1
|
Rosli MAF, Syed Jaafar SN, Azizan KA, Yaakop S, Aizat WM. Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PeerJ 2024; 12:e17843. [PMID: 39247549 PMCID: PMC11380842 DOI: 10.7717/peerj.17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/10/2024] [Indexed: 09/10/2024] Open
Abstract
Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.
Collapse
Affiliation(s)
| | - Sharifah Nabihah Syed Jaafar
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Li K, Liu J, Geng Z, Xu W, Zhang Z, Chu D, Guo L. Resistance to dinotefuran in Bemisia tabaci in China: status and characteristics. PEST MANAGEMENT SCIENCE 2023; 79:833-844. [PMID: 36264629 DOI: 10.1002/ps.7251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bemisia tabaci (Gennadius) is a serious agricultural pest worldwide. Neonicotinoids are the most important new class of synthetic insecticides used in the management of B. tabaci. However, B. tabaci populations have developed resistance to various active ingredients in neonicotinoids following long-term and widespread application. RESULTS Dinotefuran exhibited high toxicity against most B. tabaci field populations. One population (Din-R) with a high level of resistance to dinotefuran (255.6-fold) was first identified in the field. The Din-R population exhibited medium to high levels of resistance to all the tested neonicotinoid insecticides and a high level of resistance to spinetoram. Genetic inheritance analysis revealed that resistance to dinotefuran was incompletely recessive and polygenic. The synergist piperonyl butoxide significantly increased the toxicity of dinotefuran to Din-R. P450 activity in the Din-R population was 2.19-fold higher than in the susceptible population. RNA-sequencing analysis showed that 12 P450 genes were significantly upregulated in the Din-R population, of which CYP6DW5, CYP6JM1 and CYP306A1 were found to exhibit more than 3.00-fold higher expression in Din-R when using a reverse transcription quantitative real-time polymerase chain reaction. Expression of eight P450 genes was obviously induced by dinotefuran, and CYP6DW5 showed the highest expression level. After knockdown of CYP6DW5 in Din-R, the toxicity of dinotefuran increased significantly. CONCLUSION P450 had a crucial role in dinotefuran resistance in B. tabaci, and CYP6DW5 was involved in the resistance. These results provide important information for the management of resistance in B. tabaci and improve our understanding of the resistance mechanism of dinotefuran. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaixin Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Jiantao Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Ziqiong Geng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Wei Xu
- Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Zhuang Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Lei Guo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Application of insecticides by soil drenching before seedling transplanting combined with anti-insect nets to control tobacco whitefly in tomato greenhouses. Sci Rep 2022; 12:15939. [PMID: 36153424 PMCID: PMC9509379 DOI: 10.1038/s41598-022-20294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Application of chemical pesticides is currently the main effective method to control tobacco whitefly (Bemisa tabaci) in tomato in China. The B. tabaci control efficacy of three systemic insecticides (thiamethoxam, sulfoxaflor and cyantraniliprole) by pre-transplant soil drenching with anti-insect nets throughout the tomato growth period was evaluated in two tomato greenhouses in the suburbs of Beijing, China, in 2018 and 2019. In two greenhouse trials, thiamethoxam 25% water dispersible granules (WDG) at a field rate of 21 g a.i./hm2, sulfoxaflor 22% aqueous suspension (AS) at 18 g a.i./hm2 or cyantraniliprole 10% oil-based suspension concentrate (OD) at 18 g a.i./hm2 applied via soil drenching before seedling transplanting in combination with white anti-insect nets (50 mesh) all effectively controlled the damage to B. tabaci and resulted in a low density of adults and eggs during the entire growing season, which was significantly lower than application of thiamethoxam, sulfoxaflor or cyantraniliprole via soil drenching before seedling transplanting without anti-insect net treatments or anti-insect nets alone (P < 0.05). All of the above treatments provided significantly better results than the untreated control (P < 0.05). All chemically treated tomato fruits had acceptable insecticide residuals that were lower than the corresponding maximum residue limits. The results suggest that application of thiamethoxam 25% WDG at a field rate of 21 g a.i./hm2, sulfoxaflor 22% AS at 18 g a.i./hm2 or cyantraniliprole 10% OD at 18 g a.i./hm2 by pre-transplant soil drenching combined with anti-insect nets could be recommended to control B. tabaci throughout the tomato growth period as part of integrated pest management programs in China.
Collapse
|
4
|
Lu Q, Wang P, Ali A, Zang LS. Molecular Identification and Virulence of Four Strains of Entomopathogenic Fungi Against the Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:731-738. [PMID: 35348695 DOI: 10.1093/jee/toac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The whitefly, Bemisia tabaci (Gennadius), is a key pest of many economically important crops grown in the field and in greenhouses throughout the world. Because entomopathogenic fungi (EPF) are potential biological control agents for B. tabaci, however, minimal research has been conducted on using fungal strains to control B. tabaci. In this study, four EPF strains were isolated and identified as Lecanicillium attenuatum (Zare & Gams) JL-003, Beauveria bassiana Balsamo (Vuillemin) JL-005, Lecanicillium longisporum (Petch) JL-006, and Akanthomyces lecanii (Zimmerman) JL-007, based on rDNA-ITS sequence analysis. In comparing the virulence of the four fungi against the different life stages (i.e., eggs, 1st-, 2nd-, 3rd-, 4th-instar nymphs, and adults) of B. tabaci the mortality of B. tabaci decreased and LT50 values increased as the conidia concentration decreased in a series of conidia concentrations (1 × 105, 106, 107, and 108 conidia/mL). The fungal strains L. attenuatum JL-003 (LC50: 1.31 × 106) and B. bassiana JL-005 (LC50: 0.92 × 106) were found to be more effective than L. longisporum JL-006 (LC50: 4.97 × 107) and A. lecanii JL-007 (LC50: 6.46 × 106). Fourth-instar nymphs, eggs, and adult stages of B. tabaci were less susceptible to all fungal strains compared to 1st-, 2nd-, and 3rd-instar nymphs. The virulence of L. attenuatum, which was tested for the first time on B. tabaci, was found to be more toxic to early-stage nymphs. Our data will be useful in biological control programs that are considering using EPF against B. tabaci.
Collapse
Affiliation(s)
- Qian Lu
- Institute of Biological Control, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Peng Wang
- Institute of Biological Control, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Asad Ali
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
| | - Lian-Sheng Zang
- Institute of Biological Control, College of Plant Protection, Jilin Agricultural University, Changchun, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Bemisia tabaci on Vegetables in the Southern United States: Incidence, Impact, and Management. INSECTS 2021; 12:insects12030198. [PMID: 33652635 PMCID: PMC7996905 DOI: 10.3390/insects12030198] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/25/2023]
Abstract
Simple Summary The sweetpotato whitefly, Bemisia tabaci, was initially discovered in the United States in 1894 but was not considered an economic insect pest on various agricultural crops across the southern and western states. After the introduction of B. tabaci Middle East-Asia Minor 1 (MEAM1) into the United States around 1985, the insect rapidly spread throughout the Southern United States to Texas, Arizona, and California. Extreme field outbreaks occurred on vegetable and other crops in those areas. The sweetpotato whitefly is now regarded as one of the most destructive insect pests in vegetable production systems in the Southern United States. The direct and indirect plant damage caused by B. tabaci has led to substantial economic losses in vegetable crops. Bemisia tabaci outbreaks on vegetables in Georgia resulted in significant economic losses of 132.3 and 161.2 million US dollars (USD) in 2016 and 2017, respectively. Therefore, integrated pest management (IPM) tactics are warranted, including cultural control by manipulation of production practices, resistant vegetable varieties, biological control using various natural enemies, and the judicious use of insecticides. Abstract Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is among the most economically important insect pests of various vegetable crops in the Southern United States. This insect is considered a complex of at least 40 morphologically indistinguishable cryptic species. Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) was initially introduced in the United States around 1985 and has since rapidly spread across the Southern United States to Texas, Arizona, and California, where extreme field outbreaks have occurred on vegetable and other crops. This pest creates extensive plant damage through direct feeding on vegetables, secreting honeydew, causing plant physiological disorders, and vectoring plant viruses. The direct and indirect plant damage in vegetable crops has resulted in enormous economic losses in the Southern United States, especially in Florida, Georgia, and Texas. Effective management of B. tabaci on vegetables relies mainly on the utilization of chemical insecticides, particularly neonicotinoids. However, B. tabaci has developed considerable resistance to most insecticides. Therefore, alternative integrated pest management (IPM) strategies are required, such as cultural control by manipulation of production practices, resistant vegetable varieties, and biological control using a suite of natural enemies for the management of the pest.
Collapse
|
6
|
“Predator-In-First”: A Preemptive Biological Control Strategy for Sustainable Management of Pepper Pests in Florida. SUSTAINABILITY 2020. [DOI: 10.3390/su12187816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The early establishment of a biocontrol agent in the production system, whether in the greenhouse, nursery, or field, is essential for the success of the biological control program, ensuring growers’ profitability. In an effort to develop a sustainable pest management solution for vegetable growers in Florida, we explored the application of a preemptive biological control strategy, “Predator-In-First” (PIF), in regulating multiple pepper pests, Bemisia tabaci Gennadius, Frankliniella occidentalis Pergande, and Polyphagotarsonemus latus Banks under greenhouse and field conditions during different growing seasons. In these studies, two bell pepper cultivars (7039 and 7141) and the phytoseiid mite Amblyseius swirskii Athias–Henriot were used as a model system. Pepper seedlings (~8 week) of each cultivar were infested with varying rates of A. swirskii (20 or 40 mites/plant or one sachet/10 plant) and allowed to settle on plant hosts for a week before planting in pots or field beds. Results showed a comparative consistent performance of the treatment with the high rate of phytoseiids (40 mites/plant) in regulating B. tabaci and F. occidentalis populations in greenhouse studies, and B. tabaci and P. latus pests under field conditions. During two fall field seasons, higher marketable yields of 12.8% and 20.1% in cultivar 7039, and 24.3% and 39.5% in cultivar 7141 were observed in the treatment with the high rate of phytoseiids compared to the untreated control, indicating yield benefits of the approach. The outcome of the study is encouraging and demonstrates that PIF can be an important tool for organic vegetable growers and a potential alternative to chemical-based conventional pest management strategies. The advantages and limitations of the PIF approach in Florida pepper production are discussed.
Collapse
|
7
|
Ramos RS, Kumar L, Shabani F, da Silva RS, de Araújo TA, Picanço MC. Climate model for seasonal variation in Bemisia tabaci using CLIMEX in tomato crops. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:281-291. [PMID: 30680622 DOI: 10.1007/s00484-018-01661-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/24/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
The whitefly, Bemisia tabaci, is considered one of the most important pests for tomato Solanum lycopersicum. The population density of this pest varies throughout the year in response to seasonal variation. Studies of seasonality are important to understand the ecological dynamics and insect population in crops and help to identify which seasons have the best climatic conditions for the growth and development of this insect species. In this research, we used CLIMEX to estimate the seasonal abundance of a species in relation to climate over time and species geographical distribution. Therefore, this research is designed to infer the mechanisms affecting population processes, rather than simply provide an empirical description of field observations based on matching patterns of meteorological data. In this research, we identified monthly suitability for Bemisia tabaci, with the climate models, for 12 commercial tomato crop locations through CLIMEX (version 4.0). We observed that B. tabaci displays seasonality with increased abundance in tomato crops during March, April, May, June, October and November (first year) and during March, April, May, September and October (second year) in all monitored areas. During this period, our model demonstrated a strong agreement between B. tabaci density and CLIMEX weekly growth index (GIw), which indicates significant reliability of our model results. Our results may be useful to design sampling and control strategies, in periods and locations when there is high suitability for B. tabaci.
Collapse
Affiliation(s)
- Rodrigo Soares Ramos
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil.
- Ecosystem Management, School of Environmental and Rural Science, University of New England (UNE), Armidale, NSW, 2351, Australia.
| | - Lalit Kumar
- Ecosystem Management, School of Environmental and Rural Science, University of New England (UNE), Armidale, NSW, 2351, Australia
| | - Farzin Shabani
- Ecosystem Management, School of Environmental and Rural Science, University of New England (UNE), Armidale, NSW, 2351, Australia
- Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | | | - Tamíris Alves de Araújo
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil
| | - Marcelo Coutinho Picanço
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
8
|
Kumar V, Francis A, Avery PB, McKenzie CL, Osborne LS. Assessing Compatibility of Isaria fumosorosea and Buprofezin for Mitigation of Aleurodicus rugioperculatus (Hemiptera: Aleyrodidae): An Invasive Pest in the Florida Landscape. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1069-1079. [PMID: 29546290 DOI: 10.1093/jee/toy056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 06/08/2023]
Abstract
Rugose spiraling whitefly (RSW), Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) is a new invasive whitefly pest in the Florida landscape, known to feed on a wide range of plants including palms, woody ornamentals, shrubs, and fruits. With the objective to find an alternative to neonicotinoid insecticides, and develop an ecofriendly management program for RSW, in the current study we evaluated the efficacy of a biopesticide containing the entomopathogenic fungi, Isaria fumosorosea Wize (Hypocreales: Clavicipitaceae), and an insect growth regulator buprofezin applied alone and in combination under laboratory and field conditions. Before assessing the two products, their compatibility was studied at six different concentrations of buprofezin. No significant inhibitive effect of buprofezin was observed on I. fumosorosea spore germination, and the average linear growth of the colony measured 14 d postinoculation. Under laboratory conditions, I. fumosorosea treatments (alone or mixed with buprofezin) provided higher RSW mortality than buprofezin alone. However, in both outdoor cage studies, the efficacy of buprofezin treatments (alone or mixed with I. fumosorosea) was higher than I. fumosorosea alone. A significant reduction in RSW population was reported for more than 5 wk in buprofezin alone and more than 7 wk in the combination treatments. In fall of 2014 and summer of 2015, the mean whitefly mortality observed during the 10-wk assessment period was 52.4 and 42.1% for I. fumosorosea, 79.6 and 79.0% for buprofezin, and 87.6 and 84.3% in mixed treatments, respectively. Results suggest that buprofezin can offer an effective alternate in the battle against invasive whiteflies such as RSW in Florida ecosystems, either as a stand-alone strategy or in an integrated approach.
Collapse
Affiliation(s)
- Vivek Kumar
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Apopka, FL
- United States Department of Agriculture, Agricultural Research Services, Fort Pierce, FL
| | - Antonio Francis
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Apopka, FL
| | - Pasco B Avery
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida
| | - Cindy L McKenzie
- United States Department of Agriculture, Agricultural Research Services, Fort Pierce, FL
| | - Lance S Osborne
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Apopka, FL
| |
Collapse
|
9
|
Kumar V, Avery PB, Ahmed J, Cave RD, McKenzie CL, Osborne LS. Compatibility and Efficacy of Isaria fumosorosea with Horticultural Oils for Mitigation of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). INSECTS 2017; 8:insects8040119. [PMID: 29088086 PMCID: PMC5746802 DOI: 10.3390/insects8040119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 11/21/2022]
Abstract
Horticultural oils are an important component of integrated management programs of several phytophagous arthropods and pathogens affecting fruit, ornamentals and vegetables in greenhouse and field production systems. Although effective against the target pest, their incompatibility with biological control agents can compromise efforts to develop eco-friendly management programs for important agricultural pests. In this study, we assessed the in vitro effect of selected refined petroleum oils used in citrus and other horticultural crops with a biopesticide containing the entomopathogenic fungi, Isaria fumosorosea (PFR-97) under laboratory conditions. Further, we used leaf disk bioassays to evaluate the combined efficacy of petroleum oils and I. fumosorosea against the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), a major pest of citrus in the United States. All five petroleum oil treatments (Orchex, Sun Pure, Conoco Blend -1, Conoco Blend -2, and JMS) were compatible with I. fumosorosea blastospores, as none of them were found to affect I. fumosorosea colony-forming units and radial fungal growth measured at 3, 6, 9, and 12 days post-inoculation. All mixed treatments performed better than I. fumosorosea alone against D. citri, where the highest mean survival time of D. citri was 12.5 ± 0.7 days. No significant differences in D. citri survival time and I. fumosorosea growth (fungal development index) on dead cadavers, which is important for determining their horizontal transmission, were observed when mixed with Orchex, Sun Pure, Conoco Blend -2, and JMS. Results indicated that horticultural oils in combination with I. fumosorosea could offer citrus growers an alternative treatment for integrating into their current management programs while battling against D. citri in citrus production systems. Due to their eco-friendly, broad-spectrum effect, it could provide control against various citrus pests, while also encouraging the retention of effective chemistries for a longer period in the marketplace. However promising, these combination treatments need to be tested further with I. fumosorosea under grove conditions to confirm their field efficacy.
Collapse
Affiliation(s)
- Vivek Kumar
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2725, South Binion Road, Apopka, FL 32703, USA.
- United States Department of Agriculture, Agricultural Research Services, 2001 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Pasco B Avery
- Indian River Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2199 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Juthi Ahmed
- Indian River Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2199 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Ronald D Cave
- Indian River Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2199 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Cindy L McKenzie
- United States Department of Agriculture, Agricultural Research Services, 2001 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Lance S Osborne
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2725, South Binion Road, Apopka, FL 32703, USA.
| |
Collapse
|
10
|
Chen XD, Stelinski LL. Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida. INSECTS 2017; 8:insects8030103. [PMID: 28930170 PMCID: PMC5620723 DOI: 10.3390/insects8030103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayma, is one of the most important pests in citrus production. The objective of this study was to evaluate D. citri resistance management with three insecticide rotations and compare them with no rotation and an untreated check. The different insecticides (modes of action) tested were: dimethoate, imidacloprid, diflubenzuron, abamectin 3% + thiamethoxam 13.9%, and fenpropathrin. Eggs, nymph, and adult psyllids were counted weekly. Five insecticide applications were made in 2016. Insecticide susceptibility was determined by direct comparison with a laboratory susceptible population and field populations before and after all treatments were applied. Rankings of eggs, nymphs, and adults counted in treated plots were significantly lower than in the untreated control plots after each application. Initially, the resistance ratio (RR50) for each rotation model, as compared with laboratory susceptible strain and the field population before application, was less than 5.76 and 4.31, respectively. However, after five applications with dimethoate, the RR50 using the laboratory and pre-treatment field populations was 42.34 and 34.74, respectively. Our results indicate that effectively rotating modes of action can delay and/or prevent development of insecticide resistance in populations of D. citri.
Collapse
Affiliation(s)
- Xue Dong Chen
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA.
| | - Lukasz L Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA.
| |
Collapse
|
11
|
Kivett JM, Cloyd RA, Bello NM. Insecticide Rotation Programs with Entomopathogenic Organisms for Suppression of Western Flower Thrips (Thysanoptera: Thripidae) Adult Populations under Greenhouse Conditions. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1936-1946. [PMID: 26470338 DOI: 10.1093/jee/tov155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/19/2015] [Indexed: 06/05/2023]
Abstract
Western flower thrips, Frankliniella occidentalis (Pergande), is one of the most destructive insect pests of greenhouse production systems with the ability to develop resistance to a wide variety of insecticides. A common resistance management strategy is rotating insecticides with different modes of action. By incorporating entomopathogenic organisms (fungi and bacteria), which have discrete modes of action compared to standard insecticides, greenhouse producers may preserve the effectiveness of insecticides used for suppression of western flower thrips populations. The objective of this study was to determine how different rotation programs that include entomopathogenic organisms (Beauveria bassiana, Isaria fumosoroseus, Metarhizium anisopliae, and Chromobacterium subtsugae) and commonly used standard insecticides (spinosad, chlorfenapyr, abamectin, and pyridalyl) may impact the population dynamics of western flower thrips adult populations by means of suppression. Eight-week rotation programs were applied to chrysanthemum, Dendranthema x morifolium plants and weekly counts of western flower thrips adults captured on yellow sticky cards were recorded as a means to evaluate the impact of the rotation programs. A final quality assessment of damage caused by western flower thrips feeding on foliage and flowers was also recorded. Furthermore, a cost comparison of each rotation program was conducted. Overall, insecticide rotation programs that incorporated entomopathogenic organisms were not significantly different than the standard insecticide rotation programs without entomopathogenic organisms in suppressing western flower thrips adult populations. However, there were no significant differences among any of the rotation programs compared to the water control. Moreover, there was no differential effect of the rotation programs on foliage and flower quality. Cost savings of up to 34% (in US dollars) are possible when including entomopathogenic organisms in the rotation program. Therefore, by incorporating entomopathogenic organisms into insecticide rotation programs, greenhouse producers can decrease costs without affecting suppression, as well as diminish selection pressure on western flower thrips adult populations, which may avoid or delay resistance development.
Collapse
Affiliation(s)
- Jessica M Kivett
- Department of Entomology, Kansas State University, Manhattan, KS 66506
| | - Raymond A Cloyd
- Department of Entomology, Kansas State University, Manhattan, KS 66506.
| | - Nora M Bello
- Department of Statistics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
12
|
Kumar V, Xiao Y, McKenzie CL, Osborne LS. Early establishment of the phytoseiid mite Amblyseius swirskii (Acari: Phytoseiidae) on pepper seedlings in a Predator-in-First approach. EXPERIMENTAL & APPLIED ACAROLOGY 2015; 65:465-481. [PMID: 25772442 DOI: 10.1007/s10493-015-9895-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
The establishment of biocontrol agents is critical for success of biological control strategies. Predator-in-First (PIF) is a prophylactic control strategy that aims to establish predators before the appearance of pests in an agro-ecosystem. PIF uses the ability of generalist phytoseiid mites to survive, develop and reproduce on pollen and thus establish in the absence of prey. The early establishment of populations of natural enemies helps control the pests at their incipient stage of infestation. The current study was undertaken to screen pepper cultivars for their ability to support populations of the predatory mite Amblyseius swirskii Athias-Henriot in the absence of prey. Twenty-nine pepper cultivars (11 hot and 18 sweet) were tested through a series of experiments, and four cultivars (7141, 992-7141, FPP7039 and FPP9048) were found to sustain A. swirskii populations throughout the study period. The initial application of pollen was important for establishment and maintenance of the predatory mites within the greenhouse system. Among the three screening experiments, high densities of mites were obtained in the experiment where 20 mites were released per plant, even reaching densities of >100 mites/plant. Recovery of predatory mites was significantly higher (ca. 2-3 fold) on the four pepper cultivars when predatory mites were mass released using an indirect method (banker plants) than when they were released directly on the seedlings, suggesting an advantage of passive continuous release. Future work will evaluate the selected pepper cultivars with the PIF strategy under greenhouse and field production conditions.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, 2725, South Binion Road, Apopka, FL, 32703, USA,
| | | | | | | |
Collapse
|
13
|
Cuthbertson AGS, Collins DA. Tri-Tek (Petroleum Horticultural Oil) and Beauveria bassiana: Use in Eradication Strategies for Bemisia tabaci Mediterranean Species in UK Glasshouses. INSECTS 2015; 6:133-40. [PMID: 26463071 PMCID: PMC4553534 DOI: 10.3390/insects6010133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 11/16/2022]
Abstract
The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest of global importance on both outdoor and glasshouse crops. To date, B. tabaci has not become established in the UK. The UK holds Protected Zone status against this pest and, as a result, B. tabaci entering on plant material is subjected to a policy of eradication. Mediterranean species is now the most prevalent Bemisia species entering the UK. Increasing neonicotinoid resistance is becoming increasingly widespread and problematic with this species. As a result, this continues to pose problems for eradication strategies. The current study investigates the efficacy of Tri-Tek (a petroleum horticultural oil awaiting UK registration) and the fungus Beauveria bassiana to act as control agents against Mediterranean species in UK glasshouses. Tri-Tek provided 100% egg mortality compared to 74% for B. bassiana. When tested against second instar larvae, mortalities of 69% and 65% respectively were achieved. Both products can be successfully “tank-mixed”. A tank-mix application provided 95.5% mortality of second instar larvae under glasshouse conditions. The potential integration of both products into current Bemisia eradication strategies in UK glasshouses is discussed.
Collapse
Affiliation(s)
| | - Debbie A Collins
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK.
| |
Collapse
|
14
|
Nauen R, Ghanim M, Ishaaya I. Whitefly Special Issue organized in two parts. PEST MANAGEMENT SCIENCE 2014; 70:1438-1439. [PMID: 25364800 DOI: 10.1002/ps.3870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|