1
|
Shi X, Rao R, Xu M, Dong M, Feng S, Huang Y, Zhou B. Methylcellulose improves dissociation quality of adult human primary cardiomyocytes. Heliyon 2024; 10:e31653. [PMID: 38841456 PMCID: PMC11152705 DOI: 10.1016/j.heliyon.2024.e31653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Obtaining high-quality adult human primary cardiomyocytes (hPCM) have been technically challenging due to isolation-induced biochemical and mechanical stress. Building upon a previous tissue slicing-assisted digestion method, we introduced polymers into the digestion solution to reduce mechanical damage to cells. We found that low-viscosity methylcellulose (MC) significantly improved hPCM viability and yield. Mechanistically, it protected cells from membrane damage, which led to decreased apoptosis and mitochondrial reactive oxygen species production. MC also improved the electrophysiological properties of hPCMs by maintaining the density of sodium channels. The effects on cell viability and cell yield effects were not recapitulated by MC of larger viscosities, other cellulose derivatives, nor shear protectants polyethylene glycol and polyvinyl alcohol. Finally, MC also enhanced the isolation efficiency and the culture quality of hPCMs from diseased ventricular myocardium, expanding its potential applications. Our findings showed that the isolation quality of hPCMs can be further improved through the addition of a polymer, rendering hPCMs a more reliable cellular model for cardiac research.
Collapse
Affiliation(s)
- Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Rongjia Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Miaomiao Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Mengqi Dong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Shanshan Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Science, Shenzhen, Shenzhen, China
| |
Collapse
|
2
|
Chen G, Douglas HF, Li Z, Cleveland WJ, Balzer C, Yannopolous D, Chen IYL, Obal D, Riess ML. Cardioprotection by Poloxamer 188 is Mediated through Increased Endothelial Nitric Oxide Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.593838. [PMID: 38826479 PMCID: PMC11142105 DOI: 10.1101/2024.05.18.593838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ischemia/reperfusion (I/R) injury significantly contributes to the morbidity and mortality associated with cardiac events. Poloxamer 188 (P188), a nonionic triblock copolymer, has been proposed to mitigate I/R injury by stabilizing cell membranes. However, the underlying mechanisms remain incompletely understood, particularly concerning endothelial cell function and nitric oxide (NO) production. We employed human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) and endothelial cells (ECs) to elucidate the effects of P188 on cellular survival, function, and NO secretion under simulated I/R conditions. iPSC-CMs contractility and iPSC-ECs' NO production were assessed following exposure to P188. Further, an isolated heart model using Brown Norway rats subjected to I/R injury was utilized to evaluate the ex-vivo cardioprotective effects of P188, examining cardiac function and NO production, with and without the administration of a NO inhibitor. In iPSC-derived models, P188 significantly preserved CM contractile function and enhanced cell viability after hypoxia/reoxygenation. Remarkably, P188 treatment led to a pronounced increase in NO secretion in iPSC-ECs, a novel finding demonstrating endothelial protective effects beyond membrane stabilization. In the rat isolated heart model, administration of P188 during reperfusion notably improved cardiac function and reduced I/R injury markers. This cardioprotective effect was abrogated by NO inhibition, underscoring the pivotal role of NO. Additionally, a dose-dependent increase in NO production was observed in non-ischemic rat hearts treated with P188, further establishing the critical function of NO in P188 induced cardioprotection. In conclusion, our comprehensive study unveils a novel role of NO in mediating the protective effects of P188 against I/R injury. This mechanism is evident in both cellular models and intact rat hearts, highlighting the potential of P188 as a therapeutic agent against I/R injury. Our findings pave the way for further investigation into P188's therapeutic mechanisms and its potential application in clinical settings to mitigate I/R-related cardiac dysfunction.
Collapse
|
3
|
Li Z, Gupta MK, Barajas MB, Oyama T, Duvall CL, Riess ML. Newly Developed Di-Block Copolymer-Based Cell Membrane Stabilizers Protect Mouse Coronary Artery Endothelial Cells against Hypoxia/Reoxygenation Injury. Cells 2023; 12:1394. [PMID: 37408228 PMCID: PMC10216390 DOI: 10.3390/cells12101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Reperfusion after ischemia causes additional cellular damage, known as reperfusion injury, for which there is still no effective remedy. Poloxamer (P)188, a tri-block copolymer-based cell membrane stabilizer (CCMS), has been shown to provide protection against hypoxia/reoxygenation (HR) injury in various models by reducing membrane leakage and apoptosis and improving mitochondrial function. Interestingly, substituting one of its hydrophilic poly-ethylene oxide (PEO) blocks with a (t)ert-butyl terminus added to the hydrophobic poly-propylene oxide (PPO) block yields a di-block compound (PEO-PPOt) that interacts better with the cell membrane lipid bi-layer and exhibits greater cellular protection than the gold standard tri-block P188 (PEO75-PPO30-PEO75). For this study, we custom-made three different new di-blocks (PEO113-PPO10t, PEO226-PPO18t and PEO113-PPO20t) to systemically examine the effects of the length of each polymer block on cellular protection in comparison to P188. Cellular protection was assessed by cell viability, lactate dehydrogenase release, and uptake of FM1-43 in mouse artery endothelial cells (ECs) following HR injury. We found that di-block CCMS were able to provide the same or better EC protection than P188. Our study provides the first direct evidence that custom-made di-block CCMS can be superior to P188 in improving EC membrane protection, raising their potential in treating cardiac reperfusion injury.
Collapse
Affiliation(s)
- Zhu Li
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Z.L.); (M.B.B.); (T.O.)
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; (M.K.G.)
| | - Matthew B. Barajas
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Z.L.); (M.B.B.); (T.O.)
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
| | - Takuro Oyama
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Z.L.); (M.B.B.); (T.O.)
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; (M.K.G.)
| | - Matthias L. Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Z.L.); (M.B.B.); (T.O.)
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Zargari M, Meyer LJ, Riess ML, Li Z, Barajas MB. P188 Therapy in In Vitro Models of Traumatic Brain Injury. Int J Mol Sci 2023; 24:3334. [PMID: 36834743 PMCID: PMC9961452 DOI: 10.3390/ijms24043334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Varied mechanisms of injury contribute to the heterogeneity of this patient population as demonstrated by the multiple published grading scales and diverse required criteria leading to diagnoses from mild to severe. TBI pathophysiology is classically separated into a primary injury that is characterized by local tissue destruction as a result of the initial blow, followed by a secondary phase of injury constituted by a score of incompletely understood cellular processes including reperfusion injury, disruption to the blood-brain barrier, excitotoxicity, and metabolic dysregulation. There are currently no effective pharmacological treatments in the wide-spread use for TBI, in large part due to challenges associated with the development of clinically representative in vitro and in vivo models. Poloxamer 188 (P188), a Food and Drug Administration-approved amphiphilic triblock copolymer embeds itself into the plasma membrane of damaged cells. P188 has been shown to have neuroprotective properties on various cell types. The objective of this review is to provide a summary of the current literature on in vitro models of TBI treated with P188.
Collapse
Affiliation(s)
- Michael Zargari
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Matthias L. Riess
- TVHS VA Medical Center, Anesthesiology, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhu Li
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew B. Barajas
- TVHS VA Medical Center, Anesthesiology, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Hassler JF, Crabtree A, Liberman L, Bates FS, Hackel BJ, Lodge TP. Effect of Bottlebrush Poloxamer Architecture on Binding to Liposomes. Biomacromolecules 2023; 24:449-461. [PMID: 36563027 DOI: 10.1021/acs.biomac.2c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poloxamers─triblock copolymers consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO)─have demonstrated cell membrane stabilization efficacy against numerous types of stress. However, the mechanism responsible for this stabilizing effect remains elusive, hindering engineering of more effective therapeutics. Bottlebrush polymers have a wide parameter space and known relationships between architectural parameters and polymer properties, enabling their use as a tool for mechanistic investigations of polymer-lipid bilayer interactions. In this work, we utilized a versatile synthetic platform to create novel bottlebrush analogues to poloxamers and then employed pulsed-field-gradient NMR and an in vitro osmotic stress assay to explore the effect of bottlebrush architectural parameters on binding to, and protection of, model phospholipid bilayers. We found that the binding affinity of a bottlebrush poloxamer (BBP) (B-E1043P515, Mn ≈ 26 kDa) is about 3 times higher than a linear poloxamer with a similar composition and number of PPO units (L-E93P54E93, Mn ≈ 11 kDa). Furthermore, BBP binding is sensitive to overall molecular weight, side-chain length, and architecture (statistical versus block). Finally, all tested BBPs exhibit a protective effect on cell membranes under stress at sub-μM concentrations. As the factors controlling membrane affinity and protection efficacy of bottlebrush poloxamers are not understood, these results provide important insight into how they adhere to and stabilize a lipid bilayer surface.
Collapse
|
6
|
Di Meco A, Kemal S, Popovic J, Chandra S, Sadleir KR, Vassar R. Poloxamer-188 Exacerbates Brain Amyloidosis, Presynaptic Dystrophies, and Pathogenic Microglial Activation in 5XFAD Mice. Curr Alzheimer Res 2022; 19:317-329. [DOI: 10.2174/1567205019666220509143823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer’s disease (AD) is initiated by aberrant accumulation of amyloid beta (Aβ) protein in the brain parenchyma. The microenvironment surrounding amyloid plaques is characterized by the swelling of presynaptic terminals (dystrophic neurites) associated with lysosomal dysfunction, microtubule disruption and impaired axonal transport. Aβ-induced plasma membrane damage and calcium influx could be potential mechanisms underlying dystrophic neurite formation.
Objective:
We tested whether promoting membrane integrity by brain administration of a safe FDA approved surfactant molecule poloxamer-188 (P188) could attenuate AD pathology in vivo.
Methods:
Three-month-old 5XFAD male mice were administered several concentrations of P188 in the brain for 42 days with mini-osmotic pumps. After 42 days, mice were euthanized and assessed for amyloid pathology, dystrophic neurites, pathogenic microglia activation, tau phosphorylation and lysosomal / vesicular trafficking markers in the brain.
Results:
P188 was lethal at the highest concentration of 10mM. Lower concentrations of P188 (1.2, 12 and 120μM) were well tolerated. P188 increased brain Aβ burden, potentially through activation of the γ-secretase pathway. Dystrophic neurite pathology was exacerbated in P188 treated mice as indicated by increased LAMP1 accumulation around Aβ deposits. Pathogenic microglial activation was increased by P188. Total tau levels were decreased by P188. Lysosomal enzyme cathepsin D and calcium-dependent vesicular trafficking regulator synaptotagmin-7 (SYT7) were dysregulated upon P188 administration.
Conclusion:
P188 brain delivery exacerbated amyloid pathology, dystrophic neurites and pathogenic microglial activation in 5XFAD mice. These effects correlated with lysosomal dysfunction and dysregulation of plasma membrane vesicular trafficking. P188 is not a promising therapeutic strategy against AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Di Meco
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Shahrnaz Kemal
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jelena Popovic
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sidhanth Chandra
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | | | - Robert Vassar
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Mesulam Center for Cognitive Neurology and Alzheimer’s disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
7
|
Meyer LJ, Lotze FP, Riess ML. Simulated traumatic brain injury in in-vitro mouse neuronal and brain endothelial cell culture models. J Pharmacol Toxicol Methods 2022; 114:107159. [PMID: 35149185 PMCID: PMC11151826 DOI: 10.1016/j.vascn.2022.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022]
Abstract
Traumatic brain injury can lead to fatal outcomes such as disability and death. Every year, it affects many patients all over the world. Not only the primary ischemic event, but also the subsequent reperfusion can cause severe brain injury. This so-called ischemia/reperfusion injury combined with mechanical forces lead to cellular disruption. Hence, this paper describes a special in-vitro model, mimicking traumatic brain injury by combining both hypoxia/reoxygenation and compression to simulate ischemia/reperfusion injury as well as the mechanical effects that occur concurrently when suffering traumatic brain injury. Through this approach, stroke, concussion, and traumatic brain injury can be studied on different cell lines in a simplified way. We used two primary mouse brain cell cultures, namely neurons and endothelial cells. Our results show that for the different cell types, different timelines of hypoxia and compression need to be explored to achieve the optimal amount of cellular damage in order to effectively mimic traumatic brain injury. Thus, this model will be useful to test potential treatments of brain injury in future in-vitro studies.
Collapse
Affiliation(s)
- Luise J Meyer
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21(st) Avenue South, Nashville, TN 37232, USA; Department of Anesthesiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Felicia P Lotze
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21(st) Avenue South, Nashville, TN 37232, USA; Department of Anesthesiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Matthias L Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21(st) Avenue South, Nashville, TN 37232, USA; Anesthesiology, TVHS VA Medical Center, 1310 24(th) Ave South, Nashville, TN 37212, USA; Department of Pharmacology, Vanderbilt University, 465 21(st) Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Lotze FP, Riess ML. Poloxamer 188 Exerts Direct Protective Effects on Mouse Brain Microvascular Endothelial Cells in an In Vitro Traumatic Brain Injury Model. Biomedicines 2021; 9:1043. [PMID: 34440247 PMCID: PMC8393826 DOI: 10.3390/biomedicines9081043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Traumatic Brain Injury (TBI), the main contributor to morbidity and mortality worldwide, can disrupt the cell membrane integrity of the vascular endothelial system, endangering blood-brain barrier function and threatening cellular subsistence. Protection of the vascular endothelial system might enhance clinical outcomes after TBI. Poloxamer 188 (P188) has been shown to improve neuronal function after ischemia/reperfusion (I/R) injury as well as after TBI. We aimed to establish an in vitro compression-type TBI model, comparing mild-to-moderate and severe injury, to observe the direct effects of P188 on Mouse Brain Microvascular Endothelial Cells (MBEC). Confluent MBEC were exposed to normoxic or hypoxic conditions for either 5 or 15 h (hours). 1 h compression was added, and P188 was administered during 2 h reoxygenation. A direct effect of P188 on MBEC was tested by assessing cell number/viability, cytotoxicity/membrane damage, metabolic activity, and total nitric oxide production (tNOp). While P188 enhanced cell number/viability, metabolic activity, and tNOp, an increase in cytotoxicity/membrane damage after mild-to-moderate injury was prevented. In severely injured MBEC, P188 improved metabolic activity only. P188, present during reoxygenation, influenced MBEC function directly in simulated I/R and compression-type TBI.
Collapse
Affiliation(s)
- Felicia P. Lotze
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias L. Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
9
|
Eskaf J, Cleveland WJ, Riess ML. No Direct Postconditioning Effect of Poloxamer 188 on Mitochondrial Function after Ischemia Reperfusion Injury in Rat Isolated Hearts. Int J Mol Sci 2021; 22:4879. [PMID: 34063028 PMCID: PMC8124240 DOI: 10.3390/ijms22094879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Myocardial infarction is a leading cause for morbidity and mortality worldwide. The only viable treatment for the ischemic insult is timely reperfusion, which further exacerbates myocardial injury. Maintaining mitochondrial function is crucial in preserving cardiomyocyte function in ischemia reperfusion (IR) injury. Poloxamer (P) 188 has been shown to improve cardiac IR injury by improving cellular and mitochondrial function. The aim of this study was to show if P188 postconditioning has direct protective effects on mitochondrial function in the heart. Langendorff prepared rat hearts were subjected to IR injury ex-vivo and reperfused for 10 min with 1 mM P188 vs. vehicle. Cardiac mitochondria were isolated with 1 mM P188 vs. 1 mM polyethylene glycol (PEG) vs. vehicle by differential centrifugation. Mitochondrial function was assessed by adenosine triphosphate synthesis, oxygen consumption, and calcium retention capacity. Mitochondrial function decreased significantly after ischemia and showed mild improvement with reperfusion. P188 did not improve mitochondrial function in the ex-vivo heart, and neither further P188 nor PEG induced direct mitochondrial protection after IR injury in this model.
Collapse
Affiliation(s)
- Josephine Eskaf
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.E.); (W.J.C.)
- Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - William J. Cleveland
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.E.); (W.J.C.)
| | - Matthias L. Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.E.); (W.J.C.)
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
10
|
Meyer LJ, Riess ML. Evaluation of In Vitro Neuronal Protection by Postconditioning with Poloxamer 188 Following Simulated Traumatic Brain Injury. Life (Basel) 2021; 11:316. [PMID: 33917288 PMCID: PMC8067401 DOI: 10.3390/life11040316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) leads to morbidity and mortality worldwide. Reperfusion after ischemia adds detrimental injury to cells. Ischemia/reperfusion (I/R) injures cells in a variety of ways including cell membrane disruption. Hence, methods to improve endogenous membrane resealing capacity are crucial. Poloxamer (P) 188, an amphiphilic triblock copolymer, was found to be effective against I/R and mechanical injury in various experimental settings. The aim of this study was to establish an in vitro mouse neuronal TBI model and, further, to investigate if postconditioning with P188 directly interacts with neurons after compression and simulated I/R injury, when administered at the start of reoxygenation. Cellular function was assessed by cell number/viability, mitochondrial viability, membrane damage by lactated dehydrogenase (LDH) release and FM1-43 incorporation as well as apoptosis-activation by Caspase 3. Five hours hypoxia ± compression with 2 h reoxygenation proved to be a suitable model for TBI. Compared to normoxic cells not exposed to compression, cell number and mitochondrial viability decreased, whereas membrane injury by LDH release/FM1-43 dye incorporation and Caspase 3 activity increased in cells exposed to hypoxic conditions with compression followed by reoxygenation. P188 did not protect neurons from simulated I/R and/or compression injury. Future research is indicated.
Collapse
Affiliation(s)
- Luise J. Meyer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Pille JA, Riess ML. Potential Effects of Poloxamer 188 on Rat Isolated Brain Mitochondria after Oxidative Stress In Vivo and In Vitro. Brain Sci 2021; 11:brainsci11010122. [PMID: 33477541 PMCID: PMC7831103 DOI: 10.3390/brainsci11010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Outcome after cerebral ischemia is often dismal. Reperfusion adds significantly to the ischemic injury itself. Therefore, new strategies targeting ischemia/reperfusion (I/R) injury are critically needed. Poloxamer (P)188, an amphiphilic triblock copolymer, is a highly promising pharmacological therapeutic as its capability to insert into injured cell membranes has been reported to protect against I/R injury in various models. Although mitochondrial function particularly profits from P188 treatment after I/R, it remains unclear if this beneficial effect occurs directly or indirectly. Here, rat isolated brain mitochondria underwent oxidative stress in vivo by asphyxial cardiac arrest or in vitro by the addition of hydrogen peroxide (H2O2) after isolation. Mitochondrial function was assessed by adenosine triphosphate synthesis, oxygen consumption, and calcium retention capacity. Both asphyxia and H2O2 exposure significantly impaired mitochondrial function. P188 did not preserve mitochondrial function after either injury mechanism. Further research is indicated.
Collapse
Affiliation(s)
- Johannes A Pille
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias L Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
| |
Collapse
|