1
|
Bentz J, Ellens H. Case Study 8: Status of the Structural Mass Action Kinetic Model of P-gp-Mediated Transport Through Confluent Cell Monolayers. Methods Mol Biol 2021; 2342:737-763. [PMID: 34272715 DOI: 10.1007/978-1-0716-1554-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the first edition of this book, we presented the basics of explicitly incorporating the lipid biochemistry into a confluent cell monolayer transport model and the novel findings of this model up to 2013, including the use of global optimization to fit the elementary rate constants and the efflux active P-glycoprotein (P-gp) membrane concentrations for the transport of four P-gp substrates across MDCKII-hMDR1-NKI confluent cell monolayers. This chapter is an update on that model, which has been focused primarily on discovering how microvilli morphology regulates the efflux active P-gp and the existence of, as yet, unidentified uptake transporters of P-gp substrates in all of the commonly used P-gp expressing cell lines used in the pharmaceutical industry, thereby adding new players to DDI predictions and IVIVE. The structural mass action kinetic model uses the general mass action reactions for P-gp binding and efflux, with the membrane structural parameters for the confluent cell monolayer to predict drug transport over time. Binding of drug to P-gp occurs within the cytosolic monolayer of the apical membrane, according to (a) the molar partition coefficient of the drug to the cytosolic monolayer and (b) the association rate constant, k1 (M-1 s-1), of the drug from the basolateral or apical outer monolayers into the P-gp binding site. Release of substrate from P-gp back into the cytosolic monolayer occurs with a dissociation rate constant kr (s-1) or, much less frequently, into the apical aqueous chamber with an efflux rate constant k2 (s-1). The model fits the efflux active P-gp concentration, T(0), i.e., the P-gp whose effluxed drug actually reaches the apical aqueous chamber, as opposed to the majority of P-gp whose effluxed drug is reabsorbed back into the same or neighboring microvilli prior to reaching the apical aqueous chamber. Efflux active P-gp largely resides near the tips of the microvilli. We have shown using kinetics and structured illumination microscopy that: (a) efflux active P-gp is controlled by microvilli morphology; (b) there are apical (AT) and basolateral (BT) uptake transporters for P-gp substrates in most, if not all, P-gp expressing cell lines used in the pharmaceutical industry, which exist, but which remain unidentified; (c) the lab-to-lab variability in P-gp IC50 values observed in the P-gp IC50 initiative was due to the conflated inhibition of P-gp and the basolateral digoxin uptake transporters by all 15 P-gp substrates tested in that study; (d) even the IC50 values for P-gp inhibition alone do not obey the Cheng-Prusoff relationship; (e) the fitted elementary rate constants and the molecular dissociation constant Ki for this kinetic model are system independent; and (f) the time dependence of product formation for these confluent cell monolayers is correlated with the P-gp Vmax/Km, when defined by its fitted elementary rate constants and uptake transporter clearances, without any steady-state assumptions.
Collapse
Affiliation(s)
- Joe Bentz
- Department of Biology, Drexel University, Philadelphia, PA, USA.
| | - Harma Ellens
- GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, PA, USA
| |
Collapse
|
2
|
D'Cunha RR, Murry DJ, An G. Nilotinib Alters the Efflux Transporter-Mediated Pharmacokinetics of Afatinib in Mice. J Pharm Sci 2019; 108:3434-3442. [PMID: 31163185 DOI: 10.1016/j.xphs.2019.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
Abstract
Small-molecule tyrosine kinase inhibitors (TKIs) are novel anticancer agents with enhanced selectivity and superior safety profiles than conventional chemotherapeutics. A major shortcoming in TKI therapy is the development of acquired resistance. An important resistance mechanism is reduced intracellular drug accumulation due to an overexpression of efflux transporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) in cancer cells. TKIs have dual roles as substrates and inhibitors of Pgp and BCRP; thus, combination TKI therapy could potentially reverse efflux transporter-mediated TKI resistance. In the present study, the effect of 14 TKIs on Pgp-, Bcrp1-, and BCRP-mediated afatinib efflux was investigated in vitro. Nilotinib was a potent inhibitor of Pgp, Bcrp1, and BCRP, with EC50 values of 2.22, 2.47, and 0.692 μM, respectively. Consequently, the pharmacokinetics of afatinib with and without the coadministration of nilotinib was determined in mice plasma and various tissues. Nilotinib increased afatinib AUC by 188% in plasma, and this altered tissue AUC by -38.8% to +221%. Nilotinib also decreased the clearance of afatinib by 65.3%, from 609 to 211 mL/h. Further studies are warranted to assess nilotinib's chemosensitizing effect in tumor xenograft models.
Collapse
Affiliation(s)
- Ronilda R D'Cunha
- The Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52246
| | - Daryl J Murry
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Guohua An
- The Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52246.
| |
Collapse
|
4
|
Chaudhry A, Chung G, Lynn A, Yalvigi A, Brown C, Ellens H, O'Connor M, Lee C, Bentz J. Derivation of a System-Independent Ki for P-glycoprotein Mediated Digoxin Transport from System-Dependent IC 50 Data. Drug Metab Dispos 2018; 46:279-290. [PMID: 29317410 DOI: 10.1124/dmd.117.075606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
It has been previously demonstrated that IC50 values for inhibition of digoxin transport across confluent polarized cell monolayers are system-dependent. Digoxin IC50 data from five laboratories participating in the P-glycoprotein (P-gp) IC50 Initiative, using Caco-2, MDCKII-hMDR1 or LLC-PK1-hMDR1 cells, were fitted by the structural mass action kinetic model for P-gp-mediated transport across confluent cell monolayers. We determined their efflux-active P-gp concentration [T(0)], inhibitor elementary dissociation rate constant from P-gp (krQ), digoxin basolateral uptake clearance (kB), and inhibitor binding affinity to the digoxin basolateral uptake transporter (KQB). We also fitted the IC50 data for inhibition of digoxin transport through monolayers of primary human proximal tubule cells (HPTCs). All cell systems kinetically required a basolateral uptake transporter for digoxin, which also bound to all inhibitors. The inhibitor krQ was cell system-independent, thereby allowing calculation of a system-independent Ki. The variability in efflux-active P-gp concentrations and basolateral uptake clearances in the five laboratories was about an order of magnitude. These laboratory-to-laboratory variabilities can explain more than 60% of the IC50 variability found in the principal component analysis plot in a previous study, supporting the hypothesis that the observed IC50 variability is primarily due to differences in expression levels of efflux-active P-gp and the basolateral digoxin uptake transporter. HPTCs had 10- to 100-fold lower efflux-active P-gp concentrations than the overexpressing cell lines, whereas their digoxin basolateral uptake clearances were similar. HPTC basolateral uptake of digoxin was inhibited 50% by 10 μM ouabain, suggesting involvement of OATP4C1.
Collapse
Affiliation(s)
- Aqsaa Chaudhry
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Git Chung
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Adam Lynn
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Akshata Yalvigi
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Colin Brown
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Harma Ellens
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Michael O'Connor
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Caroline Lee
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Joe Bentz
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| |
Collapse
|
5
|
Sato D, Kato T. Novel fluorescent substrates for detection of trypsin activity and inhibitor screening by self-quenching. Bioorg Med Chem Lett 2016; 26:5736-5740. [PMID: 27810242 DOI: 10.1016/j.bmcl.2016.10.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
A group of self-quenching-based substrates with two fluorescent peptides for detection of trypsin activity was designed and synthesized. The substrates could be easily synthesized using simple solid-phase peptide synthesis techniques. Two fluorescent peptide substrates for trypsin were conjugated to the amino groups of lysine as a branched unit. The fluorescence of these substrates was self-quenched owing to the highly assembled fluorophores on the substrates. The release of these concentrated fluorophores by proteases allows for fluorescence recovery. Self-quenching reduced the fluorescence of the substrates by 64.1%, and the fluorescence intensity was recovered by the release of the fluorophores from the substrate peptides via tryptic cleavage. The kinetic assay revealed that the kcat/Km values of the substrates were almost comparable to those of the standard fluorescent probe, peptide-MCA. The detection limit for trypsin was 111pM, and the calculation of IC50 and Ki values for the Bowman-Birk inhibitor was achieved using these substrates. These easily synthesizable self-quenching-based substrates have the potential to be useful for the detection of other disease-related protease activities.
Collapse
Affiliation(s)
- Daisuke Sato
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan
| | - Tamaki Kato
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan.
| |
Collapse
|
6
|
D'Cunha R, Bae S, Murry DJ, An G. TKI combination therapy: strategy to enhance dasatinib uptake by inhibiting Pgp- and BCRP-mediated efflux. Biopharm Drug Dispos 2016; 37:397-408. [PMID: 27418107 DOI: 10.1002/bdd.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/02/2016] [Accepted: 07/04/2016] [Indexed: 11/06/2022]
Abstract
The overexpression of efflux transporters, especially P-glycoprotein (Pgp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2), represents an important mechanism of multidrug resistance (MDR). Tyrosine kinase inhibitors (TKIs), a novel group of target-specific anticancer drugs, have recently been found to interact with Pgp and BCRP and to serve as both substrates and inhibitors. Considering their dual role, we anticipate that combination TKI therapy may represent a promising strategy to reverse efflux transporter mediated TKI resistance. Presently, investigations on these interactions are very limited. To fill the literature gap, dasatinib was used as the model drug and the effects of various TKIs on Pgp- and BCRP- mediated dasatinib efflux were evaluated. Cell uptake studies were performed using LLC-PK1 and MDCK-II cells along with their subclones that were transfected with human Pgp and BCRP, respectively. Among the 14 TKIs screened, nine TKIs greatly inhibited Pgp-mediated dasatinib efflux at 50 μm. Further concentration dependent studies showed that imatinib, nilotinib and pazopanib were potent Pgp inhibitors with IC50 values of 2.42, 6.11 and 8.06 μm, respectively. Additionally, 50 μm of five TKIs greatly increased dasatinib accumulation through BCRP inhibition. Concentration dependent studies revealed that imatinib, erlotinib, nilotinib, axitinib and pazopanib were potent BCRP inhibitors with IC50 values of 0.94, 2.23, 2.50, 6.89 and 10.4 μm, respectively. Our findings point to potential combinations of TKIs that could enhance intracellular concentrations of the targeted TKI, overcome MDR and improve TKI efficacy. Further in vivo studies are warranted to confirm the efflux transporter-mediated TKI-TKI interaction. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ronilda D'Cunha
- The Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - SoHyun Bae
- College of Pharmacy, University of Iowa, Iowa City, USA
| | - Daryl J Murry
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-6045, USA
| | - Guohua An
- The Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|