1
|
Fu X, Xue C, Wang X, Wang A, Zhu Y, Yang Y, Zhang Y, Zhou Y, Zhao M, Shan C, Zhang J. Two detoxification enzyme genes, CYP6DA2 and CarFE4, mediate the susceptibility to afidopyropen in Semiaphis heraclei. Front Physiol 2024; 15:1478869. [PMID: 39712191 PMCID: PMC11659293 DOI: 10.3389/fphys.2024.1478869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Semiaphis heraclei is an important economic pest affecting Caprifoliaceae and Apiaceae plants, and chemical control is still the main effective control method in the field. Afidopyropen is a new type of pyridine cyclopropyl insecticide, which can effectively control piercing-sucking mouthparts pests and is suitable for pest resistance management. However, the detoxification mechanism of S. heraclei to afidopyropen is still poorly cleared. Methods The insecticidal activity of afidopyropen against S. heraclei and the enzyme activity assay and synergism bioassay were evaluated. The detoxification enzyme genes were obtained by transcriptome and validated by quantitative real-time PCR (RT-qPCR). Furthermore, RNA interference was used to study the functions of detoxification enzyme genes. Results The activities of cytochrome P450 monooxygenases (P450s) and carboxylesterases (CarEs) were significantly increased under afidopyropen treatment. The toxicity of afidopyropen against S. heraclei was significantly increased after application the inhibitors of piperonyl butoxide and triphenyl phosphate. Sixteen P450 genes and three CarE genes were identified in the transcriptome of S. heraclei. The RT-qPCR results showed that eleven P450 genes and two CarE genes were significantly upregulated under afidopyropen treatment, and the expression of CYP6DA2 and CarFE4 was upregulated by more than 2.5 times. The expression pattern of CYP6DA2 and CarFE4 was further analyzed in different developmental stages of S. heraclei and knockdown of CYP6DA2 and CarFE4 significantly increased the susceptibility of S. heraclei to afidopyropen. Conclusion The results of this study uncover the key functions of CYP6DA2 and CarFE4 in the detoxification mechanism of S. heraclei to afidopyropen, and provide a theoretical basis for the scientific use of afidopyropen in the field.
Collapse
Affiliation(s)
- Xiaochen Fu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Wang
- Chongqing Jiulongpo District Agro-Tech Extension and Service Station, Chongqing, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanwei Zhu
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yun Zhou
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chenggang Shan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Zhou CS, Lv HH, Guo XH, Cao Q, Zhang RX, Ma DY. Transcriptional analysis of Bemisia tabaci MEAM1 cryptic species under the selection pressure of neonicotinoids imidacloprid, acetamiprid and thiamethoxam. BMC Genomics 2022; 23:15. [PMID: 34983398 PMCID: PMC8728913 DOI: 10.1186/s12864-021-08241-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neonicotinoids are widely applied in the control of the destructive agricultural pest Bemisia tabaci, and resistance against these chemicals has become a common, severe problem in the control of whiteflies. To investigate the molecular mechanism underlying resistance against nenonicotinoids in whiteflies, RNA-seq technology was applied, and the variation in the transcriptomic profiles of susceptible whiteflies and whiteflies selected by imidacloprid, acetamiprid and thiamethoxam treatment was characterized. RESULTS A total of 90.86 GB of clean sequence data were obtained from the 4 transcriptomes. Among the 16,069 assembled genes, 584, 110 and 147 genes were upregulated in the imidacloprid-selected strain (IMI), acetamiprid-selected strain (ACE), and thiamethoxam (THI)-selected strain, respectively, relative to the susceptible strain. Detoxification-related genes including P450s, cuticle protein genes, GSTs, UGTs and molecular chaperone HSP70s were overexpressed in the selected resistant strains, especially in the IMI strain. Five genes were downregulated in all three selected resistant strains, including 2 UDP-glucuronosyltransferase 2B18-like genes (LOC 109030370 and LOC 109032577). CONCLUSIONS Ten generations of selection with the three neonicotinoids induced different resistance levels and gene expression profiles, mainly involving cuticle protein and P450 genes, in the three selected resistant whitefly strains. The results provide a reference for research on resistance and cross-resistance against neonicotinoids in B. tabaci.
Collapse
Affiliation(s)
- Cheng Song Zhou
- Engineering Research Centre of Cotton, Ministry of Education /College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Huan Huan Lv
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Universities of the Xinjiang Uygur Autonomous Region, 311 Nongda East Road, Urumqi, 830052, China
| | - Xiao Hu Guo
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Universities of the Xinjiang Uygur Autonomous Region, 311 Nongda East Road, Urumqi, 830052, China
| | - Qian Cao
- Agricultural Product Inspection and Test Center, 99 Wuyi East Road, Changji, 831100, China
| | - Rui Xingyue Zhang
- Engineering Research Centre of Cotton, Ministry of Education /College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - De Ying Ma
- Engineering Research Centre of Cotton, Ministry of Education /College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
3
|
Jia Z, Fu K, Guo W, Jiang W, Ahmat T, Ding X, He J, Wang X. CAP Analysis of the Distribution of the Introduced Bemisia tabaci (Hemiptera: Aleyrodidae) Species Complex in Xinjiang, China and the Southerly Expansion of the Mediterranean Species. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:14. [PMID: 33844016 PMCID: PMC8040787 DOI: 10.1093/jisesa/ieaa151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 06/12/2023]
Abstract
Bemisia tabaci (Gennadius) cryptic complex has invaded Xinjiang, China, since 1998. The distribution of Mediterranean (MED) and Middle East-Asia Minor 1 (MEAM1) B. tabaci substrains has been gradually identified due to the development of molecular technology. In this study, the distribution of MED and MEAM1 in Xinjiang was determined by cleaved amplified polymorphic sequence (CAPs). Results showed that MED dominated in northern Xinjiang (84%), whereas MEAM1 was dominant in southern Xinjiang (72%). Five pairs of simple sequence repeat (SSR) primers were used to analyze the genetic diversity of B. tabaci among 36 geographic populations. The genetic diversity of MED and MEAM1was low and varied little among populations in Xinjiang (0.09 ± 0.14 and 0.09 ± 0.13, respectively). Based on ∆K statistic, 13 populations of MEAM1 could be classified into two subgroups at K = 2, whereas the 23 populations of MED could be classified into four subgroups at K = 4. However, Mantel t-test demonstrated no correlation between geographical and genetic distances among B. tabaci complex (R = 0.42, P = 1.00). Neighbor-joining and principal coordinate analysis showed that geographical isolation and interspecific differences were the main causes of the genetic variation. Gene flow predicted that MEAM1 was most likely introduced from Urumqi to the southern Xinjiang. Meanwhile, a large proportion of MED in Kashi region came from Changji and Yining. To block ongoing dispersal, strict detection and flower quarantine regulations need to be enforced.
Collapse
Affiliation(s)
- Zunzun Jia
- College of Agriculture, Xinjiang Agricultural University, Xinjiang, China
| | - Kaiyun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Scientific Observing and Experimental Station of Korla, Ministry of Agriculture, Xinjiang, China
| | - Wenchao Guo
- Institute of Microbial Application, Xinjiang Academy of Agricultural Sciences, Xinjiang, China
| | - Weihua Jiang
- College of Plant pretection, Nanjing Agricultural University, Nanjing, China
| | - Tursun Ahmat
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Scientific Observing and Experimental Station of Korla, Ministry of Agriculture, Xinjiang, China
| | - Xinhua Ding
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Scientific Observing and Experimental Station of Korla, Ministry of Agriculture, Xinjiang, China
| | - Jiang He
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Scientific Observing and Experimental Station of Korla, Ministry of Agriculture, Xinjiang, China
| | - Xiaowu Wang
- Institute of Microbial Application, Xinjiang Academy of Agricultural Sciences, Xinjiang, China
| |
Collapse
|
4
|
Zhang Q, Yang F, Tong H, Hu Y, Zhang X, Tian T, Zhang Y, Su Q. Plant flavonoids enhance the tolerance to thiamethoxam and flupyradifurone in whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104744. [PMID: 33357566 DOI: 10.1016/j.pestbp.2020.104744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The sweetpotato whitefly Bemisia tabaci is a polyphagous crop pest distributed worldwide and frequent exposure to many different defensive secondary metabolites in its host plants. To counteract these defensive plant secondary metabolites, B. tabaci elevate their production of detoxification enzymes, including cytochrome P450 monooxygenases. Besides their tolerance to phytotoxin, B. tabaci have quickly developed resistance to various insecticides in the field. However, the relationship between host plant secondary metabolites and insecticide resistance in B. tabaci is not fully understood. In this study, the influence of plant flavonoid ingestion on B. tabaci tolerance to thiamethoxam and flupyradifurone insecticides and its possible mechanism were examined. Eight plant flavonoids were screened to evaluate their effects on B. tabaci adult sensitivity to thiamethoxam and flupyradifurone. Of which rutin, quercetin, kaempferol, myricetin and catechin significantly reduced adult sensitivity to thiamethoxam and flupyradifurone. Application of cytochrome P450 inhibitor piperonyl butoxide significantly increased the mortality of B. tabaci adults treated with thiamethoxam and flupyradifurone. Moreover, flavonoid ingestion predominantly enhanced the activity of cytochrome P450 enzyme in B. tabaci adults. Meanwhile, the expression level of three cytochrome P450 genes, CYP6CM1, CYP6CX4 and CYP4C64 were induced by the flavonoids in B. tabaci adults. In conclusion, plant flavonoids enhanced the tolerance to thiamethoxam and flupyradifurone in B. tabaci and cytochrome P450s may contribute the flavonoid adaptation. The reduced sensitivity of thiamethoxam and flupyradifurone in flavonoid-fed B. tabaci adults suggested that previous exposure to the host plant-derived flavonoids is likely to compromise the efficacy of insecticides.
Collapse
Affiliation(s)
- Qinghe Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Fengbo Yang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Hong Tong
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yuan Hu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyi Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Tian
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China.
| |
Collapse
|
5
|
Wang YJ, Wang HL, Wang XW, Liu SS. Transcriptome analysis and comparison reveal divergence between the Mediterranean and the greenhouse whiteflies. PLoS One 2020; 15:e0237744. [PMID: 32841246 PMCID: PMC7447059 DOI: 10.1371/journal.pone.0237744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
Both the Mediterranean (MED) species of the Bemisia tabaci whitefly complex and the greenhouse whitefly (Trialeurodes vaporariorum, TV) are important agricultural pests. The two species of whiteflies differ in many aspects such as morphology, geographical distribution, host plant range, plant virus transmission, and resistance to insecticides. However, the molecular basis underlying their differences remains largely unknown. In this study, we analyzed the genetic divergences between the transcriptomes of MED and TV. In total, 2,944 pairs of orthologous genes were identified. The average identity of amino acid sequences between the two species is 93.6%. The average nonsynonymous (Ka) and synonymous (Ks) substitution rates and the ratio of Ka/Ks of the orthologous genes are 0.0389, 2.23 and 0.0204, respectively. The low average Ka/Ks ratio indicates that orthologous genes tend to be under strong purified selection. The most divergent gene classes are related to the metabolisms of xenobiotics, cofactors, vitamins and amino acids, and this divergence may underlie the different biological characteristics between the two species of whiteflies. Genes of differential expression between the two species are enriched in carbohydrate metabolism and regulation of autophagy. These findings provide molecular clues to uncover the biological and molecular differences between the two species of whiteflies.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Ling Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
6
|
Zhou CS, Cao Q, Li GZ, Ma DY. Role of several cytochrome P450s in the resistance and cross-resistance against imidacloprid and acetamiprid of Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1 cryptic species in Xinjiang, China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:209-215. [PMID: 31973859 DOI: 10.1016/j.pestbp.2019.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/29/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoids are commonly used for the control of the whitefly Bemisia tabaci in cotton field. Laboratory test and field experiments have found that whitefly has a high risk of developing resistance and cross-resistance to the pesticide. Over expression of cytochrome P450 is one of the main mechanism that controls pesticide resistance in many insects. In this study we use MEAM1 whitefly, the dominant cryptic species of B. tabaci in Xinjiang cotton field, to investigate the possible resistance and cross-resistance mechanism controlled by cytochrome P450 enzymes. The P450 enzyme activity was higher in both selected strains of imidacloprid and acetamipird than that of susceptible strain. Synergism test showed that piperonyl butoxide (PBO) distinctly increased the control efficiency of imidacloprid and acetamiprid to the two resistance selected strains. Four out of 13 cytochrome genes, CYP4CS3, CYP6CX5, CYP6DW2 and CYP6CM1 were significantly up-regulated in the two selected strains based on real-time fluorescence quantitative PCR results. Other 3 genes, CYP6CX2, CYP6CX4 and CYP6DW3 were only highly expressed in the acetamiprid selected strain instead of the susceptible strain and imidacloprid selected strain. CYP6CM1 showed the highest expression level among all the 13 tested genes. No functional mutation of CYP6CM1 was found by sequence analysis. The possible role of these genes involving the resistance and cross-resistance of the whitefly MEAM1 cryptic species against neonicotinoids was discussed.
Collapse
Affiliation(s)
- Cheng-Song Zhou
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China
| | - Qian Cao
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China
| | - Guo-Zhi Li
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China
| | - De-Ying Ma
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China.
| |
Collapse
|
7
|
Xie T, Jiang L, Li J, Hong B, Wang X, Jia Y. Effects of Lecanicillium lecanii strain JMC-01 on the physiology, biochemistry, and mortality of Bemisia tabaci Q-biotype nymphs. PeerJ 2019; 7:e7690. [PMID: 31576242 PMCID: PMC6752192 DOI: 10.7717/peerj.7690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Background Lecanicillium lecanii is an entomopathogenic fungi, which was isolated from insects suffering from disease. Now, it is an effective bio-control resource that can control agricultural pests such as whitefly and aphids. There are many studies on the control of various agricultural pests by L. lecanii, but no report on its control of Bemisia tabaci biotype-Q exists. In this work, we studied the susceptibility of B. tabaci Q-biotype (from Ningxia, China) to L. lecanii JMC-01 in terms of nymph mortality and the changes in detoxifying protective enzymes activities. Methods B. tabaci nymphs were exposed to L. lecanii JMC-01 conidia by immersion with the host culture. Mortality was assessed daily for all nymph stages. The detoxifying and protective enzyme activity changes, weight changes, and fat, and water contents of the nymphs were determined spectrophotometrically. Results All instars of B. tabaci died after being infested with 1 × 108 conidia/mL. The 2nd-instar nymphs were the most susceptible, followed by the 3rd-instar nymphs. The corrected cumulative mortality of the 2nd- and 3rd-instar nymphs was 82.22% and 75.55%, respectively. The levels of detoxifying and protective enzymes initially increased and then decreased. The highest activities of carboxylesterase, acetylcholinesterase, peroxidase, and catalase occurred on the 3rd day, reaching 10.5, 0.32, 20, and 6.3 U/mg prot, respectively. These levels were 2.2-, 4.3-, 2.4-, and 1.4-fold the control levels, respectively. The highest activities of glutathione-S transferase and superoxide dismutase on the 2nd day were, respectively, 64 and 43.5 U/mg prot. These levels were, respectively, 2.7 and 1.1-fold that of the control level. The water and fat content in the infected B. tabaci nymphs decreased and differed significantly from the control levels. The weight increased continuously in the first 24 h, decreasing thereafter. At 72 h, the infestation level was about 0.78-fold that of the control level. Conclusions The studied L. lecanii JMC-01 strain is pathogenic to the B. tabaci Q-biotype. This strain interferes with the normal functioning of detoxifying and protective enzymes, and is also involved in the disruption of normal physiological metabolism in B. tabaci.
Collapse
Affiliation(s)
- Ting Xie
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Ling Jiang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Jianshe Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Bo Hong
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xinpu Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yanxia Jia
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Wang X, Xiang X, Yu H, Liu S, Yin Y, Cui P, Wu Y, Yang J, Jiang C, Yang Q. Monitoring and biochemical characterization of beta-cypermethrin resistance in Spodoptera exigua (Lepidoptera: Noctuidae) in Sichuan Province, China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 146:71-79. [PMID: 29626995 DOI: 10.1016/j.pestbp.2018.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 02/06/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The beet armyworm Spodoptera exigua, a major pest affecting numerous cultivated crops in China, has developed a serious resistance to many traditional chemical insecticides. The resistance levels of the field-collected populations from different districts in Sichuan Province, China, to nine insecticides were detected with a diet-incorporation bioassay. Compared to the Lab-ZN strain, five (in 2014) and three (in 2016) field populations displayed either high or extremely high levels of resistance to beta-cypermethrin. All the field populations collected in 2014 were susceptible to emamectin benzoate, hexaflumuron, methoxyfenozide, chlorantraniliprole, cyantraniliprole and indoxacarb but exhibited low or moderate levels of resistance to abamectin. The resistances of field populations collected in 2016 were significantly higher than two years earlier, especial for chlorantraniliprole and cyantraniliprole with RRs rising from 173.4- to 582.6-fold and 175.3- to 287.6-fold, respectively, even though the field populations had retained moderate or low levels of resistance to chlorpyrifos and hexaflumuron. The synergism experiment revealed that the resistance of the LS16 population to beta-cypermethrin may be mainly related to cytochrome P450 monooxygenases (P450s), which was responsible for the highest increase ratio of 37.97-fold, for piperonyl butoxide, rather than either carboxylesterase (CarE) or glutathione S-transferase (GST). The cytochrome P450 ethoxycoumarin O-deethylase activity of the LS16 population was also the strongest among the treatments (P < 0.05). Non-denaturing polyacrylamide gel electrophoresis (native PAGE) indicated that enhanced E11, E13 and E15-E16 bands in the LS16 population likely contribute to the development of resistance to beta-cypermethrin.
Collapse
Affiliation(s)
- Xuegui Wang
- Biorational Pesticide Research Lab, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xing Xiang
- Biorational Pesticide Research Lab, Sichuan Agricultural University, Chengdu 611130, China
| | - Huiling Yu
- Biorational Pesticide Research Lab, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuhua Liu
- Biorational Pesticide Research Lab, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Yin
- Plant Protection Station, Agriculture Department of Sichuan, Chengdu 610041, China
| | - Peng Cui
- Agency of Protection and Quarantine, Agriculture Technology and Popularization Center in Central District of Leshan City, Leshan 614000, China
| | - Yaqiong Wu
- Plant Protection Station, Agriculture Department of Sichuan, Chengdu 610041, China
| | - Jing Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| | - Chunxian Jiang
- Biorational Pesticide Research Lab, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunfang Yang
- Biorational Pesticide Research Lab, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
He C, Xie W, Yang X, Wang SL, Wu QJ, Zhang YJ. Identification of glutathione S-transferases in Bemisia tabaci (Hemiptera: Aleyrodidae) and evidence that GSTd7 helps explain the difference in insecticide susceptibility between B. tabaci Middle East-Minor Asia 1 and Mediterranean. INSECT MOLECULAR BIOLOGY 2018; 27:22-35. [PMID: 28767183 DOI: 10.1111/imb.12337] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) species complex includes invasive and destructive pests of field crops, and the sibling species MEAM1 and MED are its two most damaging members. Previous research indicated that the replacement of Middle East-Minor Asia 1 (MEAM1) by Mediterranean (MED) as the dominant B. tabaci species in China can be mainly attributed to MED's greater tolerance to insecticides. Glutathione S-transferases (GSTs) play important roles in the detoxification of hydrophobic toxic compounds. To increase our understanding of differences in insecticide resistance between B. tabaci MEAM1 and MED, we searched the genomic and transcriptomic databases and identified 23 putative GSTs in both B. tabaci MEAM1 and MED. Through measuring mRNA levels of 18 of the GSTs after B. tabaci MEAM1 and MED adults were exposed to the insecticide imidacloprid, we found that the expression levels were increased more in B. tabaci MED than in MEAM1 (in particular, the expression level of GST-d7 was increased by 4.39-fold relative to the control). Knockdown of GST-d7 in B. tabaci MED but not in B. tabaci MEAM1 resulted in a substantial increase in the mortality of imidacloprid-treated adults. These results indicate that differences in GST-d7 may help explain why insecticide tolerance is greater in B. tabaci MED than in B. tabaci MEAM1.
Collapse
Affiliation(s)
- C He
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S-L Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q-J Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y-J Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Xie W, Yang X, Chen C, Yang Z, Guo L, Wang D, Huang J, Zhang H, Wen Y, Zhao J, Wu Q, Wang S, Coates BS, Zhou X, Zhang Y. The invasive MED/Q Bemisia tabaci genome: a tale of gene loss and gene gain. BMC Genomics 2018; 19:68. [PMID: 29357812 PMCID: PMC5778671 DOI: 10.1186/s12864-018-4448-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/11/2018] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Sweetpotato whitefly, Bemisia tabaci MED/Q and MEAM1/B, are two economically important invasive species that cause considerable damages to agriculture crops through direct feeding and indirect vectoring of plant pathogens. Recently, a draft genome of B. tabaci MED/Q has been assembled. In this study, we focus on the genomic comparison between MED/Q and MEAM1/B, with a special interest in MED/Q's genomic signatures that may contribute to the highly invasive nature of this emerging insect pest. RESULTS The genomes of both species share similarity in syntenic blocks, but have significant divergence in the gene coding sequence. Expansion of cytochrome P450 monooxygenases and UDP glycosyltransferases in MED/Q and MEAM1/B genome is functionally validated for mediating insecticide resistance in MED/Q using in vivo RNAi. The amino acid biosynthesis pathways in MED/Q genome are partitioned among the host and endosymbiont genomes in a manner distinct from other hemipterans. Evidence of horizontal gene transfer to the host genome may explain their obligate relationship. Putative loss-of-function in the immune deficiency-signaling pathway due to the gene loss is a shared ancestral trait among hemipteran insects. CONCLUSIONS The expansion of detoxification genes families, such as P450s, may contribute to the development of insecticide resistance traits and a broad host range in MED/Q and MEAM1/B, and facilitate species' invasions into intensively managed cropping systems. Numerical and compositional changes in multiple gene families (gene loss and gene gain) in the MED/Q genome sets a foundation for future hypothesis testing that will advance our understanding of adaptation, viral transmission, symbiosis, and plant-insect-pathogen tritrophic interactions.
Collapse
Affiliation(s)
- Wen Xie
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Xin Yang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | | | - Zezhong Yang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Litao Guo
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Dan Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Yanan Wen
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | | | - Qingjun Wu
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Shaoli Wang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546-0091, USA.
| | - Youjun Zhang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China.
| |
Collapse
|
11
|
Adesanya AW, Held DW, Liu N. Geranium intoxication induces detoxification enzymes in the Japanese beetle, Popillia japonica Newman. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:1-7. [PMID: 29183576 DOI: 10.1016/j.pestbp.2017.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Popillia japonica is a generalist herbivore that feeds on >300 host plant species in at least 72 plant families. It is unknown why P. japonica, despite possessing active detoxification enzymes in its gut, is paralyzed when feeding on the petals of one of its preferred host plant, Pelargonium×hortorum, or on artificial diet containing quisqualic acid (QA), the active compound in zonal geranium. We hypothesized that Pelargonium×hortorum or QA do not induce activity of the cytochrome P450, glutathione S transferase (GST), and carboxylesterase (CoE) detoxification enzymes in P. japonica. In this study, P. japonica were fed petals of zonal geranium or agar plugs containing QA, or rose petals, another preferred but non-toxic host. Midgut enzyme activities of P450, GST, and CoE were then assayed after 6, 12, or 24h of feeding. In most cases, P450, GST, and CoE activities were significantly induced in P. japonica midguts by geranium petals and QA, though the induction was slower than with rose petals. Induced enzyme activity reached a peak at 24h after consumption, which coincides with the period of highest recovery from geranium and QA paralysis. This study shows that toxic geranium and QA induce detoxification enzyme activity, but the induced enzymes do not effectively protect P. japonica from paralysis by QA. Further investigation is required through in vitro studies to know if the enzymes induced by geranium are capable of metabolizing QA. This study highlights a rare physiological mismatch between the detoxification tool kit of a generalist and its preferred host.
Collapse
Affiliation(s)
- Adekunle W Adesanya
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36830, United States; Department of Entomology, Washington State University, 279A FSHN building, Pullman, WA 99163, United States.
| | - David W Held
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36830, United States.
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36830, United States
| |
Collapse
|
12
|
The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Sci Rep 2017; 7:587. [PMID: 28373679 PMCID: PMC5428437 DOI: 10.1038/s41598-017-00486-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023] Open
Abstract
Cytochrome P450 monooxygenases play a critical role in insecticide resistance by allowing resistant insects to metabolize insecticides. Previous studies revealed that two P450 genes, CYP9M10 and CYP6AA7, are not only up-regulated but also induced in resistant Culex mosquitoes. In this study, CYP9M10 and CYP6AA7 were separately co-expressed with cytochrome P450 reductase (CPR) in insect Spodoptera frugiperda (Sf9) cells using a baculovirus-mediated expression system and the enzymatic activity and metabolic ability of CYP9M10/CPR and CYP6AA7/CPR to permethrin and its metabolites, including 3-phenoxybenzoic alcohol (PBOH) and 3-phenoxybenzaldehyde (PBCHO), characterized. PBOH and PBCHO, both of which are toxic to Culex mosquito larvae, can be further metabolized by CYP9M10/CPR and CYP6AA7/CPR, with the ultimate metabolite identified here as PBCOOH, which is considerably less toxic to mosquito larvae. A cell-based MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) cytotoxicity assay revealed that Sf9 cells expressing CYP9M10/CPR or CYP6AA7/CPR increased the cell line's tolerance to permethrin, PBOH, and PBCHO. This study confirms the important role played by CYP9M10 and CYP6AA7 in the detoxification of permethrin and its metabolites PBOH and PBCHO.
Collapse
|
13
|
Lu W, Wang M, Xu Z, Shen G, Wei P, Li M, Reid W, He L. Adaptation of acaricide stress facilitates Tetranychus urticae expanding against Tetranychus cinnabarinus in China. Ecol Evol 2017; 7:1233-1249. [PMID: 28303192 PMCID: PMC5306011 DOI: 10.1002/ece3.2724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/17/2016] [Accepted: 12/17/2016] [Indexed: 02/03/2023] Open
Abstract
The two‐spotted spider mite, Tetranychus urticae, and the carmine spider mite, Tetranychus cinnabarinus, are invasive and native species in China, respectively. Compared with T. cinnabarinus, T. urticae has expanded into most parts of China and has become the dominant species of spider mite since 1983, when it was first reported in China. However, the mechanism of the demographic conversion has not been illuminated. In this study, one T. urticae field population and one T. cinnabarinus field population were isolated from the same plant in the same field, and the toxicological characteristics were compared between these two species. Laboratory bioassays demonstrated that T. urticae was more tolerant to commonly used acaricides than T. cinnabarinus. The activities of detoxification enzymes were significantly greater in T. urticae, and the fold changes of enzymes activities in T. urticae were also greater following exposure to acaricides. Furthermore, more metabolism‐related genes were upregulated at a basal level, and more genes were induced in T. urticae following exposure to acaricides. The comparison of proteins and genes between both species led credence to the hypothesis that T. urticae was more resistant to acaricides, which was the reason explaining the expansion of invasive T. urticae against native T. cinnabarinus. Laboratory simulation experiments demonstrated that following the application of acaricides, the composition of a mixed T. urticae/T. cinnabarinus population would change from a T. cinnabarinus‐dominant to a T. urticae‐dominant population. This study not only reveals that T. urticae possesses stronger detoxification capacity than its sibling species T. cinnabarinus, which facilitated its persistent expansion in China, but also points to the need to accurately identify Tetranychus species and to develop species‐specific management strategies for these pests.
Collapse
Affiliation(s)
- Wencai Lu
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing College of Plant Protection Southwest University Chongqing China
| | - Mengyao Wang
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing College of Plant Protection Southwest University Chongqing China
| | - Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing College of Plant Protection Southwest University Chongqing China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing College of Plant Protection Southwest University Chongqing China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing College of Plant Protection Southwest University Chongqing China
| | - Ming Li
- Department of Entomology University of California Riverside CA USA
| | - William Reid
- Department of Entomology North Carolina State University Raleigh NC USA
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing College of Plant Protection Southwest University Chongqing China
| |
Collapse
|
14
|
Gong Y, Diao Q. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1-12. [PMID: 27819118 DOI: 10.1007/s10646-016-1742-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 05/25/2023]
Abstract
The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees' genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees' management.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Honeybee Protection and Biosafety, Institute of apicultural Research, Chinese Academy of Agricultural Sciences, No.1 Beigou Xiangshan, Haidian District, Beijing, 100093, P.R. China
| | - Qingyun Diao
- Department of Honeybee Protection and Biosafety, Institute of apicultural Research, Chinese Academy of Agricultural Sciences, No.1 Beigou Xiangshan, Haidian District, Beijing, 100093, P.R. China.
| |
Collapse
|
15
|
Adesanya A, Liu N, Held DW. Host suitability and diet mixing influence activities of detoxification enzymes in adult Japanese beetles. JOURNAL OF INSECT PHYSIOLOGY 2016; 88:55-62. [PMID: 26964493 DOI: 10.1016/j.jinsphys.2016.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 05/27/2023]
Abstract
Induction of cytochrome P450, glutathione S transferase (GST), and carboxylesterase (CoE) activity was measured in guts of the scarab Popillia japonica Newman, after consumption of single or mixed plant diets of previously ranked preferred (rose, Virginia creeper, crape myrtle and sassafras) or non-preferred hosts (boxelder, riverbirch and red oak). The goal of this study was to quantify activities of P450, GST and CoE enzymes in the midgut of adult P. japonica using multiple substrates in response to host plant suitability (preferred host vs non-preferred hosts), and single and mixed diets. Non-preferred hosts were only sparingly fed upon, and as a group induced higher activities of P450, GST and CoE than did preferred hosts. However, enzyme activities for some individual plant species were similar across categories of host suitability. Similarly, beetles tended to have greater enzyme activities after feeding on a mixture of plants compared to a single plant type, but mixing per se does not seem as important as the species represented in the mix. Induction of detoxification enzymes on non-preferred hosts, or when switching between hosts, may explain, in part, the perceived feeding preferences of this polyphagous insect. The potential consequences of induced enzyme activities on the ecology of adult Japanese beetles are discussed.
Collapse
Affiliation(s)
- Adekunle Adesanya
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36830, United States
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36830, United States
| | - David W Held
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36830, United States.
| |
Collapse
|
16
|
Abstract
China is the world's fourth-largest country in terms of landmass. Its highly diverse biogeography presents opportunities for many invasive alien insects. However, physical and climate barriers sometimes prevent locally occurring species from spreading. China has 560 confirmed invasive alien species; 125 are insect pests, and 92 of these damage the agricultural ecosystem. The estimated annual economic loss due to alien invasive species is more than $18.9 billion. The most harmful invasive insects exhibit some common characteristics, such as high reproduction, competitive dominance, and high tolerance, and benefit from mutualist facilitation interactions. Regional cropping system structure adjustments have resulted in mono-agricultural ecosystems in cotton and other staple crops, providing opportunities for monophagous insect pests. Furthermore, human dietary shifts to fruits and vegetables and smallholder-based farming systems result in highly diverse agricultural ecosystems, which provide resource opportunities for polyphagous insects. Multiple cropping and widespread use of greenhouses provide continuous food and winter habitats for insect pests, greatly extending their geographic range. The current management system consists of early-warning, monitoring, eradication, and spread blocking technologies. This review provides valuable new synthetic information on integrated management practices based mainly on biological control for a number of invasive species. We encourage farmers and extension workers to be more involved in training and further research for novel protection methods that takes into consideration end users' needs.
Collapse
Affiliation(s)
- Fang-Hao Wan
- Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Nian-Wan Yang
- Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| |
Collapse
|
17
|
Rand EED, Smit S, Beukes M, Apostolides Z, Pirk CWW, Nicolson SW. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci Rep 2015; 5:11779. [PMID: 26134631 PMCID: PMC4488760 DOI: 10.1038/srep11779] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/01/2015] [Indexed: 01/10/2023] Open
Abstract
Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees. Nicotine and neonicotinoids have similar modes of action in insects. Our metabolomic and proteomic analyses show active detoxification of nicotine in bees, associated with increased energetic investment and also antioxidant and heat shock responses. The increased energetic investment is significant in view of the interactions of pesticides with diseases such as Nosema spp which cause energetic stress and possible malnutrition. Understanding how healthy honey bees process dietary toxins under unstressed conditions will help clarify how pesticides, alone or in synergy with other stress factors, lead to declines in bee vitality.
Collapse
Affiliation(s)
- Esther E du Rand
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.,Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Salome Smit
- Proteomics Unit, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Mervyn Beukes
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Zeno Apostolides
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Christian W W Pirk
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Susan W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| |
Collapse
|
18
|
Nauen R, Ghanim M, Ishaaya I. Whitefly Special Issue organized in two parts. PEST MANAGEMENT SCIENCE 2014; 70:1438-1439. [PMID: 25364800 DOI: 10.1002/ps.3870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|