1
|
Gonsalves A, Menon JU. Impact of Nebulization on the Physicochemical Properties of Polymer-Lipid Hybrid Nanoparticles for Pulmonary Drug Delivery. Int J Mol Sci 2024; 25:5028. [PMID: 38732246 PMCID: PMC11084240 DOI: 10.3390/ijms25095028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Nanoparticles (NPs) have shown significant potential for pulmonary administration of therapeutics for the treatment of chronic lung diseases in a localized and sustained manner. Nebulization is a suitable method of NP delivery, particularly in patients whose ability to breathe is impaired due to lung diseases. However, there are limited studies evaluating the physicochemical properties of NPs after they are passed through a nebulizer. High shear stress generated during nebulization could potentially affect the surface properties of NPs, resulting in the loss of encapsulated drugs and alteration in the release kinetics. Herein, we thoroughly examined the physicochemical properties as well as the therapeutic effectiveness of Infasurf lung surfactant (IFS)-coated PLGA NPs previously developed by us after passing through a commercial Aeroneb® vibrating-mesh nebulizer. Nebulization did not alter the size, surface charge, IFS coating and bi-phasic release pattern exhibited by the NPs. However, there was a temporary reduction in the initial release of encapsulated therapeutics in the nebulized compared to non-nebulized NPs. This underscores the importance of evaluating the drug release kinetics of NPs using the inhalation method of choice to ensure suitability for the intended medical application. The cellular uptake studies demonstrated that both nebulized and non-nebulized NPs were less readily taken up by alveolar macrophages compared to lung cancer cells, confirming the IFS coating retention. Overall, nebulization did not significantly compromise the physicochemical properties as well as therapeutic efficacy of the prepared nanotherapeutics.
Collapse
Affiliation(s)
- Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
| | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
2
|
Dong L, Zhuang X. Insights into Inhalation Drug Disposition: The Roles of Pulmonary Drug-Metabolizing Enzymes and Transporters. Int J Mol Sci 2024; 25:4671. [PMID: 38731891 PMCID: PMC11083391 DOI: 10.3390/ijms25094671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaomei Zhuang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| |
Collapse
|
3
|
Huang BZ, Binder AM, Quon B, Patel YM, Lum-Jones A, Tiirikainen M, Murphy SE, Loo L, Maunakea AK, Haiman CA, Wilkens LR, Koh WP, Cai Q, Aldrich MC, Siegmund KD, Hecht SS, Yuan JM, Blot WJ, Stram DO, Le Marchand L, Park SL. Epigenome-wide association study of total nicotine equivalents in multiethnic current smokers from three prospective cohorts. Am J Hum Genet 2024; 111:456-472. [PMID: 38367619 PMCID: PMC10940014 DOI: 10.1016/j.ajhg.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.
Collapse
Affiliation(s)
- Brian Z Huang
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.
| | - Alexandra M Binder
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA; Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brandon Quon
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yesha M Patel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Annette Lum-Jones
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Maarit Tiirikainen
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lenora Loo
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lynne R Wilkens
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda C Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sungshim L Park
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
4
|
Stacpoole PW. Clinical physiology and pharmacology of GSTZ1/MAAI. Biochem Pharmacol 2023; 217:115818. [PMID: 37742772 DOI: 10.1016/j.bcp.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Herein I summarize the physiological chemistry and pharmacology of the bifunctional enzyme glutathione transferase zeta 1 (GSTZ1)/ maleylacetoacetate isomerase (MAAI) relevant to human physiology, drug metabolism and disease. MAAI is integral to the catabolism of the amino acids phenylalanine and tyrosine. Genetic or pharmacological inhibition of MAAI can be pathological in animals. However, to date, no clinical disease consequences are unequivocally attributable to inborn errors of this enzyme. MAAI is identical to the zeta 1 family isoform of GST, which biotransforms the investigational drug dichloroacetate (DCA) to the endogenous compound glyoxylate. DCA is a mechanism-based inhibitor of GSTZ1 that significantly reduces its rate of metabolism and increases accumulation of potentially harmful tyrosine intermediates and of the heme precursor δ-aminolevulinic acid (δ-ALA). GSTZ1 is most abundant in rodent and human liver, with its concentration several fold higher in cytoplasm than in mitochondria. Its activity and protein expression are dependent on the age of the host and the intracellular level of chloride ions. Gene association studies have linked GSTZ1 or its protein product to various physiological traits and pathologies. Haplotype variations in GSTZ1 influence the rate of DCA metabolism, enabling a genotyping strategy to allow potentially safe, precision-based drug dosing in clinical trials.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Departments of Medicine and Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32601, USA.
| |
Collapse
|
5
|
Amgalan B, Day CP, Przytycka TM. Exploring tumor-normal cross-talk with TranNet: Role of the environment in tumor progression. PLoS Comput Biol 2023; 19:e1011472. [PMID: 37721939 PMCID: PMC10538798 DOI: 10.1371/journal.pcbi.1011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such dependencies. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights into the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Bayarbaatar Amgalan
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics/Center for Cancer Research/National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Teresa M. Przytycka
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Fransen LFH, Leonard MO. Small Airway Susceptibility to Chemical and Particle Injury. Respiration 2021; 101:321-333. [PMID: 34649249 DOI: 10.1159/000519344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
Small airways (SA) in humans are commonly defined as those conducting airways <2 mm in diameter. They are susceptible to particle- and chemical-induced injury and play a major role in the development of airway disease such as COPD and asthma. Susceptibility to injury can be attributed in part to structural features including airflow dynamics and tissue architecture, but recent evidence may indicate a more prominent role for cellular composition in directing toxicological responses. Animal studies support the hypothesis that inherent cellular differences across the tracheobronchial tree, including metabolic CYP450 expression in the distal conducting airways, can influence SA susceptibility to injury. Currently, there is insufficient information in humans to make similar conclusions, prompting further necessary work in this area. An understanding of why the SA are more susceptible to certain chemical and particle exposures than other airway regions is fundamental to our ability to identify hazardous materials, their properties, and accompanying exposure scenarios that compromise lung function. It is also important for the ability to develop appropriate models for toxicity testing. Moreover, it is central to our understanding of SA disease aetiology and how interventional strategies for treatment may be developed. In this review, we will document the structural and cellular airway regional differences that are likely to influence airway susceptibility to injury, including the role of secretory club cells. We will also describe recent advances in single-cell sequencing of human airways, which have provided unprecedented details of cell phenotype, likely to impact airway chemical and particle injury.
Collapse
Affiliation(s)
| | - Martin Oliver Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
7
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
8
|
Charalampidi A, Kordou Z, Tsermpini EE, Bosganas P, Chantratita W, Fukunaga K, Mushiroda T, Patrinos GP, Koromina M. Pharmacogenomics variants are associated with BMI differences between individuals with bipolar and other psychiatric disorders. Pharmacogenomics 2021; 22:749-760. [PMID: 34410167 DOI: 10.2217/pgs-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Regardless of the plethora of next-generation sequencing studies in the field of pharmacogenomics (PGx), the potential effect of covariate variables on PGx response within deeply phenotyped cohorts remains unexplored. Materials & methods: We explored with advanced statistical methods the potential influence of BMI, as a covariate variable, on PGx response in a Greek cohort with psychiatric disorders. Results: Nine PGx variants within UGT1A6, SLC22A4, GSTP1, CYP4B1, CES1, SLC29A3 and DPYD were associated with altered BMI in different psychiatric disorder groups. Carriers of rs2070959 (UGT1A6), rs199861210 (SLC29A3) and rs2297595 (DPYD) were also characterized by significant changes in the mean BMI, depending on the presence of psychiatric disorders. Conclusion: Specific PGx variants are significantly associated with BMI in a Greek cohort with psychiatric disorders.
Collapse
Affiliation(s)
- Aggeliki Charalampidi
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Zoe Kordou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | - Panagiotis Bosganas
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Maria Koromina
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,The Golden Helix Foundation, London, UK
| |
Collapse
|
9
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
10
|
Organic Cation Transporters in the Lung-Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int J Mol Sci 2020; 21:ijms21239168. [PMID: 33271927 PMCID: PMC7730617 DOI: 10.3390/ijms21239168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Organic cation transporters (OCT) 1, 2 and 3 and novel organic cation transporters (OCTN) 1 and 2 of the solute carrier 22 (SLC22) family are involved in the cellular transport of endogenous compounds such as neurotransmitters, l-carnitine and ergothioneine. OCT/Ns have also been implicated in the transport of xenobiotics across various biological barriers, for example biguanides and histamine receptor antagonists. In addition, several drugs used in the treatment of respiratory disorders are cations at physiological pH and potential substrates of OCT/Ns. OCT/Ns may also be associated with the development of chronic lung diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD) and, thus, are possible new drug targets. As part of the Special Issue "Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations", this review provides an overview of recent findings on the (patho)physiological and pharmacological functions of organic cation transporters in the lung.
Collapse
|
11
|
Bourdet DL, Yeola S, Hegde SS, Colson PJ, Barnes CN, Borin MT. Revefenacin Absorption, Metabolism, and Excretion in Healthy Subjects and Pharmacological Activity of Its Major Metabolite. Drug Metab Dispos 2020; 48:1312-1320. [PMID: 32978223 DOI: 10.1124/dmd.120.000103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022] Open
Abstract
Revefenacin inhalation solution is an anticholinergic indicated for the maintenance treatment of patients with chronic obstructive pulmonary disease. Mass balance, pharmacokinetics, and metabolism of revefenacin were evaluated after intravenous and oral administration of [14C]-revefenacin in healthy subjects. Pharmacological activity of the major revefenacin metabolite was also assessed. Adult males (n = 9) received 20 μg intravenously of approximately 1 μCi [14C]-revefenacin and/or a single 200-μg oral solution of approximately 10 μCi [14C]-revefenacin. Mean recovery of radioactive material was 81.4% after intravenous administration (54.4% in feces; 27.1% in urine) and 92.7% after oral dosing (88.0% in feces, 4.7% in urine). Mean absolute bioavailability of oral revefenacin was low (2.8%). Intact revefenacin accounted for approximately 52.1% and 13.1% of the total radioactivity in plasma after intravenous and oral administration, respectively. Two main circulating metabolites were observed in plasma. After an intravenous dose, a hydrolysis product, THRX-195518 (M2) was observed that circulated in plasma at 14.3% of total radioactivity. After an oral dose, both THRX-195518 and THRX-697795 (M10, N-dealkylation and reduction of the parent compound) were observed at 12.5% of total circulating radioactivity. THRX-195518 was the major metabolite excreted in feces and comprised 18.8% and 9.4% of the administered intravenous and oral dose, respectively. The major metabolic pathway for revefenacin was hydrolysis to THRX-195518. In vitro pharmacological evaluation of THRX-195518 indicated that it had a 10-fold lower binding affinity for the M3 receptor relative to revefenacin. Receptor occupancy analysis suggested that THRX-195518 has minimal contribution to systemic pharmacology relative to revefenacin after inhaled administration. SIGNIFICANCE STATEMENT: The major metabolic pathway for revefenacin was hydrolysis to the metabolite THRX-195518 (M2), and both revefenacin and THRX-195518 underwent hepatic-biliary and fecal elimination after oral or intravenous administration with negligible renal excretion. Pharmacological evaluation of THRX-195518 indicated that it had a 10-fold lower binding affinity for the M3 muscarinic receptor relative to revefenacin and that THRX-195518 has minimal contribution to systemic pharmacology after inhaled administration.
Collapse
Affiliation(s)
- David L Bourdet
- Theravance Biopharma US, Inc., South San Francisco, California (D.L.B., S.Y., S.S.H., P.-J.C., C.N.B., M.T.B)
| | - Suresh Yeola
- Theravance Biopharma US, Inc., South San Francisco, California (D.L.B., S.Y., S.S.H., P.-J.C., C.N.B., M.T.B)
| | - Sharath S Hegde
- Theravance Biopharma US, Inc., South San Francisco, California (D.L.B., S.Y., S.S.H., P.-J.C., C.N.B., M.T.B)
| | - Pierre-Jean Colson
- Theravance Biopharma US, Inc., South San Francisco, California (D.L.B., S.Y., S.S.H., P.-J.C., C.N.B., M.T.B)
| | - Chris N Barnes
- Theravance Biopharma US, Inc., South San Francisco, California (D.L.B., S.Y., S.S.H., P.-J.C., C.N.B., M.T.B)
| | - Marie T Borin
- Theravance Biopharma US, Inc., South San Francisco, California (D.L.B., S.Y., S.S.H., P.-J.C., C.N.B., M.T.B)
| |
Collapse
|
12
|
Webster P, Saito K, Cortez J, Ramirez C, Baum MM. Concentrative Nucleoside Transporter 3 Is Located on Microvilli of Vaginal Epithelial Cells. ACS OMEGA 2020; 5:20882-20889. [PMID: 32875223 PMCID: PMC7450627 DOI: 10.1021/acsomega.0c02329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Transporters are specialized integral membrane proteins, which mediate the passage of virtually all molecules through cell membranes. They are expressed in a broad range of human and animal tissues and play important roles in both normal and disease states. For these reasons, they are evaluated when developing and testing drugs. Two major families of drug transporters, the adenosine 5'-triphosphate-binding cassette and solute carrier transporters (SLC), have critical roles in the absorption, distribution, metabolism, and elimination of drugs. The SLC family contains known nucleoside transporters and therefore are important when nucleoside analogs are used as drugs to prevent or treat viral infections. In this study, we wanted to determine if it was possible to locate one member of the SLC family, the human concentrative nucleoside transporter 3 (CNT3) in human vaginal epithelial cells. The CNT3 protein has important roles in drug delivery, subsequent drug tissue distribution, and, hence, efficacy. Vaginal epithelial cells, taken from two human volunteers (one Caucasian and one African American), were labeled for light and electron microscopy, with a commercial antibody to a cytoplasmic domain of CNT3, the protein product of the SLC28A3 gene. Fluorescent secondary antibodies or protein A-gold were used to detect antibody binding. By electron microscopy, gold particle binding was quantified to determine labeling specificity. By light microscopy, positive labeling with anti-CNT3 antibodies was detected on human vaginal epithelial cells, but specificity to any intracellular structure was not easily determined, most likely a result of specimen preparation. Electron microscopy revealed that the CNT3 transporter protein was present predominantly on microvilli located on one side of some human vaginal epithelial cells. Quantification confirmed specific anti-CNT3 labeling over human vaginal epithelial cell microvilli. The CNT3 protein, present in the microvilli of human vaginal epithelial cells, may have a role in redistributing nucleoside homologues delivered to the vaginal tract. Transporter proteins such as CNT3 could shuttle nucleosides and their analogs through the vaginal epithelium to immune cells located in lower cell layers. Outer layers of cells, which are eventually shed from the epithelium, may remove accumulated nucleoside drug analogs from the vaginal tract.
Collapse
Affiliation(s)
- Paul Webster
- Oak
Crest Institute of Science, 132 W. Chestnut Avenue, Monrovia, California 91016, United States
| | - Kaori Saito
- Oak
Crest Institute of Science, 132 W. Chestnut Avenue, Monrovia, California 91016, United States
| | - John Cortez
- Oak
Crest Institute of Science, 132 W. Chestnut Avenue, Monrovia, California 91016, United States
| | - Christina Ramirez
- Los
Angeles (UCLA) Fielding School of Public Health, University of California, Los Angeles, 650 Charles E. Young Dr. South, 16-035 Center for
Health Sciences, Los Angeles, California 90095-1772, United States
| | - Marc M. Baum
- Oak
Crest Institute of Science, 132 W. Chestnut Avenue, Monrovia, California 91016, United States
| |
Collapse
|
13
|
Löfgren M, Larsson P, Lindberg R, Hörnaeus K, Tydén E. Expression of xenobiotic metabolising enzymes in lungs of horses with or without histological evidence of lower airway inflammation. Vet Med Sci 2020; 7:16-24. [PMID: 32791560 PMCID: PMC7840205 DOI: 10.1002/vms3.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 01/11/2023] Open
Abstract
Mild, moderate and severe equine asthma is a problem for equine welfare. The aetiology of the disease is not known in detail but is likely multi‐factorial. One important factor may be inhaled dust which carries harmful substances which may be bioactivated and thus can lead to local inflammation in the airways. The aim of this study was to investigate gene expression and protein localisation of cytochrome P450 (CYP) enzymes, superoxide dismutase and glutathione‐S‐transferases (GST) involved in bioactivation and detoxification of harmful substances in lungs of horses with or without histological evidence of lower airway inflammation. Significantly lower gene expression of CYP2A13 and GSTM1 was observed in lungs from horses with histological evidence of lower airway inflammation compared with horses without. A higher expression, although not significant, was found for CYP1A1 in horses with histological evidence of lower airway inflammation. There were no differences in gene expression of GSTP1 and SOD3. The proteins were localised in the respiratory epithelium which is of relevance as a defence to local exposure of inhaled harmful substances. In conclusion, our study reports differential gene expression of enzymes involved in bioactivation and detoxification of foreign substances in the lungs of horses with histological evidence of lower airway inflammation compared with horses without.
Collapse
Affiliation(s)
- Maria Löfgren
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pia Larsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ronny Lindberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katarina Hörnaeus
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Rotoli BM, Barilli A, Visigalli R, Ferrari F, Frati C, Lagrasta CA, Di Lascia M, Riccardi B, Puccini P, Dall’Asta V. Characterization of ABC Transporters in EpiAirway™, a Cellular Model of Normal Human Bronchial Epithelium. Int J Mol Sci 2020; 21:ijms21093190. [PMID: 32366035 PMCID: PMC7247561 DOI: 10.3390/ijms21093190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
The ATP-binding cassette (ABC) transporters P-glycoprotein (MDR1/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) play a crucial role in the translocation of a broad range of drugs; data about their expression and activity in lung tissue are controversial. Here, we address their expression, localization and function in EpiAirway™, a three-dimensional (3D)-model of human airways; Calu-3 cells, a representative in vitro model of bronchial epithelium, are used for comparison. Transporter expression has been evaluated with RT-qPCR and Western blot, the localization with immunocytochemistry, and the activity by measuring the apical-to-basolateral and basolateral-to-apical fluxes of specific substrates in the presence of inhibitors. EpiAirway™ and Calu-3 cells express high levels of MRP1 on the basolateral membrane, while they profoundly differ in terms of BCRP and MDR1: BCRP is detected in EpiAirway™, but not in Calu-3 cells, while MDR1 is expressed and functional only in fully-differentiated Calu-3; in EpiAirway™, MDR1 expression and activity are undetectable, consistently with the absence of the protein in specimens from human healthy bronchi. In summary, EpiAirway™ appears to be a promising tool to study the mechanisms of drug delivery in the bronchial epithelium and to clarify the role of ABC transporters in the modulation of the bioavailability of administered drugs.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
- Correspondence: ; Tel.: +39-0521-033785
| | - Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| | - Caterina Frati
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (C.F.); (C.A.L.)
| | - Costanza Annamaria Lagrasta
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (C.F.); (C.A.L.)
| | - Maria Di Lascia
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo Francesco Belloli, 43122 Parma, Italy; (M.D.L.); (B.R.); (P.P.)
| | - Benedetta Riccardi
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo Francesco Belloli, 43122 Parma, Italy; (M.D.L.); (B.R.); (P.P.)
| | - Paola Puccini
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo Francesco Belloli, 43122 Parma, Italy; (M.D.L.); (B.R.); (P.P.)
| | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| |
Collapse
|
15
|
Rubin K, Ewing P, Bäckström E, Abrahamsson A, Bonn B, Kamata S, Grime K. Pulmonary Metabolism of Substrates for Key Drug-Metabolizing Enzymes by Human Alveolar Type II Cells, Human and Rat Lung Microsomes, and the Isolated Perfused Rat Lung Model. Pharmaceutics 2020; 12:pharmaceutics12020117. [PMID: 32024122 PMCID: PMC7076545 DOI: 10.3390/pharmaceutics12020117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/01/2022] Open
Abstract
Significant pulmonary metabolism of inhaled drugs could have drug safety implications or influence pharmacological effectiveness. To study this in vitro, lung microsomes or S9 are often employed. Here, we have determined if rat and human lung microsomes are fit for purpose or whether it is better to use specific cells where drug-metabolizing enzymes are concentrated, such as alveolar type II (ATII) cells. Activities for major hepatic and pulmonary human drug-metabolizing enzymes are assessed and the data contextualized towards an in vivo setting using an ex vivo isolated perfused rat lung model. Very low rates of metabolism are observed in incubations with human ATII cells when compared to isolated hepatocytes and fewer of the substrates are found to be metabolized when compared to human lung microsomal incubations. Reactions selective for flavin-containing monooxygenases (FMOs), CYP1B1, CYP2C9, CYP2J2, and CYP3A4 all show significant rates in human lung microsomal incubations, but all activities are higher when rat lung microsomes are used. The work also demonstrates that a lung microsomal intrinsic clearance value towards the lower limit of detection for this parameter (3 µL/min/mg protein) results in a very low level of pulmonary metabolic clearance during the absorption period, for a drug dosed into the lung in vivo.
Collapse
Affiliation(s)
- Katarina Rubin
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden (P.E.); (E.B.); (A.A.); (B.B.)
| | - Pär Ewing
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden (P.E.); (E.B.); (A.A.); (B.B.)
| | - Erica Bäckström
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden (P.E.); (E.B.); (A.A.); (B.B.)
| | - Anna Abrahamsson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden (P.E.); (E.B.); (A.A.); (B.B.)
| | - Britta Bonn
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden (P.E.); (E.B.); (A.A.); (B.B.)
| | - Satoshi Kamata
- Department of Thoracic Surgery, Institute of Development, Aging, and Cancer, Tohoku University Graduate School of Medicine, Sendai 980-0000, Japan;
| | - Ken Grime
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden (P.E.); (E.B.); (A.A.); (B.B.)
- Correspondence:
| |
Collapse
|
16
|
Vishweswaraiah S, George L, Purushothaman N, Ganguly K. A candidate gene identification strategy utilizing mouse to human big-data mining: "3R-tenet" in COPD genetic research. Respir Res 2018; 19:92. [PMID: 29871630 PMCID: PMC5989378 DOI: 10.1186/s12931-018-0795-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Early life impairments leading to lower lung function by adulthood are considered as risk factors for chronic obstructive pulmonary disease (COPD). Recently, we compared the lung transcriptomic profile between two mouse strains with extreme total lung capacities to identify plausible pulmonary function determining genes using microarray analysis (GSE80078). Advancement of high-throughput techniques like deep sequencing (eg. RNA-seq) and microarray have resulted in an explosion of genomic data in the online public repositories which however remains under-exploited. Strategic curation of publicly available genomic data with a mouse-human translational approach can effectively implement “3R- Tenet” by reducing screening experiments with animals and performing mechanistic studies using physiologically relevant in vitro model systems. Therefore, we sought to analyze the association of functional variations within human orthologs of mouse lung function candidate genes in a publicly available COPD lung RNA-seq data-set. Methods Association of missense single nucleotide polymorphisms, insertions, deletions, and splice junction variants were analyzed for susceptibility to COPD using RNA-seq data of a Korean population (GSE57148). Expression of the associated genes were studied using the Gene Paint (mouse embryo) and Human Protein Atlas (normal adult human lung) databases. The genes were also assessed for replication of the associations and expression in COPD−/mouse cigarette smoke exposed lung tissues using other datasets. Results Significant association (p < 0.05) of variations in 20 genes to higher COPD susceptibility have been detected within the investigated cohort. Association of HJURP, MCRS1 and TLR8 are novel in relation to COPD. The associated ADAM19 and KIT loci have been reported earlier. The remaining 15 genes have also been previously associated to COPD. Differential transcript expression levels of the associated genes in COPD- and/ or mouse emphysematous lung tissues have been detected. Conclusion Our findings suggest strategic mouse-human datamining approaches can identify novel COPD candidate genes using existing datasets in the online repositories. The candidates can be further evaluated for mechanistic role through in vitro studies using appropriate primary cells/cell lines. Functional studies can be limited to transgenic animal models of only well supported candidate genes. This approach will lead to a significant reduction of animal experimentation in respiratory research. Electronic supplementary material The online version of this article (10.1186/s12931-018-0795-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India
| | - Natarajan Purushothaman
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM University, Chennai, 603203, India
| | - Koustav Ganguly
- SRM Research Institute, SRM University, Chennai, 603203, India. .,Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 287, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
17
|
Fallon JK, Houvig N, Booth-Genthe CL, Smith PC. Quantification of membrane transporter proteins in human lung and immortalized cell lines using targeted quantitative proteomic analysis by isotope dilution nanoLC-MS/MS. J Pharm Biomed Anal 2018; 154:150-157. [PMID: 29544106 DOI: 10.1016/j.jpba.2018.02.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/22/2023]
Abstract
Information is needed on the expression of transporters in lung to inform drug development and therapeutic decisions. Much of the information currently available is from semiquantitative gene expression or immunometric densitometry studies reported in the literature. NanoLC-MS/MS (MRM mode) isotope dilution targeted quantitative proteomics was used here to quantify twelve selected transporters in fresh human lung membrane fraction samples and in the membrane fraction of selected immortalized human lung epithelial cell line samples. Fractionation was undertaken by homogenization in crude membrane lysis buffer followed by differential centrifugation of the homogenate. In lung membranes we found OATPs to be the most highly expressed transporters of those measured, followed by PEPT2 and ABCs (P-gp & BCRP). SLC22A transporters (OCTs 2 & 3 and OCTN1) were also found to be expressed. OATP2A1, also known as the prostaglandin transporter, was the most highly expressed transporter, being low in two subjects who were at least occasional smokers. One subject, a non-smoker, had an OATP2A1 concentration that was 8.4 times higher than the next nearest concentration, which itself was higher than the concentration of any other transporter. OATP2A1 is known, from gene expression and animal functional studies, to be present in lung. These results inform the understanding of xenobiotic disposition in the lung and show the distinct profile of transporters in lung compared to other tissues.
Collapse
Affiliation(s)
- John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicole Houvig
- Drug Metabolism and Pharmacokinetics, Respiratory Therapeutic Area, GlaxoSmithKline, King of Prussia, PA, 19406, USA
| | - Catherine L Booth-Genthe
- Drug Metabolism and Pharmacokinetics, Respiratory Therapeutic Area, GlaxoSmithKline, King of Prussia, PA, 19406, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Kamata S, Fujino N, Yamada M, Grime K, Suzuki S, Ota C, Tando Y, Okada Y, Sakurada A, Noda M, Matsuda Y, Sugiura H, Ichinose M. Expression of cytochrome P450 mRNAs in Type II alveolar cells from subjects with chronic obstructive pulmonary disease. Pharmacol Res Perspect 2018; 6:e00405. [PMID: 29850024 PMCID: PMC5964255 DOI: 10.1002/prp2.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
Inhaled drugs are critical for the treatment of inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD). To develop better therapeutics for pulmonary disease it is of potential importance to understand molecular mechanisms of local biotransformation in the lung. Alveolar epithelial type II (ATII) cells have a key role in homeostasis in the lung, but little is known about expression patterns of genes encoding cytochrome P450 (CYP) enzymes in ATII cells. In addition, alteration of CYP gene expression has not been fully defined in COPD. We previously established a method to purify ATII cells from the adult human lung using fluorescence‐activated cell sorting. By employing this technique we determined gene expression patterns of 14 CYP enzymes in ATII cells from nonsmokers (n = 4) and smokers (n = 4), both having normal pulmonary function. Although most CYP genes are highly expressed in primary hepatocytes, we found that CYP1B1 mRNA expression was 7.2‐fold higher in ATII compared to hepatocytes (P = .0275). Additionally we noted a 3.0‐fold upregulation of CYP2C19 and 50% reduction in CYP2J2 mRNA expressions in ATII cells isolated from patients with COPD (n = 3) compared to smokers without COPD (n = 4). These data, for the first time, detail a comprehensive set of genes encoding CYP enzymes in human ATII cells and highlights differentially expressed CYP mRNAs of patients with COPD. Such understanding may have important implications for the development of novel inhaled drugs.
Collapse
Affiliation(s)
- Satoshi Kamata
- Department of Thoracic Surgery Institute of Development, Aging and Cancer Tohoku University Sendai Japan
| | - Naoya Fujino
- Department of Respiratory Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Ken Grime
- Respiratory Inflammation & Autoimmunity IMED Biotech Unit AstraZeneca Gothenburg Sweden
| | - Satoshi Suzuki
- Department of Thoracic Surgery Japanese Red Cross Ishinomaki Hospital Ishinomaki Japan
| | - Chiharu Ota
- Department of Advanced Preventive Medicine for Infectious Disease Tohoku University Graduate School of Medicine Sendai Japan
| | - Yukiko Tando
- Department of Advanced Preventive Medicine for Infectious Disease Tohoku University Graduate School of Medicine Sendai Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery Institute of Development, Aging and Cancer Tohoku University Sendai Japan
| | - Akira Sakurada
- Department of Thoracic Surgery Institute of Development, Aging and Cancer Tohoku University Sendai Japan
| | - Masafumi Noda
- Department of Thoracic Surgery Institute of Development, Aging and Cancer Tohoku University Sendai Japan
| | - Yasushi Matsuda
- Department of Thoracic Surgery Institute of Development, Aging and Cancer Tohoku University Sendai Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
19
|
Berg T, Hegelund-Myrbäck T, Öckinger J, Zhou XH, Brännström M, Hagemann-Jensen M, Werkström V, Seidegård J, Grunewald J, Nord M, Gustavsson L. Expression of MATE1, P-gp, OCTN1 and OCTN2, in epithelial and immune cells in the lung of COPD and healthy individuals. Respir Res 2018; 19:68. [PMID: 29678179 PMCID: PMC5910606 DOI: 10.1186/s12931-018-0760-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/27/2018] [Indexed: 02/03/2023] Open
Abstract
Background Several inhaled drugs are dependent on organic cation transporters to cross cell membranes. To further evaluate their potential to impact on inhaled drug disposition, the localization of MATE1, P-gp, OCTN1 and OCTN2 were investigated in human lung. Methods Transporter proteins were analysed by immunohistochemistry in lung tissue from healthy subjects and COPD patients. Transporter mRNA was analysed by qPCR in lung tissue and in bronchoalveolar lavage (BAL) cells from smokers and non-smokers. Results We demonstrate for the first time MATE1 protein expression in the lung with localization to the apical side of bronchial and bronchiolar epithelial cells. Interestingly, MATE1 was strongly expressed in alveolar macrophages as demonstrated both in lung tissue and in BAL cells, and in inflammatory cells including CD3 positive T cells. P-gp, OCTN1 and OCTN2 were also expressed in the alveolar epithelial cells and in inflammatory cells including alveolar macrophages. In BAL cells from smokers, MATE1 and P-gp mRNA expression was significantly lower compared to cells from non-smokers whereas no difference was observed between COPD patients and healthy subjects. THP-1 cells were evaluated as a model for alveolar macrophages but did not reflect the transporter expression observed in BAL cells. Conclusions We conclude that MATE1, P-gp, OCTN1 and OCTN2 are expressed in pulmonary lung epithelium, in alveolar macrophages and in other inflammatory cells. This is important to consider in the development of drugs treating pulmonary disease as the transporters may impact drug disposition in the lung and consequently affect pharmacological efficacy and toxicity. Electronic supplementary material The online version of this article (10.1186/s12931-018-0760-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tove Berg
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tove Hegelund-Myrbäck
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden.
| | - Johan Öckinger
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Hong Zhou
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Marie Brännström
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Michael Hagemann-Jensen
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Werkström
- Respiratory GMed, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Janeric Seidegård
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nord
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Global Patient Safety, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Lena Gustavsson
- Department of Drug Metabolism, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| |
Collapse
|
20
|
Movassagh M, Alomran N, Mudvari P, Dede M, Dede C, Kowsari K, Restrepo P, Cauley E, Bahl S, Li M, Waterhouse W, Tsaneva-Atanasova K, Edwards N, Horvath A. RNA2DNAlign: nucleotide resolution allele asymmetries through quantitative assessment of RNA and DNA paired sequencing data. Nucleic Acids Res 2016; 44:e161. [PMID: 27576531 PMCID: PMC5159535 DOI: 10.1093/nar/gkw757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022] Open
Abstract
We introduce RNA2DNAlign, a computational framework for quantitative assessment of allele counts across paired RNA and DNA sequencing datasets. RNA2DNAlign is based on quantitation of the relative abundance of variant and reference read counts, followed by binomial tests for genotype and allelic status at SNV positions between compatible sequences. RNA2DNAlign detects positions with differential allele distribution, suggesting asymmetries due to regulatory/structural events. Based on the type of asymmetry, RNA2DNAlign outlines positions likely to be implicated in RNA editing, allele-specific expression or loss, somatic mutagenesis or loss-of-heterozygosity (the first three also in a tumor-specific setting). We applied RNA2DNAlign on 360 matching normal and tumor exomes and transcriptomes from 90 breast cancer patients from TCGA. Under high-confidence settings, RNA2DNAlign identified 2038 distinct SNV sites associated with one of the aforementioned asymetries, the majority of which have not been linked to functionality before. The performance assessment shows very high specificity and sensitivity, due to the corroboration of signals across multiple matching datasets. RNA2DNAlign is freely available from http://github.com/HorvathLab/NGS as a self-contained binary package for 64-bit Linux systems.
Collapse
Affiliation(s)
- Mercedeh Movassagh
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA.,University of Massachusetts Medical School, Graduate School of Biomedical Sciences, Program in Bioinformatics and Integrative Biology, Worcester, MA 01605, USA
| | - Nawaf Alomran
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Prakriti Mudvari
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Merve Dede
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Cem Dede
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Kamran Kowsari
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA.,Department of Computer Science, School of Engineering and applied Science, The George Washington University, Washington, DC 20037, USA
| | - Paula Restrepo
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Edmund Cauley
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | - Sonali Bahl
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | - Muzi Li
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Wesley Waterhouse
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences & EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, EX4 4QJ, UK
| | - Nathan Edwards
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Anelia Horvath
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA .,Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|