi T, Risso VA, Martinez-Rodriguez S, Gavira JA, Mebrat MD, Van Horn WD, Sanchez-Ruiz JM, Banu Ozkan S. Hinge-shift mechanism as a protein design principle for the evolution of β-lactamases from substrate promiscuity to specificity. Nat Commun 2021; 12:1852. [PMID: 33767175 PMCID: PMC7994827 DOI: 10.1038/s41467-021-22089-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
TEM-1 β-lactamase degrades β-lactam antibiotics with a strong preference for penicillins. Sequence reconstruction studies indicate that it evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency. This generalist to specialist conversion involved more than 100 mutational changes, but conserved fold and catalytic residues, suggesting a role for dynamics in enzyme evolution. Here, we develop a conformational dynamics computational approach to rationally mold a protein flexibility profile on the basis of a hinge-shift mechanism. By deliberately weighting and altering the conformational dynamics of a putative Precambrian β-lactamase, we engineer enzyme specificity that mimics the modern TEM-1 β-lactamase with only 21 amino acid replacements. Our conformational dynamics design thus re-enacts the evolutionary process and provides a rational allosteric approach for manipulating function while conserving the enzyme active site.
Collapse
Affiliation(s)
- Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada, Spain
| | - Sergio Martinez-Rodriguez
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Departamento de Bioquimica, Biologia Molecular III e Inmunologia, Universidad de Granada, Granada, Spain
| | - Jose A Gavira
- Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada, Spain
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC, Universidad de Granada, Granada, Armilla, Spain
| | - Mubark D Mebrat
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Wade D Van Horn
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
- Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada, Spain.
| | - S Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
18
|
The Role of Rigid Residues in Modulating TEM-1 β-Lactamase Function and Thermostability. Int J Mol Sci 2021; 22:ijms22062895. [PMID: 33809335 PMCID: PMC7999226 DOI: 10.3390/ijms22062895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023] Open
Abstract
The relationship between protein motions (i.e., dynamics) and enzymatic function has begun to be explored in β-lactamases as a way to advance our understanding of these proteins. In a recent study, we analyzed the dynamic profiles of TEM-1 (a ubiquitous class A β-lactamase) and several ancestrally reconstructed homologues. A chief finding of this work was that rigid residues that were allosterically coupled to the active site appeared to have profound effects on enzyme function, even when separated from the active site by many angstroms. In the present work, our aim was to further explore the implications of protein dynamics on β-lactamase function by altering the dynamic profile of TEM-1 using computational protein design methods. The Rosetta software suite was used to mutate amino acids surrounding either rigid residues that are highly coupled to the active site or to flexible residues with no apparent communication with the active site. Experimental characterization of ten designed proteins indicated that alteration of residues surrounding rigid, highly coupled residues, substantially affected both enzymatic activity and stability; in contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Our results provide additional insight into the structure-function relationship present in the TEM family of β-lactamases. Furthermore, the integration of computational protein design methods with analyses of protein dynamics represents a general approach that could be used to extend our understanding of the relationship between dynamics and function in other enzyme classes.
Collapse
|
19
|
Wang M, Wang W, Niu Y, Liu T, Li L, Zhang M, Li Z, Su W, Liu F, Zhang X, Xu H. A Clinical Extensively-Drug Resistant (XDR) Escherichia coli and Role of Its β-Lactamase Genes. Front Microbiol 2020; 11:590357. [PMID: 33362736 PMCID: PMC7758502 DOI: 10.3389/fmicb.2020.590357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
An extensively-drug resistant (XDR) Escherichia coli W60 was isolated from the urine sample of a patient. The genetic basis for its XDR phenotype was investigated, particularly the basis for its resistance toward β-lactam/BLI (β-Lactamase Inhibitor) combinations. Following determination of the XDR phenotype, third generation genomic sequencing was performed to identify genetic structures in E. coli W60. Further cloning analysis was performed to identify determinants of β-lactam/BLI combination resistance. It was found that E. coli W60 is resistant to nearly all of the tested antibiotics including all commonly used β-lactam/BLI combinations. Analysis of the genomic structures in E. coli W60 showed two novel transferable plasmids are responsible for the resistance phenotypes. Further genetic analysis showed bla NDM-5 leads to high resistance to β-lactam/BLI combinations, which was enhanced by co-expressing ble MBL. pECW602 harbors a truncated bla TEM that is not functional due to the loss of the N-terminal signal peptide coding region. Research performed in this work leads to several significant conclusions: the XDR phenotype of E. coli W60 can be attributed to the presence of transferable multidrug resistance plasmids; NDM-5 confers high resistance to β-lactam/BLI combinations; co-expression of ble MBL enhances resistance caused by NDM-5; the signal peptides of TEM type β-lactamases are essential for their secretion and function. Findings of this work show the danger of transferable multidrug resistance plasmids and metallo-β-lactamases, both of which should be given more attention in the analysis and treatment of multidrug resistant pathogens.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenjia Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yu Niu
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, China
| | - Ting Liu
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Mengge Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ziyun Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenya Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Fangyue Liu
- Shandong Shian Chemical Co., Ltd., Dezhou, China
| | - Xuhua Zhang
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
20
|
Ding Y, Li Z, Xu C, Qin W, Wu Q, Wang X, Cheng X, Li L, Huang W. Fluorogenic Probes/Inhibitors of β-Lactamase and their Applications in Drug-Resistant Bacteria. Angew Chem Int Ed Engl 2020; 60:24-40. [PMID: 32592283 DOI: 10.1002/anie.202006635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 01/08/2023]
Abstract
β-Lactam antibiotics are generally perceived as one of the greatest inventions of the 20th century, and these small molecular compounds have saved millions of lives. However, upon clinical application of antibiotics, the β-lactamase secreted by pathogenic bacteria can lead to the gradual development of drug resistance. β-Lactamase is a hydrolase that can efficiently hydrolyze and destroy β-lactam antibiotics. It develops and spreads rapidly in pathogens, and the drug-resistant bacteria pose a severe threat to human health and development. As a result, detecting and inhibiting the activities of β-lactamase are of great value for the rational use of antibiotics and the treatment of infectious diseases. At present, many specific detection methods and inhibitors of β-lactamase have been developed and applied in clinical practice. In this Minireview, we describe the resistance mechanism of bacteria producing β-lactamase and further summarize the fluorogenic probes, inhibitors of β-lactamase, and their applications in the treatment of infectious diseases. It may be valuable to design fluorogenic probes with improved selectivity, sensitivity, and effectiveness to further identify the inhibitors for β-lactamases and eventually overcome bacterial resistance.
Collapse
Affiliation(s)
- Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Zheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Chenchen Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wenjing Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xuchun Wang
- College of Chemistry and Material Engineering, University of Science and Technology of Anhui, Bengbu, 233000, P. R. China
| | - Xiamin Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China.,Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
21
|
Ding Y, Li Z, Xu C, Qin W, Wu Q, Wang X, Cheng X, Li L, Huang W. Fluorogenic Probes/Inhibitors of β‐Lactamase and their Applications in Drug‐Resistant Bacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Zheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Chenchen Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Wenjing Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Xuchun Wang
- College of Chemistry and Material Engineering University of Science and Technology of Anhui Bengbu 233000 P. R. China
| | - Xiamin Cheng
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) Xi'an 710072 P. R. China
| |
Collapse
|
22
|
Huang L, So PK, Chen YW, Leung YC, Yao ZP. Conformational Dynamics of the Helix 10 Region as an Allosteric Site in Class A β-Lactamase Inhibitory Binding. J Am Chem Soc 2020; 142:13756-13767. [PMID: 32686406 DOI: 10.1021/jacs.0c04088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
β-Lactamase inhibitory protein (BLIP) can effectively inactivate class A β-lactamases, but with very different degrees of potency. Understanding the different roles of BLIP in class A β-lactamases inhibition can provide insights for inhibitor design. However, this problem was poorly solved on the basis of the static structures obtained by X-ray crystallography. In this work, ion mobility mass spectrometry, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulation revealed the conformational dynamics of three class A β-lactamases with varying inhibition efficiencies by BLIP. A more extended conformation of PC1 was shown compared to those of TEM1 and SHV1. Localized dynamics differed in several important loop regions, that is, the protruding loop, H10 loop, Ω loop, and SDN loop. Upon binding with BLIP, these loops cooperatively rearranged to enhance the binding interface and to inactivate the catalytic sites. In particular, unfavorable changes in conformational dynamics were found in the protruding loop of SHV1 and PC1, showing less effective binding. Intriguingly, the single mutation on BLIP could compensate for the unfavored changes in this region, and thus exhibit enhanced inhibition toward SHV1 and PC1. Additionally, the H10 region was revealed as an important allosteric site that could modulate the inhibition of class A β-lactamases. It was suggested that the rigid protruding loop and flexible H10 region might be determinants for the effective inhibition of TEM1. Our findings provided unique and explicit insights into the conformational dynamics of β-lactamases and their bindings with BLIP. This work can be extended to other β-lactamases of interest and inspire the design of novel inhibitors.
Collapse
Affiliation(s)
- Liwen Huang
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Food Safety and Technology Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Pui-Kin So
- The University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Yu Wai Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Food Safety and Technology Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China
| |
Collapse
|
23
|
Ghattas MA, Al Rawashdeh S, Atatreh N, Bryce RA. How Do Small Molecule Aggregates Inhibit Enzyme Activity? A Molecular Dynamics Study. J Chem Inf Model 2020; 60:3901-3909. [PMID: 32628846 DOI: 10.1021/acs.jcim.0c00540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small molecule compounds which form colloidal aggregates in solution are problematic in early drug discovery; adsorption of the target protein by these aggregates can lead to false positives in inhibition assays. In this work, we probe the molecular basis of this inhibitory mechanism using molecular dynamics simulations. Specifically, we examine in aqueous solution the adsorption of the enzymes β-lactamase and PTP1B onto aggregates of the drug miconazole. In accordance with experiment, molecular dynamics simulations observe formation of miconazole aggregates as well as subsequent association of these aggregates with β-lactamase and PTP1B. When complexed with aggregate, the proteins do not exhibit significant alteration in protein tertiary structure or dynamics on the microsecond time scale of the simulations, but they do indicate persistent occlusion of the protein active site by miconazole molecules. MD simulations further suggest this occlusion can occur via surficial interactions of protein with miconazole but also potentially by envelopment of the protein by miconazole. The heterogeneous polarity of the miconazole aggregate surface seems to underpin its activity as an invasive and nonspecific inhibitory agent. A deeper understanding of these protein/aggregate systems has implications not only for drug design but also for their exploitation as tools in drug delivery and analytical biochemistry.
Collapse
Affiliation(s)
| | - Sara Al Rawashdeh
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
24
|
Allostery and Epistasis: Emergent Properties of Anisotropic Networks. ENTROPY 2020; 22:e22060667. [PMID: 33286439 PMCID: PMC7517209 DOI: 10.3390/e22060667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Understanding the underlying mechanisms behind protein allostery and non-additivity of substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact of mutations, particularly at non-conserved sites. In an effort to model these two biological properties, we extend the framework of our metric to calculate dynamic coupling between residues, the Dynamic Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the difference between the residue fluctuation response of a functional site when two other positions are perturbed with random Brownian kicks simultaneously versus individually to capture the degree of cooperativity of these two other positions in modulating the dynamics of the functional site and (ii) DCIasym, which measures the degree of asymmetry between the residue fluctuation response of two sites when one or the other is perturbed with a random force. Applied to four independent systems, we successfully show that EpiScore and DCIasym can capture important biophysical properties in dual mutant substitution outcomes. We propose that allosteric regulation and the mechanisms underlying non-additive amino acid substitution outcomes (i.e., epistasis) can be understood as emergent properties of an anisotropic network of interactions where the inclusion of the full network of interactions is critical for accurate modeling. Consequently, mutations which drive towards a new function may require a fine balance between functional site asymmetry and strength of dynamic coupling with the functional sites. These two tools will provide mechanistic insight into both understanding and predicting the outcome of dual mutations.
Collapse
|
25
|
Li P, Liu C, Li B, Ma Q. Structural analysis of the CARB β-lactamase from Vibrio parahaemolyticus facilitates application of the β-lactam/β-lactamase inhibitor therapy. Biochimie 2020; 171-172:213-222. [DOI: 10.1016/j.biochi.2020.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
|
26
|
Fantini M, Lisi S, De Los Rios P, Cattaneo A, Pastore A. Protein Structural Information and Evolutionary Landscape by In Vitro Evolution. Mol Biol Evol 2020; 37:1179-1192. [PMID: 31670785 PMCID: PMC7086169 DOI: 10.1093/molbev/msz256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein structure is tightly intertwined with function according to the laws of evolution. Understanding how structure determines function has been the aim of structural biology for decades. Here, we have wondered instead whether it is possible to exploit the function for which a protein was evolutionary selected to gain information on protein structure and on the landscape explored during the early stages of molecular and natural evolution. To answer to this question, we developed a new methodology, which we named CAMELS (Coupling Analysis by Molecular Evolution Library Sequencing), that is able to obtain the in vitro evolution of a protein from an artificial selection based on function. We were able to observe with CAMELS many features of the TEM-1 beta-lactamase local fold exclusively by generating and sequencing large libraries of mutational variants. We demonstrated that we can, whenever a functional phenotypic selection of a protein is available, sketch the structural and evolutionary landscape of a protein without utilizing purified proteins, collecting physical measurements, or relying on the pool of natural protein variants.
Collapse
Affiliation(s)
- Marco Fantini
- BioSNS Laboratory of Biology, Scuola Normale Superiore (SNS), Pisa, Italy
| | - Simonetta Lisi
- BioSNS Laboratory of Biology, Scuola Normale Superiore (SNS), Pisa, Italy
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antonino Cattaneo
- BioSNS Laboratory of Biology, Scuola Normale Superiore (SNS), Pisa, Italy
- European Brain Research Institute, Rome, Italy
| | - Annalisa Pastore
- Department of Clinical and Basic Neuroscience, Maurice Wohl Institute, King's College London, London, United Kingdom
- Dementia Research Institute, King’s College London, London, United Kingdom
| |
Collapse
|
27
|
Salado-Leza D, Traore A, Porcel E, Dragoe D, Muñoz A, Remita H, García G, Lacombe S. Radio-Enhancing Properties of Bimetallic Au:Pt Nanoparticles: Experimental and Theoretical Evidence. Int J Mol Sci 2019; 20:ijms20225648. [PMID: 31718091 PMCID: PMC6888691 DOI: 10.3390/ijms20225648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
The use of nanoparticles, in combination with ionizing radiation, is considered a promising method to improve the performance of radiation therapies. In this work, we engineered mono- and bimetallic core-shell gold–platinum nanoparticles (NPs) grafted with poly (ethylene glycol) (PEG). Their radio-enhancing properties were investigated using plasmids as bio-nanomolecular probes and gamma radiation. We found that the presence of bimetallic Au:Pt-PEG NPs increased by 90% the induction of double-strand breaks, the signature of nanosize biodamage, and the most difficult cell lesion to repair. The radio-enhancement of Au:Pt-PEG NPs were found three times higher than that of Au-PEG NPs. This effect was scavenged by 80% in the presence of dimethyl sulfoxide, demonstrating the major role of hydroxyl radicals in the damage induction. Geant4-DNA Monte Carlo simulations were used to elucidate the physical processes involved in the radio-enhancement. We predicted enhancement factors of 40% and 45% for the induction of nanosize damage, respectively, for mono- and bimetallic nanoparticles, which is attributed to secondary electron impact processes. This work contributed to a better understanding of the interplay between energy deposition and the induction of nanosize biomolecular damage, being Monte Carlo simulations a simple method to guide the synthesis of new radio-enhancing agents.
Collapse
Affiliation(s)
- Daniela Salado-Leza
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Cátedras CONACyT, Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, S.L.P., Mexico
| | - Ali Traore
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Erika Porcel
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
| | - Diana Dragoe
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (UMR 8182) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Antonio Muñoz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 22, 28040 Madrid, Spain;
| | - Hynd Remita
- Laboratoire de Chimie Physique (UMR 8000) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Sandrine Lacombe
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Correspondence: ; Tel.: +33-(1)-6915-8263
| |
Collapse
|
28
|
Wang F, Shen L, Zhou H, Wang S, Wang X, Tao P. Machine Learning Classification Model for Functional Binding Modes of TEM-1 β-Lactamase. Front Mol Biosci 2019; 6:47. [PMID: 31355207 PMCID: PMC6629954 DOI: 10.3389/fmolb.2019.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
TEM family of enzymes is one of the most commonly encountered β-lactamases groups with different catalytic capabilities against various antibiotics. Despite the studies investigating the catalytic mechanism of TEM β-lactamases, the binding modes of these enzymes against ligands in different functional catalytic states have been largely overlooked. But the binding modes may play a critical role in the function and even the evolution of these proteins. In this work, a newly developed machine learning analysis approach to the recognition of protein dynamics states was applied to compare the binding modes of TEM-1 β-lactamase with regard to penicillin in different catalytic states. While conventional analysis methods, including principal components analysis (PCA), could not differentiate TEM-1 in different binding modes, the application of a machine learning method led to excellent classification models differentiating these states. It was also revealed that both reactant/product states and apo/product states are more differentiable than the apo/reactant states. The feature importance generated by the training procedure of the machine learning model was utilized to evaluate the contribution from residues at active sites and in different secondary structures. Key active site residues, Ser70 and Ser130, play a critical role in differentiating reactant/product states, while other active site residues are more important for differentiating apo/product states. Overall, this study provides new insights into the different dynamical function states of TEM-1 and may open a new venue for β-lactamases functional and evolutional studies in general.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Li Shen
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Hongyu Zhou
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing, and Systems Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, United States
| | - Peng Tao
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
29
|
Shcherbinin D, Veselovsky A, Rubtsova M, Grigorenko V, Egorov A. The impact of long-distance mutations on the Ω-loop conformation in TEM type β-lactamases. J Biomol Struct Dyn 2019; 38:2369-2376. [PMID: 31241429 DOI: 10.1080/07391102.2019.1634642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
β-lactamases are hydrolytic enzymes primarily responsible for occurrence and abundance of bacteria resistant to β-lactam antibiotics. TEM type β-lactamases are formed by the parent enzyme TEM-1 and more than two hundred of its mutants. Positions for the known amino acid substitutions cover ∼30% of TEM type enzyme's sequence. These substitutions are divided into the key mutations that lead to changes in catalytic properties of β-lactamases, and the secondary ones, which role is poorly understood. In this study, Residue Interaction Networks were constructed from molecular dynamic trajectories of β-lactamase TEM-1 and its variants with two key substitutions, G238S and E240K, and their combinations with secondary ones (M182T and Q39K). Particular attention was paid to a detailed analysis of the interactions that affect conformation and mobility of the Ω-loop, representing a part of the β-lactamase active site. It was shown that key mutations weakened the stability of contact inside the Ω-loop thus increasing its mobility. Combination of three amino acid substitutions, including the 182 residue, leads to the release of R65 promoting its new contacts with N175 and D176. As a result, Ω-loop is fixed on the protein globule. The second distal mutation Q39K prevents changes in spatial position of R65, which lead to the weakening of the effect of M182T substitution and the recovery of the Ω-loop mobility. Thus, the distal secondary mutations are directed for recovering the mobility of enzyme disturbed by the key mutations responsible for expansion of substrate specificity. AbbreviationsESBLextended spectrum beta-lactamasesIRinhibitor resistant beta-lactamasesMDmolecular dynamicsRINresidue interaction networksRMSDroot mean square deviationRMSFroot mean square fluctuations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dmitrii Shcherbinin
- Institute of Biomedical Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Maya Rubtsova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vitaly Grigorenko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Egorov
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
30
|
Shurina BA, Page RC. Influence of substrates and inhibitors on the structure of Klebsiella pneumoniae carbapenemase-2. Exp Biol Med (Maywood) 2019; 244:1596-1604. [PMID: 31161945 DOI: 10.1177/1535370219854322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hydrolysis of last resort carbapenem antibiotics by Klebsiella pneumoniae carbapenemase-2 (KPC-2) presents a significant danger to global health. Combined with horizontal gene transfer, the emergence KPC-2 threatens to quickly expand carbapenemase activity to ever increasing numbers of pathogens. Our understanding of KPC-2 has greatly increased over the past decade thanks, in great part, to 20 crystal structures solved by groups around the world. These include apo KPC-2 structures, along with structures featuring a library of 10 different inhibitors representing diverse structural and functional classes. Herein we focus on cataloging the available KPC-2 structures and presenting a discussion of key aspects of each structure and important relationships between structures. Although the available structures do not provide information on dynamic motions with KPC-2, and the family of structures indicates small conformational changes across a wide array of bound inhibitors, substrates, and products, the structures provide a strong foundation for additional studies in the coming years to discover new KPC-2 inhibitors. Impact statement The work herein is important to the field as it provides a clear and succinct accounting of available KPC-2 structures. The work advances the field by collecting and analyzing differences and similarities across the available structures. This work features new analyses and interpretations of the existing structures which will impact the field in a positive way by making structural insights more widely available among the beta-lactamase community.
Collapse
Affiliation(s)
- Ben A Shurina
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
31
|
Mutations Utilize Dynamic Allostery to Confer Resistance in TEM-1 β-lactamase. Int J Mol Sci 2018; 19:ijms19123808. [PMID: 30501088 PMCID: PMC6321620 DOI: 10.3390/ijms19123808] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
β-lactamases are enzymes produced by bacteria to hydrolyze β-lactam antibiotics as a common mechanism of resistance. Evolution in such enzymes has been rendering a wide variety of antibiotics impotent, therefore posing a major threat. Clinical and in vitro studies of evolution in TEM-1 β-lactamase have revealed a large number of single point mutations that are responsible for driving resistance to antibiotics and/or inhibitors. The distal locations of these mutations from the active sites suggest that these allosterically modulate the antibiotic resistance. We investigated the effects of resistance driver mutations on the conformational dynamics of the enzyme to provide insights about the mechanism of their long-distance interactions. Through all-atom molecular dynamics (MD) simulations, we obtained the dynamic flexibility profiles of the variants and compared those with that of the wild type TEM-1. While the mutational sites in the variants did not have any direct van der Waals interactions with the active site position S70 and E166, we observed a change in the flexibility of these sites, which play a very critical role in hydrolysis. Such long distance dynamic interactions were further confirmed by dynamic coupling index (DCI) analysis as the sites involved in resistance driving mutations exhibited high dynamic coupling with the active sites. A more exhaustive dynamic analysis, using a selection pressure for ampicillin and cefotaxime resistance on all possible types of substitutions in the amino acid sequence of TEM-1, further demonstrated the observed mechanism. Mutational positions that play a crucial role for the emergence of resistance to new antibiotics exhibited high dynamic coupling with the active site irrespective of their locations. These dynamically coupled positions were neither particularly rigid nor particularly flexible, making them more evolvable positions. Nature utilizes these sites to modulate the dynamics of the catalytic sites instead of mutating the highly rigid positions around the catalytic site.
Collapse
|
32
|
Patel MP, Hu L, Brown CA, Sun Z, Adamski CJ, Stojanoski V, Sankaran B, Prasad BVV, Palzkill T. Synergistic effects of functionally distinct substitutions in β-lactamase variants shed light on the evolution of bacterial drug resistance. J Biol Chem 2018; 293:17971-17984. [PMID: 30275013 DOI: 10.1074/jbc.ra118.003792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/26/2018] [Indexed: 11/06/2022] Open
Abstract
The CTX-M β-lactamases have emerged as the most widespread extended-spectrum β-lactamases (ESBLs) in Gram-negative bacteria. These enzymes rapidly hydrolyze cefotaxime, but not the related cephalosporin, ceftazidime. ESBL variants have evolved, however, that provide enhanced ceftazidime resistance. We show here that a natural variant at a nonactive site, i.e. second-shell residue N106S, enhances enzyme stability but reduces catalytic efficiency for cefotaxime and ceftazidime and decreases resistance levels. However, when the N106S variant was combined with an active-site variant, D240G, that enhances enzyme catalytic efficiency, but decreases stability, the resultant double mutant exhibited higher resistance levels than predicted on the basis of the phenotypes of each variant. We found that this epistasis is due to compensatory effects, whereby increased stability provided by N106S overrides its cost of decreased catalytic activity. X-ray structures of the variant enzymes in complex with cefotaxime revealed conformational changes in the active-site loop spanning residues 103-106 that were caused by the N106S substitution and relieve steric strain to stabilize the enzyme, but also alter contacts with cefotaxime and thereby reduce catalytic activity. We noted that the 103-106 loop conformation in the N106S-containing variants is different from that of WT CTX-M but nearly identical to that of the non-ESBL, TEM-1 β-lactamase, having a serine at the 106 position. Therefore, residue 106 may serve as a "switch" that toggles the conformations of the 103-106 loop. When it is serine, the loop is in the non-ESBL, TEM-like conformation, and when it is asparagine, the loop is in a CTX-M-like, cefotaximase-favorable conformation.
Collapse
Affiliation(s)
- Meha P Patel
- From the Interdepartmental Graduate Program in Translational Biology and Molecular Medicine; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Liya Hu
- Verna Marrs McLean Department of Biochemistry and Molecular Biology
| | - Cameron A Brown
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Zhizeng Sun
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Carolyn J Adamski
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna Marrs McLean Department of Biochemistry and Molecular Biology
| | - Vlatko Stojanoski
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna Marrs McLean Department of Biochemistry and Molecular Biology
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna Marrs McLean Department of Biochemistry and Molecular Biology.
| |
Collapse
|
33
|
Takahashi M, Sakamoto K. Engineering of Escherichia coli β-lactamase TEM-1 variants showing higher activity under acidic conditions than at the neutral pH. Biochem Biophys Res Commun 2018; 505:333-337. [DOI: 10.1016/j.bbrc.2018.09.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 01/26/2023]
|
34
|
Roose BW, Zemerov SD, Wang Y, Kasimova MA, Carnevale V, Dmochowski IJ. A Structural Basis for 129 Xe Hyper-CEST Signal in TEM-1 β-Lactamase. Chemphyschem 2018; 20:260-267. [PMID: 30151973 DOI: 10.1002/cphc.201800624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Indexed: 11/10/2022]
Abstract
Genetically encoded (GE) contrast agents detectable by magnetic resonance imaging (MRI) enable non-invasive visualization of gene expression and cell proliferation at virtually unlimited penetration depths. Using hyperpolarized 129 Xe in combination with chemical exchange saturation transfer, an MR contrast approach known as hyper-CEST, enables ultrasensitive protein detection and biomolecular imaging. GE MRI contrast agents developed to date include nanoscale proteinaceous gas vesicles as well as the monomeric bacterial proteins TEM-1 β-lactamase (bla) and maltose binding protein (MBP). To improve understanding of hyper-CEST NMR with proteins, structural and computational studies were performed to further characterize the Xe-bla interaction. X-ray crystallography validated the location of a high-occupancy Xe binding site predicted by MD simulations, and mutagenesis experiments confirmed this Xe site as the origin of the observed CEST contrast. Structural studies and MD simulations with representative bla mutants offered additional insight regarding the relationship between local protein structure and CEST contrast.
Collapse
Affiliation(s)
- Benjamin W Roose
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104
| | - Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104
| | - Yanfei Wang
- Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| | - Marina A Kasimova
- Science for Life Laboratory Department of Theoretical Physics, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science College of Science and Technology, Temple University, 1925 N 12th St, Philadelphia, PA 19122
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104
| |
Collapse
|
35
|
Defining the architecture of KPC-2 Carbapenemase: identifying allosteric networks to fight antibiotics resistance. Sci Rep 2018; 8:12916. [PMID: 30150677 PMCID: PMC6110804 DOI: 10.1038/s41598-018-31176-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/13/2018] [Indexed: 11/08/2022] Open
Abstract
The rise of multi-drug resistance in bacterial pathogens is one of the grand challenges facing medical science. A major concern is the speed of development of β-lactamase-mediated resistance in Gram-negative species, thus putting at risk the efficacy of the most recently approved antibiotics and inhibitors, including carbapenems and avibactam, respectively. New strategies to overcome resistance are urgently required, which will ultimately be facilitated by a deeper understanding of the mechanisms that regulate the function of β-lactamases such as the Klebsiella Pneumoniae carbapenemases (KPCs). Using enhanced sampling computational methods together with site-directed mutagenesis, we report the identification of two “hydrophobic networks” in the KPC-2 enzyme, the integrity of which has been found to be essential for protein stability and corresponding resistance. Present throughout the structure, these networks are responsible for the structural integrity and allosteric signaling. Disruption of the networks leads to a loss of the KPC-2 mediated resistance phenotype, resulting in restored susceptibility to different classes of β-lactam antibiotics including carbapenems and cephalosporins. The ”hydrophobic networks” were found to be highly conserved among class-A β-lactamases, which implies their suitability for exploitation as a potential target for therapeutic intervention.
Collapse
|
36
|
Knox R, Lento C, Wilson DJ. Mapping Conformational Dynamics to Individual Steps in the TEM-1 β-Lactamase Catalytic Mechanism. J Mol Biol 2018; 430:3311-3322. [PMID: 29964048 DOI: 10.1016/j.jmb.2018.06.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Conformational dynamics are increasingly recognized as being essential for enzyme function. However, there is virtually no direct experimental evidence to support the notion that individual dynamic modes are required for specific catalytic processes, apart from the initial step of substrate binding. In this work, we use a unique approach based on millisecond hydrogen-deuterium exchange mass spectrometry to identify dynamic modes linked to individual catalytic processes in the antibiotic resistance enzyme TEM-1 β-lactamase. Using a "good" substrate (ampicillin), a poorly hydrolyzed substrate (cephalexin) and a covalent inhibitor (clavulanate), we are able to isolate dynamic modes that are specifically linked to substrate binding, productive lactam ring hydrolysis and deacylation. These discoveries are ultimately translated into specific targets for allosteric TEM-1 inhibitor development.
Collapse
Affiliation(s)
- Ruth Knox
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Canada M3J 1P3; Center for Research in Mass Spectrometry, York University, Toronto, Canada M3J 1P3.
| |
Collapse
|
37
|
Wang CY, Chang PM, Ary ML, Allen BD, Chica RA, Mayo SL, Olafson BD. ProtaBank: A repository for protein design and engineering data. Protein Sci 2018; 27:1113-1124. [PMID: 29575358 PMCID: PMC5980626 DOI: 10.1002/pro.3406] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
We present ProtaBank, a repository for storing, querying, analyzing, and sharing protein design and engineering data in an actively maintained and updated database. ProtaBank provides a format to describe and compare all types of protein mutational data, spanning a wide range of properties and techniques. It features a user‐friendly web interface and programming layer that streamlines data deposition and allows for batch input and queries. The database schema design incorporates a standard format for reporting protein sequences and experimental data that facilitates comparison of results across different data sets. A suite of analysis and visualization tools are provided to facilitate discovery, to guide future designs, and to benchmark and train new predictive tools and algorithms. ProtaBank will provide a valuable resource to the protein engineering community by storing and safeguarding newly generated data, allowing for fast searching and identification of relevant data from the existing literature, and exploring correlations between disparate data sets. ProtaBank invites researchers to contribute data to the database to make it accessible for search and analysis. ProtaBank is available at https://protabank.org.
Collapse
Affiliation(s)
- Connie Y Wang
- Protabit LLC, 129 N. Hill Avenue, Suite 102, Pasadena, California, 91106
| | - Paul M Chang
- Protabit LLC, 129 N. Hill Avenue, Suite 102, Pasadena, California, 91106
| | - Marie L Ary
- Protabit LLC, 129 N. Hill Avenue, Suite 102, Pasadena, California, 91106
| | - Benjamin D Allen
- Protabit LLC, 129 N. Hill Avenue, Suite 102, Pasadena, California, 91106.,Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Roberto A Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Stephen L Mayo
- Protabit LLC, 129 N. Hill Avenue, Suite 102, Pasadena, California, 91106.,Division of Biology and Biological Engineering, and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Barry D Olafson
- Protabit LLC, 129 N. Hill Avenue, Suite 102, Pasadena, California, 91106
| |
Collapse
|
38
|
Zaki AJ, Hartley AM, Reddington SC, Thomas SK, Watson P, Hayes A, Moskalenko AV, Craciun MF, Macdonald JE, Jones DD, Elliott M. Defined covalent assembly of protein molecules on graphene using a genetically encoded photochemical reaction handle. RSC Adv 2018; 8:5768-5775. [PMID: 35539607 PMCID: PMC9078156 DOI: 10.1039/c7ra11166e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/11/2018] [Indexed: 11/27/2022] Open
Abstract
We have created modified protein variants by introducing a non-canonical amino acid p-azido-l-phenylalanine (azF) into defined positions for photochemically-induced covalent attachment to graphene. Attachment of GFP, TEM and cyt b 562 proteins was verified through a combination of atomic force and scanning tunnelling microscopy, resistance measurements, Raman data and fluorescence measurements. This method can in principle be extended to any protein which can be engineered in this way without adversely affecting its structural stability.
Collapse
Affiliation(s)
- Athraa J Zaki
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| | | | | | - Suzanne K Thomas
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| | - Peter Watson
- School of Biosciences, Cardiff University CF10 3AX UK
| | - Anthony Hayes
- School of Biosciences, Cardiff University CF10 3AX UK
| | - Andy V Moskalenko
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| | | | - J Emyr Macdonald
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| | | | - Martin Elliott
- School of Physics and Astronomy, Cardiff University Cardiff CF24 3AA UK
| |
Collapse
|
39
|
Grigorenko V, Uporov I, Rubtsova M, Andreeva I, Shcherbinin D, Veselovsky A, Serova O, Ulyashova M, Ishtubaev I, Egorov A. Mutual influence of secondary and key drug-resistance mutations on catalytic properties and thermal stability of TEM-type β-lactamases. FEBS Open Bio 2018; 8:117-129. [PMID: 29321962 PMCID: PMC5757180 DOI: 10.1002/2211-5463.12352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/26/2022] Open
Abstract
Highly mutable β-lactamases are responsible for the ability of Gram-negative bacteria to resist β-lactam antibiotics. Using site-directed mutagenesis technique, we have produced in vitro a number of recombinant analogs of naturally occurring TEM-type β-lactamases, bearing the secondary substitution Q39K and key mutations related to the extended-spectrum (E104K, R164S) and inhibitor-resistant (M69V) β-lactamases. The mutation Q39K alone was found to be neutral and hardly affected the catalytic properties of β-lactamases. However, in combination with the key mutations, this substitution resulted in decreased KM values towards hydrolysis of a chromogenic substrate, CENTA. The ability of enzymes to restore catalytic activity after exposure to elevated temperature has been examined. All double and triple mutants of β-lactamase TEM-1 bearing the Q39K substitution showed lower thermal stability compared with the enzyme with Q39 intact. A sharp decrease in the stability was observed when Q39K was combined with E104K and M69V. The key R164S substitution demonstrated unusual ability to resist thermal inactivation. Computer analysis of the structure and molecular dynamics of β-lactamase TEM-1 revealed a network of hydrogen bonds from the residues Q39 and K32, related to the N-terminal α-helix, towards the residues R244 and G236, located in the vicinity of the enzyme's catalytic site. Replacement of Q39 by lysine in combination with the key drug resistance mutations may be responsible for loss of protein thermal stability and elevated mobility of its secondary structure elements. This effect on the activity of β-lactamases can be used as a new potential target for inhibiting the enzyme.
Collapse
Affiliation(s)
| | - Igor Uporov
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Maya Rubtsova
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Irina Andreeva
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | | | | | - Oksana Serova
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Maria Ulyashova
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Igor Ishtubaev
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Alexey Egorov
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| |
Collapse
|
40
|
Elings W, Tassoni R, van der Schoot SA, Luu W, Kynast JP, Dai L, Blok AJ, Timmer M, Florea BI, Pannu NS, Ubbink M. Phosphate Promotes the Recovery of Mycobacterium tuberculosis β-Lactamase from Clavulanic Acid Inhibition. Biochemistry 2017; 56:6257-6267. [PMID: 29087696 PMCID: PMC5707625 DOI: 10.1021/acs.biochem.7b00556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The rise of multi-
and even totally antibiotic resistant forms
of Mycobacterium tuberculosis underlines the need
for new antibiotics. The pathogen is resistant to β-lactam compounds
due to its native serine β-lactamase, BlaC. This resistance
can be circumvented by administration of a β-lactamase inhibitor.
We studied the interaction between BlaC and the inhibitor clavulanic
acid. Our data show hydrolysis of clavulanic acid and recovery of
BlaC activity upon prolonged incubation. The rate of clavulanic acid
hydrolysis is much higher in the presence of phosphate ions. A specific
binding site for phosphate is identified in the active site pocket,
both in the crystalline state and in solution. NMR spectroscopy experiments
show that phosphate binds to this site with a dissociation constant
of 30 mM in the free enzyme. We conclude that inhibition of BlaC by
clavulanic acid is reversible and that phosphate ions can promote
the hydrolysis of the inhibitor.
Collapse
Affiliation(s)
- Wouter Elings
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Raffaella Tassoni
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | | | - Wendy Luu
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Josef P Kynast
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Lin Dai
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Anneloes J Blok
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Navraj S Pannu
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| |
Collapse
|
41
|
Knies JL, Cai F, Weinreich DM. Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase. Mol Biol Evol 2017; 34:1040-1054. [PMID: 28087769 PMCID: PMC5400381 DOI: 10.1093/molbev/msx053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A leading intellectual challenge in evolutionary genetics is to identify the specific phenotypes that drive adaptation. Enzymes offer a particularly promising opportunity to pursue this question, because many enzymes' contributions to organismal fitness depend on a comparatively small number of experimentally accessible properties. Moreover, on first principles the demands of enzyme thermostability stand in opposition to the demands of catalytic activity. This observation, coupled with the fact that enzymes are only marginally thermostable, motivates the widely held hypothesis that mutations conferring functional improvement require compensatory mutations to restore thermostability. Here, we explicitly test this hypothesis for the first time, using four missense mutations in TEM-1 β-lactamase that jointly increase cefotaxime Minimum Inhibitory Concentration (MIC) ∼1500-fold. First, we report enzymatic efficiency (kcat/KM) and thermostability (Tm, and thence ΔG of folding) for all combinations of these mutations. Next, we fit a quantitative model that predicts MIC as a function of kcat/KM and ΔG. While kcat/KM explains ∼54% of the variance in cefotaxime MIC (∼92% after log transformation), ΔG does not improve explanatory power of the model. We also find that cefotaxime MIC rises more slowly in kcat/KM than predicted. Several explanations for these discrepancies are suggested. Finally, we demonstrate substantial sign epistasis in MIC and kcat/KM, and antagonistic pleiotropy between phenotypes, in spite of near numerical additivity in the system. Thus constraints on selectively accessible trajectories, as well as limitations in our ability to explain such constraints in terms of underlying mechanisms are observed in a comparatively "well-behaved" system.
Collapse
Affiliation(s)
- Jennifer L Knies
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Fei Cai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| |
Collapse
|
42
|
Marth G, Hartley AM, Reddington SC, Sargisson LL, Parcollet M, Dunn KE, Jones DD, Stulz E. Precision Templated Bottom-Up Multiprotein Nanoassembly through Defined Click Chemistry Linkage to DNA. ACS NANO 2017; 11:5003-5010. [PMID: 28414900 DOI: 10.1021/acsnano.7b01711] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate an approach that allows attachment of single-stranded DNA (ssDNA) to a defined residue in a protein of interest (POI) so as to provide optimal and well-defined multicomponent assemblies. Using an expanded genetic code system, azido-phenylalanine (azF) was incorporated at defined residue positions in each POI; copper-free click chemistry was used to attach exactly one ssDNA at precisely defined residues. By choosing an appropriate residue, ssDNA conjugation had minimal impact on protein function, even when attached close to active sites. The protein-ssDNA conjugates were used to (i) assemble double-stranded DNA systems with optimal communication (energy transfer) between normally separate groups and (ii) generate multicomponent systems on DNA origami tiles, including those with enhanced enzyme activity when bound to the tile. Our approach allows any potential protein to be simply engineered to attach ssDNA or related biomolecules, creating conjugates for designed and highly precise multiprotein nanoscale assembly with tailored functionality.
Collapse
Affiliation(s)
- Gabriella Marth
- School of Chemistry and Institute for Life Sciences, University of Southampton , Highfield, Southampton SO17 1BJ, United Kingdom
| | - Andrew M Hartley
- School of Biosciences, Cardiff University , Cardiff CF10 3AT, United Kingdom
| | - Samuel C Reddington
- School of Biosciences, Cardiff University , Cardiff CF10 3AT, United Kingdom
| | - Lauren L Sargisson
- School of Chemistry and Institute for Life Sciences, University of Southampton , Highfield, Southampton SO17 1BJ, United Kingdom
| | - Marlène Parcollet
- School of Chemistry and Institute for Life Sciences, University of Southampton , Highfield, Southampton SO17 1BJ, United Kingdom
| | - Katherine E Dunn
- Department of Electronics, University of York , Heslington, York YO10 5DD, United Kingdom
| | - D Dafydd Jones
- School of Biosciences, Cardiff University , Cardiff CF10 3AT, United Kingdom
| | - Eugen Stulz
- School of Chemistry and Institute for Life Sciences, University of Southampton , Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
43
|
High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL. Sci Rep 2016; 6:36527. [PMID: 27827433 PMCID: PMC5101513 DOI: 10.1038/srep36527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 10/18/2016] [Indexed: 01/11/2023] Open
Abstract
The omega loop in β-lactamases plays a pivotal role in substrate recognition and catalysis, and some mutations in this loop affect the adaptability of the enzymes to new antibiotics. Various mutations, including substitutions, deletions, and intragenic duplications resulting in tandem repeats (TRs), have been associated with β-lactamase substrate spectrum extension. TRs are unique among the mutations as they cause severe structural perturbations in the enzymes. We explored the process by which TRs are accommodated in order to test the adaptability of the omega loop. Structures of the mutant enzymes showed that the extra amino acid residues in the omega loop were freed outward from the enzyme, thereby maintaining the overall enzyme integrity. This structural adjustment was accompanied by disruptions of the internal α-helix and hydrogen bonds that originally maintained the conformation of the omega loop and the active site. Consequently, the mutant enzymes had a relaxed binding cavity, allowing for access of new substrates, which regrouped upon substrate binding in an induced-fit manner for subsequent hydrolytic reactions. Together, the data demonstrate that the design of the binding cavity, including the omega loop with its enormous adaptive capacity, is the foundation of the continuous evolution of β-lactamases against new drugs.
Collapse
|
44
|
Hart KM, Ho CMW, Dutta S, Gross ML, Bowman GR. Modelling proteins' hidden conformations to predict antibiotic resistance. Nat Commun 2016; 7:12965. [PMID: 27708258 PMCID: PMC5477488 DOI: 10.1038/ncomms12965] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/19/2016] [Indexed: 11/30/2022] Open
Abstract
TEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM's specificity. We integrate these models with existing drug-design tools to create a new technique, called Boltzmann docking, which better predicts TEM specificity by accounting for conformational heterogeneity. Using our MSMs, we identify hidden states whose populations correlate with activity against cefotaxime. To experimentally detect our predicted hidden states, we use rapid mass spectrometric footprinting and confirm our models' prediction that increased cefotaxime activity correlates with reduced Ω-loop flexibility. Finally, we design novel variants to stabilize the hidden cefotaximase states, and find their populations predict activity against cefotaxime in vitro and in vivo. Therefore, we expect this framework to have numerous applications in drug and protein design.
Collapse
Affiliation(s)
- Kathryn M. Hart
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Chris M. W. Ho
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Supratik Dutta
- Department of Chemistry, Washington University in St Louis, One Brookings Drive, St Louis, Missouri 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St Louis, One Brookings Drive, St Louis, Missouri 63130, USA
| | - Gregory R. Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
- Department of Biomedical Engineering, and Center for Biological Systems Engineering, Washington University in St Louis, One Brookings Drive, St Louis, Missouri 63130, USA
| |
Collapse
|
45
|
Liakopoulos A, Mevius D, Ceccarelli D. A Review of SHV Extended-Spectrum β-Lactamases: Neglected Yet Ubiquitous. Front Microbiol 2016; 7:1374. [PMID: 27656166 PMCID: PMC5011133 DOI: 10.3389/fmicb.2016.01374] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 12/29/2022] Open
Abstract
β-lactamases are the primary cause of resistance to β-lactams among members of the family Enterobacteriaceae. SHV enzymes have emerged in Enterobacteriaceae causing infections in health care in the last decades of the Twentieth century, and they are now observed in isolates in different epidemiological settings both in human, animal and the environment. Likely originated from a chromosomal penicillinase of Klebsiella pneumoniae, SHV β-lactamases currently encompass a large number of allelic variants including extended-spectrum β-lactamases (ESBL), non-ESBL and several not classified variants. SHV enzymes have evolved from a narrow- to an extended-spectrum of hydrolyzing activity, including monobactams and carbapenems, as a result of amino acid changes that altered the configuration around the active site of the β -lactamases. SHV-ESBLs are usually encoded by self-transmissible plasmids that frequently carry resistance genes to other drug classes and have become widespread throughout the world in several Enterobacteriaceae, emphasizing their clinical significance.
Collapse
Affiliation(s)
- Apostolos Liakopoulos
- Department of Bacteriology and Epidemiology, Central Veterinary Institute of Wageningen UR Lelystad, Netherlands
| | - Dik Mevius
- Department of Bacteriology and Epidemiology, Central Veterinary Institute of Wageningen URLelystad, Netherlands; Faculty of Veterinary Medicine, Utrecht UniversityUtrecht, Netherlands
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Central Veterinary Institute of Wageningen UR Lelystad, Netherlands
| |
Collapse
|
46
|
A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes. Clin Microbiol Rev 2016; 29:29-57. [PMID: 26511485 DOI: 10.1128/cmr.00019-15] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For medical biologists, sequencing has become a commonplace technique to support diagnosis. Rapid changes in this field have led to the generation of large amounts of data, which are not always correctly listed in databases. This is particularly true for data concerning class A β-lactamases, a group of key antibiotic resistance enzymes produced by bacteria. Many genomes have been reported to contain putative β-lactamase genes, which can be compared with representative types. We analyzed several hundred amino acid sequences of class A β-lactamase enzymes for phylogenic relationships, the presence of specific residues, and cluster patterns. A clear distinction was first made between dd-peptidases and class A enzymes based on a small number of residues (S70, K73, P107, 130SDN132, G144, E166, 234K/R, 235T/S, and 236G [Ambler numbering]). Other residues clearly separated two main branches, which we named subclasses A1 and A2. Various clusters were identified on the major branch (subclass A1) on the basis of signature residues associated with catalytic properties (e.g., limited-spectrum β-lactamases, extended-spectrum β-lactamases, and carbapenemases). For subclass A2 enzymes (e.g., CfxA, CIA-1, CME-1, PER-1, and VEB-1), 43 conserved residues were characterized, and several significant insertions were detected. This diversity in the amino acid sequences of β-lactamases must be taken into account to ensure that new enzymes are accurately identified. However, with the exception of PER types, this diversity is poorly represented in existing X-ray crystallographic data.
Collapse
|
47
|
Na JH, Cha SS. Structural basis for the extended substrate spectrum of AmpC BER and structure-guided discovery of the inhibition activity of citrate against the class C β-lactamases AmpC BER and CMY-10. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:976-85. [PMID: 27487828 DOI: 10.1107/s2059798316011311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/11/2016] [Indexed: 11/10/2022]
Abstract
AmpC BER is an extended substrate spectrum class C β-lactamase with a two-amino-acid insertion in the R2 loop compared with AmpC EC2. The crystal structures of AmpC BER (S64A mutant) and AmpC EC2 were determined. Structural comparison of the two proteins revealed that the insertion increases the conformational flexibility of the R2 loop. Two citrate molecules originating from the crystallization solution were observed in the active site of the S64A mutant. One citrate molecule makes extensive interactions with active-site residues that are highly conserved among class C β-lactamases, whereas the other one is weakly bound. Based on this structural observation, it is demonstrated that citrate, a primary metabolite that is widely used as a food additive, is a competitive inhibitor of two class C β-lactamases (AmpC BER and CMY-10). Consequently, the data indicate enhancement of the flexibility of the R2 loop as an operative strategy for molecular evolution of extended-spectrum class C β-lactamases, and also suggest that the citrate scaffold is recognized by the active sites of class C β-lactamases.
Collapse
Affiliation(s)
- Jung Hyun Na
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun Shin Cha
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
48
|
Abstract
Molecular dynamics (MD) simulations are a powerful tool for understanding enzymes' structures and functions with full atomistic detail. These physics-based simulations model the dynamics of a protein in solution and store snapshots of its atomic coordinates at discrete time intervals. Analysis of the snapshots from these trajectories provides thermodynamic and kinetic properties such as conformational free energies, binding free energies, and transition times. Unfortunately, simulating biologically relevant timescales with brute force MD simulations requires enormous computing resources. In this chapter we detail a goal-oriented sampling algorithm, called fluctuation amplification of specific traits, that quickly generates pertinent thermodynamic and kinetic information by using an iterative series of short MD simulations to explore the vast depths of conformational space.
Collapse
|
49
|
Lee D, Das S, Dawson NL, Dobrijevic D, Ward J, Orengo C. Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases. PLoS Comput Biol 2016; 12:e1004926. [PMID: 27332861 PMCID: PMC4917113 DOI: 10.1371/journal.pcbi.1004926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/19/2016] [Indexed: 11/23/2022] Open
Abstract
Beta-lactamases represent the main bacterial mechanism of resistance to beta-lactam antibiotics and are a significant challenge to modern medicine. We have developed an automated classification and analysis protocol that exploits structure- and sequence-based approaches and which allows us to propose a grouping of serine beta-lactamases that more consistently captures and rationalizes the existing three classification schemes: Classes, (A, C and D, which vary in their implementation of the mechanism of action); Types (that largely reflect evolutionary distance measured by sequence similarity); and Variant groups (which largely correspond with the Bush-Jacoby clinical groups). Our analysis platform exploits a suite of in-house and public tools to identify Functional Determinants (FDs), i.e. residue sites, responsible for conferring different phenotypes between different classes, different types and different variants. We focused on Class A beta-lactamases, the most highly populated and clinically relevant class, to identify FDs implicated in the distinct phenotypes associated with different Class A Types and Variants. We show that our FunFHMMer method can separate the known beta-lactamase classes and identify those positions likely to be responsible for the different implementations of the mechanism of action in these enzymes. Two novel algorithms, ASSP and SSPA, allow detection of FD sites likely to contribute to the broadening of the substrate profiles. Using our approaches, we recognise 151 Class A types in UniProt. Finally, we used our beta-lactamase FunFams and ASSP profiles to detect 4 novel Class A types in microbiome samples. Our platforms have been validated by literature studies, in silico analysis and some targeted experimental verification. Although developed for the serine beta-lactamases they could be used to classify and analyse any diverse protein superfamily where sub-families have diverged over both long and short evolutionary timescales.
Collapse
Affiliation(s)
- David Lee
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Sayoni Das
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Natalie L. Dawson
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - John Ward
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Christine Orengo
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
50
|
Saunders JC, Young LM, Mahood RA, Jackson MP, Revill CH, Foster RJ, Smith DA, Ashcroft AE, Brockwell DJ, Radford SE. An in vivo platform for identifying inhibitors of protein aggregation. Nat Chem Biol 2015; 12:94-101. [PMID: 26656088 PMCID: PMC4720988 DOI: 10.1038/nchembio.1988] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023]
Abstract
Protein aggregation underlies an array of human diseases, yet only one small-molecule therapeutic targeting this process has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, that is capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid β) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split β-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of islet amyloid polypeptide aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation.
Collapse
Affiliation(s)
- Janet C Saunders
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lydia M Young
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Rachel A Mahood
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Charlotte H Revill
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Chemistry, University of Leeds, LS2 9JT, UK
| | - Richard J Foster
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Chemistry, University of Leeds, LS2 9JT, UK
| | | | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|