1
|
Guo YJ, Du TT, Yang YL, Zhao Y, Chen XL, Ma H, Sun LN, Wang YQ. Simultaneous Determination of Ibrutinib, Dihydroxydiol Ibrutinib, and Zanubrutinib in Human Plasma by Liquid Chromatography-Mass Spectrometry/Mass Spectrometry. Ther Drug Monit 2024; 46:634-641. [PMID: 38531816 DOI: 10.1097/ftd.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/23/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Ibrutinib and zanubrutinib are Bruton tyrosine kinase inhibitors used to treat mantle cell lymphoma, chronic lymphocytic leukemia, and small lymphocytic lymphoma. Dihydroxydiol ibrutinib (DHI) is an active metabolite of the drug. A liquid chromatography-tandem mass spectrometry method was developed to detect ibrutinib, DHI, and zanubrutinib in human plasma. METHODS The method involved a protein precipitation step, followed by chromatographic separation using a gradient of 10 mM ammonium acetate (containing 0.1% formic acid)-acetonitrile. Ibrutinib-d5 was used as an internal standard. Analytes were separated within 6.5 minutes. The optimized multiple reaction monitoring transitions of m/z 441.1 → 304.2, 475.2 → 304.2, 472.2 → 455.2, and 446.2 → 309.2 were selected to inspect ibrutinib, DHI, zanubrutinib, and the internal standards in positive ion mode. RESULTS The validated curve ranges included 0.200-800, 0.500-500, and 1.00-1000 ng/mL for ibrutinib, DHI, and zanubrutinib, respectively. The precisions of the lower limit of quantification of samples were below 15.5%, the precisions of the other level samples were below 11.4%, and the accuracies were between -8.6% and 8.4%. The matrix effect and extraction recovery of all compounds ranged between 97.6%-109.0% and 93.9%-105.2%, respectively. The selectivity, accuracy, precision, matrix effect, and extraction recovery results were acceptable according to international method validation guidelines. CONCLUSIONS A simple and rapid method was developed and validated in this study. This method was used to analyze plasma concentrations of ibrutinib and zanubrutinib in patients with mantle cell lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma, or diffuse large B-cell lymphoma. The selected patients were aged between 44 and 74 years.
Collapse
Affiliation(s)
- Yu-Jiao Guo
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan-Ling Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiang-Long Chen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
| | - Hong Ma
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Hatashima A, Shadman M. BTK inhibitors: moving the needle on the treatment of chronic lymphocytic leukemia. Expert Rev Hematol 2024; 17:687-703. [PMID: 39163531 DOI: 10.1080/17474086.2024.2391097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Bruton's tyrosine kinaseinhibitors (BTKis) changed the trajectory of upfront and relapsed/refractory chronic lymphocytic leukemia (CLL) treatment. However, BTKis are plagued by a spectrum of toxicities. Zanubrutinib was developed to circumvent challenges with prolonged tolerability by increasing BTK selectivity and maximizing efficacy through pharmacokinetic/pharmacodynamic optimization. However, with the availability of ibrutinib, acalabrutinib, and zanubrutinib, limited data exists to guide sequencing of BTKi therapy in the relapsed/refractory setting. AREAS COVERED We review the first head-to-head trial (ALPINE) of zanubrutinib versus ibrutinib for the treatment of relapsed/refractory CLL and compare zanubrutinib's clinical efficacy and toxicities, including in patients with del(17p) and/or TP53 mutations to ibrutinib and acalabrutinib. EXPERT OPINION Zanubrutinibrepresents one of the new standards of care for relapsed/refractory CLL based on superior progression-free survival and response rates over ibrutinib. Whilezanubrutinib is associated with fewer cardiac toxicities, similar rates of neutropenia and hypertension are noted. Ongoing studies are pushing the envelope, utilizing targeted drug combinations and minimal residual disease markers as well as receptor tyrosine kinase-like orphan receptor 1 inhibitors, chimeric antigen receptor T-cells, and novel BTK degraders. However, zanubrutinibrepresents a strong contender in the arsenal of treatment options for relapsed/refractory CLL.
Collapse
Affiliation(s)
- Alycia Hatashima
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Mazyar Shadman
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
- Division of Hematology and Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Li C, Chen L, Li L, Chen W. Drug-drug interactions and dose management of BTK inhibitors when initiating nirmatrelvir/ritonavir (paxlovid) based on physiologically-based pharmacokinetic models. Eur J Pharm Sci 2023; 189:106564. [PMID: 37586436 DOI: 10.1016/j.ejps.2023.106564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/02/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Co-administration of Bruton's tyrosine kinase (BTK) inhibitors with nirmatrelvir/ritonavir is challenging because of potential drug-drug interactions (DDIs). However, clinical trials specifically evaluating such DDIs are absent. To evaluate and quantify the DDIs between them and provide rational dose management strategies of BTK inhibitors, we conducted this study using physiologically-based pharmacokinetic (PBPK) models. METHODS Physicochemical properties and pharmacokinetic parameters were acquired from the published literature and databases. The PBPK models were developed using Simcyp® software. These models were validated by comparing with published literature values. The successfully validated PBPK models were used to simulate the plasma concentration-time profiles and DDIs in a virtual healthy population receiving BTK inhibitors alone or with ritonavir. RESULTS Simulated plasma concentration-time profiles and pharmacokinetic parameters of each drug were in agreement with clinically observed values from literatures. Ritonavir increased ibrutinib maximum plasma concentration (Cmax) and the area under plasma concentration-time curve (AUC) 33- and 53.88-fold, respectively, increased zanubrutinib Cmax and AUC 2.57- and 3.18-fold, respectively, and increased acalabrutinib Cmax and AUC 3.85- and 6.54-fold, respectively. Based on our simulations, dose-adjustment strategies may consist of ibrutinib at 25 mg q48h, zanubrutinib at 80 mg twice-daily and acalabrutinib at 25 mg twice-daily with nirmatrelvir/ritonavir. CONCLUSIONS The PBPK models predicted the in vivo pharmacokinetics and the DDIs of BTK inhibitors and ritonavir. The prospective simulations not only provided scientific evidence regarding rational dosing management strategies when initiating nirmatrelvir/ritonavir therapy but also provided a reference for the design of clinical DDIs study that may save resources and time. SUMMARY Paxlovid could increase Cmax and AUC0-τ of BTK inhibitors (ibrutinib, zanubrutinib and acalabrutinib), and dose adjustment strategy of ibrutinib (25 mg q48h), zanubrutinib (80 mg q12h) and acalabrutinib (25 mg q12h) should be considered when combination with nirmatrelvir/ritonavir.
Collapse
Affiliation(s)
- Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Hanyu Road No.181, Shapingba district, Chongqing, China
| | - Lu Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Hanyu Road No.181, Shapingba district, Chongqing, China
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Hanyu Road No.181, Shapingba district, Chongqing, China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Hanyu Road No.181, Shapingba district, Chongqing, China; Chongqing University, Chongqing, China.
| |
Collapse
|
4
|
Piha-Paul SA, Tseng C, Tran HT, Gao M, Karp DD, Subbiah V, Tsimberidou AM, Kawedia JD, Fu S, Pant S, Yap TA, Morris VK, Kee BK, Blum Murphy M, Lim J, Meric-Bernstam F. A phase I trial of the pan-ERBB inhibitor neratinib combined with the MEK inhibitor trametinib in patients with advanced cancer with EGFR mutation/amplification, HER2 mutation/amplification, HER3/4 mutation or KRAS mutation. Cancer Chemother Pharmacol 2023; 92:107-118. [PMID: 37314501 PMCID: PMC10326142 DOI: 10.1007/s00280-023-04545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE Aberrant alterations of ERBB receptor tyrosine kinases lead to tumorigenesis. Single agent therapy targeting EGFR or HER2 has shown clinical successes, but drug resistance often develops due to aberrant or compensatory mechanisms. Herein, we sought to determine the feasibility and safety of neratinib and trametinib in patients with EGFR mutation/amplification, HER2 mutation/amplification, HER3/4 mutation and KRAS mutation. METHODS Patients with actionable somatic mutations or amplifications in ERBB genes or actionable KRAS mutations were enrolled to receive neratinib and trametinib in this phase I dose escalation trial. The primary endpoint was determination of the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT). Secondary endpoints included pharmacokinetic analysis and preliminary anti-tumor efficacy. RESULTS Twenty patients were enrolled with a median age of 50.5 years and a median of 3 lines of prior therapy. Grade 3 treatment-related toxicities included: diarrhea (25%), vomiting (10%), nausea (5%), fatigue (5%) and malaise (5%). The MTD was dose level (DL) minus 1 (neratinib 160 mg daily with trametinib 1 mg, 5 days on and 2 days off) given 2 DLTs of grade 3 diarrhea in DL1 (neratinib 160 mg daily with trametinib 1 mg daily). The treatment-related toxicities of DL1 included: diarrhea (100%), nausea (55.6%) and rash (55.6%). Pharmacokinetic data showed trametinib clearance was significantly reduced leading to high drug exposures of trametinib. Two patients achieved stable disease (SD) ≥ 4 months. CONCLUSION Neratinib and trametinib combination was toxic and had limited clinical efficacy. This may be due to suboptimal drug dosing given drug-drug interactions. TRIAL REGISTRATION ID NCT03065387.
Collapse
Affiliation(s)
- Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA.
| | - Chieh Tseng
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Hai T Tran
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meng Gao
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Apostolia Maria Tsimberidou
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Jitesh D Kawedia
- Pharmacy Pharmacology Research, Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan K Kee
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariela Blum Murphy
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JoAnn Lim
- Pharmacy Clinical Programs, Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Tariq B, Conto S, Cohen A, Sahasranaman S, Ou YC. A Phase 1, Open-Label, Fixed-Sequence, Drug-Drug Interaction Study of Zanubrutinib with Rifabutin in Healthy Volunteers. Clin Pharmacol Drug Dev 2023; 12:832-838. [PMID: 37145975 DOI: 10.1002/cpdd.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2023] [Indexed: 05/07/2023]
Abstract
Zanubrutinib is a second-generation Bruton tyrosine kinase inhibitor that is primarily metabolized by CYP3A enzymes. Previous drug-drug interaction (DDI) studies have demonstrated that co-administration of zanubrutinib with rifampin, a strong CYP3A inducer, reduces zanubrutinib plasma concentrations, potentially impacting activity. The impact of the co-administration of zanubrutinib with less potent CYP3A inducers is unclear. This phase 1, open-label, fixed-sequence DDI study evaluated the pharmacokinetics, safety, and tolerability of zanubrutinib when co-administered with steady-state rifabutin, a known CYP3A inducer less potent than rifampin, in 13 healthy male volunteers (NCT04470908). Co-administration of zanubrutinib with rifabutin resulted in a less than 2-fold reduction of zanubrutinib exposures. Overall, zanubrutinib was well tolerated. The results of this study provide useful information for the evaluation of the DDI between rifabutin and zanubrutinib. In conjunction with safety and efficacy data from other clinical studies, these results will be taken into consideration to determine the appropriate dose recommendation of zanubrutinib when co-administered with CYP3A inducers.
Collapse
Affiliation(s)
- Bilal Tariq
- Clinical Pharmacology, BeiGene USA, Inc., Fulton, Maryland, USA
| | - Stephanie Conto
- Clinical Operations, BeiGene USA, Inc., Cambridge, Massachusetts, USA
| | - Aileen Cohen
- BeiGene, Ltd. and BeiGene USA, Inc., San Mateo, California, USA
| | | | - Ying C Ou
- BeiGene, Ltd. and BeiGene USA, Inc., San Mateo, California, USA
| |
Collapse
|