1
|
Abd El-Lateef HM, Khalaf MM, Gouda M, Abdelhamid AA, Gad MA. Synthesis and Biological Evaluation of Benzamide Compounds as Insecticides Agents Against Spodoptera Frugiperda (Lepidoptera: Noctuidae). Chem Biodivers 2024; 21:e202400948. [PMID: 38899798 DOI: 10.1002/cbdv.202400948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Due to its severe damage, Spodoptera frugiperda is receiving attention as one of the biggest dangers to world food security. Although there are numerous insecticides that are widely and successfully used to control S. frugiperda, they do not have an immediate effect. In our work focusing for synthesized twelve novel benzamide derivatives and examined their insecticidal effectiveness against S. frugiperda larvae in their second & fourth larvae instars, with the aim of further improving the insecticidal activity based on combination principles. Several spectroscopic methods, including elemental analysis, NMR & infrared spectroscopy, were employed for confirming the structure of the newly designed products. It has been discovered that most compounds show good of promising efficacy. With an LC50 of 24.8 mg/L for larvae in the second instar & 56.2 mg/L for larvae in the fourth instar, compound 23 was the most active. Among all compounds 11, 22 and 20 exhibited excellent results. Furthermore, a number of biological and histopathological properties of the demonstration compounds of the produced goods under laboratory conditions were also examined. This work further demonstrates the anti-proliferation of S. frugiperda and offers fresh ideas for the manufacture of benzamide derivatives.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - M Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Antar A Abdelhamid
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
- Chemistry Department, Faculty of Science, Al-Baha University, Al-Baha, 1988, Saudi Arabia
| | - Mohamed A Gad
- Research Institute of Plant Protection, Agricultural Research Center, 12619, Giza, Egypt
| |
Collapse
|
2
|
Al-Qadhi MA, Allam HA, Fahim SH, Yahya TAA, Ragab FAF. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo{1,5-a}Pyrimidines as multikinase inhibitors. Eur J Med Chem 2023; 262:115918. [PMID: 37922829 DOI: 10.1016/j.ejmech.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 μM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 μM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 μM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.
Collapse
Affiliation(s)
- Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt.
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| | - Tawfeek A A Yahya
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| |
Collapse
|
3
|
Sun P, Zhang Z, Zhao J, Zhang H, Lin L, Wang X, Li L, Cao P, Wang Z, Li Z, Yuchi Z, Li Y. Novel Nitrophenyl Substituted Anthranilic Diamide Derivatives: Design, Synthesis, Selectivity, and Antiresistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17646-17657. [PMID: 37939255 DOI: 10.1021/acs.jafc.3c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Diamide insecticides have gained popularity due to their high efficacy and low toxicity to nontarget organisms. However, diamide-associated resistance has emerged recently, causing a significant reduction in their potency, thereby hindering sustainable agricultural development. Here, we explored novel diamide insecticide analogs and, using a structure-based approach, rationally designed and synthesized 28 nitrophenyl substituted anthranilic diamides. Most of the compounds showed moderate to good activity against Mythimna separata, Plutella xylostella, and Spodoptera frugiperda. Among them, compounds Ia and Im showed extraordinarily high activity and their mode of action was verified on isolated neurons. Additionally, Im exhibited over 10-fold greater potency than chlorantraniliprole in a HEK293 cell line stably expressing S. frugiperda ryanodine receptors (SfRyRs) containing the resistance mutations, G4891E and I4734M. The binding modes of Im in the SfRyRs were predicted using in silico molecular docking analysis. Our novel nitrophenyl substituted anthranilic diamide derivatives provide valuable insights for the design of insecticidal RyR-targeting compounds to effectively control both wild type and diamide insecticide-resistant lepidopteran pests.
Collapse
Affiliation(s)
- Pengwei Sun
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ze Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jiahui Zhao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hongyuan Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xinyao Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Linshan Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Zhongwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, 371 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
4
|
Zhong L, Wu C, Li M, Wu J, Chen Y, Ju Z, Tan C. 1,2,4-Oxadiazole as a potential scaffold in agrochemistry: a review. Org Biomol Chem 2023; 21:7511-7524. [PMID: 37671568 DOI: 10.1039/d3ob00934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
N,O-containing heterocycles have been incorporated into various approved pesticides and pesticide candidates. The persistent challenge in contemporary crop protection lies in the continuous pursuit of novel N,O-heterocycle-containing compounds with pesticidal properties. Among them, the 1,2,4-oxadiazole scaffold is one of the most extensively explored heterocycles in new pesticide discovery and development. This review focuses on elucidating the molecular design strategy employed along with highlighting the bioactivity of 1,2,4-oxadiazole derivatives since 2012. Throughout this time frame, tioxazafen and flufenoxadiazam have emerged as prominent examples in which 1,2,4-oxadiazole derivatives were utilized as the core active structure within numerous applications. Additionally, the preparation methods for substituted 1,2,4-oxadiazole derivatives are elaborated upon, and their potential value within agrochemistry is discussed.
Collapse
Affiliation(s)
- Liangkun Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Changyuan Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Mimi Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Junhui Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yang Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhiran Ju
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chengxia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Luo L, Ou Y, Zhang Q, Gan X. Discovery of 1,2,4-Oxadiazole Derivatives Containing Haloalkyl as Potential Acetylcholine Receptor Nematicides. Int J Mol Sci 2023; 24:5773. [PMID: 36982843 PMCID: PMC10058719 DOI: 10.3390/ijms24065773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Plant-parasitic nematodes pose a serious threat to crops and cause substantial financial losses due to control difficulties. Tioxazafen (3-phenyl-5-thiophen-2-yl-1,2,4-oxadiazole) is a novel broad-spectrum nematicide developed by the Monsanto Company, which shows good prevention effects on many kinds of nematodes. To discover compounds with high nematocidal activities, 48 derivatives of 1,2,4-oxadiazole were obtained by introducing haloalkyl at the 5-position of tioxazafen, and their nematocidal activities were systematically evaluated. The bioassays revealed that most of 1,2,4-oxadiazole derivatives showed remarkable nematocidal activities against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus dipsaci. Notably, compound A1 showed excellent nematocidal activity against B. xylophilus with LC50 values of 2.4 μg/mL, which was superior to that of avermectin (335.5 μg/mL), tioxazafen (>300 μg/mL), and fosthiazate (436.9 μg/mL). The transcriptome and enzyme activity results indicate that the nematocidal activity of compound A1 was mainly related to the compound which affected the acetylcholine receptor of B. xylophilus.
Collapse
Affiliation(s)
| | | | | | - Xiuhai Gan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Du S, Hu X. Comprehensive Overview of Diamide Derivatives Acting as Ryanodine Receptor Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3620-3638. [PMID: 36791236 DOI: 10.1021/acs.jafc.2c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The world's hunger is continuously rising due to conflicts, climate change, pandemics (such as the recent COVID-19), and crop pests and diseases. It is widely accepted that zero hunger is impossible without using agrochemicals to control crop pests and diseases. Diamide insecticides are one of the widely used green insecticides developed in recent years and play important roles in controlling lepidopteran pests. Currently, eight diamine insecticides have been commercialized, which target the insect ryanodine receptors. This review summarizes the development and optimization processes of diamide derivatives acting as ryanodine receptor activators. The review also discusses pest resistance to diamide derivatives and possible solutions to overcome the limitations posed by the resistance. Thus, with reference to structural biology, this study provides an impetus for designing and developing diamide insecticides with improved insecticidal activities.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
7
|
Yang G, Zhou C, Wang Y, Li Y, Gu Y, Li Z, Cheng J, Xu X. Anthranilic Diamides Containing Monofluoroalkene Amide Linkers as Potential Insect RyR Activators: Design, Synthesis, Bio-evaluation, and Computational Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2827-2841. [PMID: 36735252 DOI: 10.1021/acs.jafc.2c07680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In order to develop anthranilic diamides with novel chemotypes, a series of anthranilic diamides with acrylamide linkers were designed and synthesized. The results of preliminary bioassays indicated that compounds with a monofluoroalkene amide linker (Z-isomer) exhibited good larvicidal activity against lepidopteran pests. The LC50 values of compound A23 against Mythimna separata and Plutella xylostella were 1.44 and 3.48 mg·L-1, respectively, while those of chlorantraniliprole were 0.08 and 0.06 mg·L-1, respectively. Compound A23 also exhibited the same level of lethal potency against resistant and susceptible strains of Spodoptera frugiperda at 50 mg·L-1. Compound A23 exhibited similar symptoms as chlorantraniliprole in test larvae. Comparative molecular field analysis was conducted to demonstrate the structure-activity relationship. Central neuron calcium imaging experiments indicated that monofluoroalkene compounds were potential ryanodine receptor (RyR) activators and activated calcium channels in both the endoplasmic reticulum and the cell membrane. Molecular docking suggested that A23 had a better binding potency to P. xylostella RyR than chlorantraniliprole. The MM|GBSA dG bind value of A23 with P. xylostella RyR was 117.611 kcal·mol-1. Monofluoroalkene was introduced into anthranilic diamide insecticides for the first time and brought a novel chemotype for insect RyR activators. The feasibility of fluoroalkenes as insecticide fragments was explored.
Collapse
Affiliation(s)
- Guantian Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yutong Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yucheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, U.K
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Kavyasri D, Sundharesan M, Mathew N. Design, synthesis, characterization and insecticidal screening of novel anthranilic diamides comprising acyl thiourea substructure. PEST MANAGEMENT SCIENCE 2023; 79:257-273. [PMID: 36148914 DOI: 10.1002/ps.7196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mosquito-borne pathogens constitute a major health problem worldwide. The extermination of the mosquito remains a significant issue in public health. Chemical insecticides have been used to control mosquitoes for decades. However, resistance has become a limiting factor for their control. The anthranilic diamide insecticides possess excellent insecticidal activities against Lepidoptera and its resistant strains by draining internal calcium stores on activating insect ryanodine receptors. However, the reports on the effect on mosquitoes are scarce and hence a series of novel anthranilic diamides comprising acyl thiourea substructure were synthesized and their insecticidal activities against three vector mosquito larvae namely, Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi were evaluated as per WHO protocol. Also investigated the morphological observations of treated larvae. RESULTS Novel anthranilic diamides containing an acyl thiourea substructure were synthesized and structures were established by 1 H nuclear magnetic resonance (NMR), 13 C NMR, Fourier transform infrared (FTIR) and high-resolution mass spectrometry (HR-MS). Mosquito larvicidal activity of the title compounds 6-a-s revealed that compound 6-l exhibited marked larvicidal activities against C. quinquefasciatus and A. aegypti 3rd instar larvae with median lethal concentrations (LC50 ) values of 0.0044 mm and 0.0070 mm, respectively, for 48 hours of treatment. Compound 6-g exhibited larvicidal activity against An. stephensi with LC50 value of 0.0085 mm. Peculiar morphological alterations in the body of the treated larvae leading to death were observed on microscopic examination. CONCLUSION Novel anthranilic diamides containing an acyl thiourea substructure were designed, synthesized and characterized. Their bioassay results demonstrated significant mosquito larvicidal activity with striking morphological alterations in the body, which should ensure forthcoming designs of highly active diamide derivatives as mosquito larvicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dhanekula Kavyasri
- Department of Health Research, ICMR-Vector Control Research Centre, Indira Nagar, Puducherry, India
| | - Munusamy Sundharesan
- Department of Health Research, ICMR-Vector Control Research Centre, Indira Nagar, Puducherry, India
| | - Nisha Mathew
- Department of Health Research, ICMR-Vector Control Research Centre, Indira Nagar, Puducherry, India
| |
Collapse
|
9
|
Kucukoglu K, Faydali N, Bul D, Nadaroglu H, Sever B, Altıntop MD, Ozturk B, Guzel I. Synthesis, in silico and in vitro evaluation of new 3,5-disubstituted-1,2,4-oxadiazole derivatives as carbonic anhydrase inhibitors and cytotoxic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Zhou C, Wang X, Quan X, Cheng J, Li Z, Maienfisch P. Silicon-Containing Complex II Acaricides─Design, Synthesis, and Pharmacological Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11063-11074. [PMID: 35575634 DOI: 10.1021/acs.jafc.2c00804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioisosteric replacement has been proven to be a powerful strategy in life science research. In this review, general aspects of carbon-silicon bioisosteric substitution and its applications in pharmaceutical and crop protection research are described. Carbon and their silicon analogues possess similar intrinsic properties. Replacing carbon with silicon in pharmaceuticals and pesticides has shown to result in positive effects on efficacy and selectivity, physicochemical properties, and bioavailability and also to eliminate or improve human or environmental safety properties as well as to provide novelty and new intellectual property in many cases. Furthermore, the application of carbon-silicon substitution in the search for new complex II acaricides is highlighted. This research led to the discovery of sila-cyflumetofen 23a and other silicon-containing analogues of cyflumetofen that match or exceed the acaricidal activity of cyflumetofen. The molecular design strategy, synthetic aspects, biological activity, computational modeling work, and structure-activity relationships will be discussed.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xiaocao Quan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol MCB, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
11
|
Tu MT, Shao YY, Yang S, Sun BL, Wang YY, Tan CX, Wang XD. Structure-Based Bioisosterism Design, Synthesis, Biological Activity and Toxicity of 1,2,4-Oxadiazole Substituted Benzamides Analogues Containing Pyrazole Rings. Molecules 2022; 27:molecules27154692. [PMID: 35897869 PMCID: PMC9330712 DOI: 10.3390/molecules27154692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
In order to discover pesticidal lead compounds with high activity and low toxicity, a series of novel benzamides substituted with pyrazole-linked 1,2,4-oxadiazole were designed via bioisosterism. The chemical structures of the target compounds were confirmed via 1H NMR, 13C NMR and HRMS analysis. The preliminary bioassay showed that most compounds exhibited good lethal activities against Mythimna separate, Helicoverpa armigera, Ostrinia nubilalis and Spodoptera frugiperda at 500 mg/L. Particularly in the case of Mythimna separate, compound 14q (70%) exhibited obvious insecticidal activity. In addition, compound 14h demonstrated good fungicidal activity against Pyricularia oryae with an inhibition rate of 77.8%, and compounds 14e, 14k, 14n and 14r also showed certain antifungal activities (55.6–66.7%). The zebrafish toxicity test showed that the LC50 of compound 14h was 14.01 mg/L, which indicated that it may be used as a potential leading compound for further structural optimization.
Collapse
Affiliation(s)
- Min-Ting Tu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.-T.T.); (Y.-Y.S.); (S.Y.); (B.-L.S.); (Y.-Y.W.)
| | - Ying-Ying Shao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.-T.T.); (Y.-Y.S.); (S.Y.); (B.-L.S.); (Y.-Y.W.)
| | - Sen Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.-T.T.); (Y.-Y.S.); (S.Y.); (B.-L.S.); (Y.-Y.W.)
| | - Bin-Long Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.-T.T.); (Y.-Y.S.); (S.Y.); (B.-L.S.); (Y.-Y.W.)
| | - Ying-Ying Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.-T.T.); (Y.-Y.S.); (S.Y.); (B.-L.S.); (Y.-Y.W.)
| | - Cheng-Xia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.-T.T.); (Y.-Y.S.); (S.Y.); (B.-L.S.); (Y.-Y.W.)
- Correspondence: (C.-X.T.); (X.-D.W.); Tel./Fax: +86-571-8832-0238 (C.-X.T.)
| | - Xue-Dong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (C.-X.T.); (X.-D.W.); Tel./Fax: +86-571-8832-0238 (C.-X.T.)
| |
Collapse
|
12
|
Han Q, Wu N, Liu YY, Zhang JY, Zhang RL, Li HL, Jiang ZY, Huang JX, Duan HX, Yang Q. Piperonyl-Tethered Rhodanine Derivatives Potently Inhibit Chitinolytic Enzymes of Ostrinia furnacalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7387-7399. [PMID: 35687728 DOI: 10.1021/acs.jafc.2c02091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insect pest chitinases are potential target for developing new insect growth regulators. Piperine was found first to inhibit the insect chitinase (OfChi-h) from Ostrinia furnacalis (Asian corn borer) in this work, except for previously reported OfChtI. Novel piperonyl-tethered rhodanine derivatives 7a-j were rationally designed with piperine as lead and synthesized by introducing a unique rhodanine moiety into the piperine scaffold based on the similar binding cavity of OfChtI and OfChi-h. Compared to piperine, compounds 7a-j showed approximately 100- to 400-fold or 110- to 210-fold higher inhibitory capacity against two chitinases, respectively. Molecular mechanism studies indicated that π interactions are crucial for improving inhibitory activity against two chitinases due to the introduction of the conjugated rhodanine ring. Moreover, compounds 7a-c could dramatically inhibit the growth and development of O. furnacalis larvae by in vivo activity evaluation. This study provides novel piperonyl-tethered rhodanine derivatives inhibiting dual chitinases as insect growth regulator candidates.
Collapse
Affiliation(s)
- Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning116024, People's Republic of China
| | - Yao-Yang Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Jing-Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Ru-Lei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Hui-Lin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Zhi-Yang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Jia-Xing Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Hong-Xia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning116024, People's Republic of China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, People's Republic of China
| |
Collapse
|
13
|
Benzamides Substituted with Quinoline-Linked 1,2,4-Oxadiazole: Synthesis, Biological Activity and Toxicity to Zebrafish Embryo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123946. [PMID: 35745068 PMCID: PMC9229796 DOI: 10.3390/molecules27123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
To develop new compounds with high activity, broad spectrum and low-toxicity, 17 benzamides substituted with quinoline-linked 1,2,4-oxadiazole were designed using the splicing principle of active substructures and were synthesized. The biological activities were evaluated against 10 fungi, indicating that some of the synthetic compounds showed excellent fungicidal activities. For example, at 50 mg/L, the inhibitory activity of 13p (3-Cl-4-Cl substituted, 86.1%) against Sclerotinia sclerotiorum was superior to that of quinoxyfen (77.8%), and the inhibitory activity of 13f (3-CF3 substituted, 77.8%) was comparable to that of quinoxyfen. The fungicidal activities of 13f and 13p to Sclerotinia sclerotiorum were better than that of quinoxyfen (14.19 mg/L), with EC50 of 6.67 mg/L and 5.17 mg/L, respectively. Furthermore, the acute toxicity of 13p was 19.42 mg/L, classifying it as a low-toxic compound.
Collapse
|
14
|
Liu D, Wang Z, Zhou JJ, Gan X. Design, synthesis and nematocidal activity of novel 1,2,4-oxadiazole derivatives with a 1,3,4-thiadiazole amide moiety. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2046580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jing-Jiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Sun P, Zhang Z, Li L, Wang X, Xiong L, Yang N, Li Y, Li Z. Design, synthesis, and insecticidal evaluation of novel anthranilic diamides of
N
‐pyridylpyrazole
derivatives containing
3‐thioethers. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pengwei Sun
- State Key Laboratory of Elemento‐Organic Chemistry Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin China
| | - Ze Zhang
- State Key Laboratory of Elemento‐Organic Chemistry Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin China
| | - Linshan Li
- State Key Laboratory of Elemento‐Organic Chemistry Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin China
| | - Xinyao Wang
- State Key Laboratory of Elemento‐Organic Chemistry Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin China
| | - Lixia Xiong
- State Key Laboratory of Elemento‐Organic Chemistry Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin China
| | - Na Yang
- State Key Laboratory of Elemento‐Organic Chemistry Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin China
| | - Yuxin Li
- State Key Laboratory of Elemento‐Organic Chemistry Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin China
| | - Zhengming Li
- State Key Laboratory of Elemento‐Organic Chemistry Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin China
| |
Collapse
|
16
|
Ali A, Hasan P, Irfan M, Uddin A, Khan A, Saraswat J, Maguire R, Kavanagh K, Patel R, Joshi MC, Azam A, Mohsin M, Haque QMR, Abid M. Development of Oxadiazole-Sulfonamide-Based Compounds as Potential Antibacterial Agents. ACS OMEGA 2021; 6:27798-27813. [PMID: 34722980 PMCID: PMC8552329 DOI: 10.1021/acsomega.1c03379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this work, substituted 1,2,4-oxadiazoles (OX1-OX27) were screened against five bacterial strains, identified to be OX7 and OX11 as growth inhibitors with minimum inhibitory concentration (MIC) values of 31.25 and 15.75 μg/mL, respectively. The growth inhibitory property of OX7 and OX11 was further validated by disk diffusion, growth curve, and time kill curve assays. Both disrupted biofilm formation with 92-100% reduction examined by the XTT assay were further visualized by scanning electron microscopy analysis. These compounds in combination with ciprofloxacin also exhibit synergy against Escherichia coli cells. With insignificant cytotoxic behavior on HEK293 cells, human red blood cells, and Galleria mellonella larvae, OX11 was tested against 28 multidrug resistant environmental isolates of bacteria and showed inhibition of Kluyvera georgiana and Citrobacter werkmanii strains with 32 and 16 μg/mL MIC values, respectively. The synergistic behavior of OX11 with ampicillin showed many fold reductions in MIC values against K. georgiana and Klebsiella pneumoniae multidrug resistant strains. Further, transmission electron microscopy analysis of OX11-treated E. coli cells showed a significantly damaged cell wall, which resulted in the loss of integrity and cytosolic oozing. OX11 showed significant changes in the secondary structure of human serum albumin (HSA) in the presence of OX11, enhancing HSA stability. Overall, the study provided a suitable core for further synthetic alterations and development as an antibacterial agent.
Collapse
Affiliation(s)
- Asghar Ali
- Microbiology
Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Phool Hasan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Irfan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Amad Uddin
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ashba Khan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Juhi Saraswat
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ronan Maguire
- Department
of Biology, Maynooth University, Maynooth, Co. Kildare ABC127 Ireland
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Maynooth, Co. Kildare ABC127 Ireland
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mukesh C. Joshi
- Motilal
Nehru College, University of Delhi, Benito Juarez Marg, South Campus, New Delhi 110021, India
| | - Amir Azam
- Department
of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd. Mohsin
- Metabolic
Engineering Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Qazi Mohd. Rizwanul Haque
- Microbiology
Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
17
|
Acid-promoted reaction of N-(cyanomethyl) amide with nitrosation reagent: Facile synthesis of 1,2,4-oxadiazole-3-carboxamide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
One-pot synthesis of 1,2,4-oxadiazoles from chalcogen amino acid derivatives under microwave irradiation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Chen S, Zhang Y, Liu Y, Wang Q. Highly Efficient Synthesis and Acaricidal and Insecticidal Activities of Novel Oxazolines with N-Heterocyclic Substituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3601-3606. [PMID: 33739089 DOI: 10.1021/acs.jafc.0c05558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrogen heterocycles are found in numerous natural products, pharmaceuticals, and pesticides. Herein, we report the design and synthesis of a series of novel 2,4-diphenyl-1,3-oxazolines bearing various N-heterocyclic substituents via a 4-(4-(chloromethyl)phenyl)-2-(2,6-difluorophenyl)-4,5-dihydrooxazole intermediate generated by a modified Ritter reaction. Evaluation of the activities of the oxazolines against carmine spider mites (Tetranychus cinnabarinus) by means of a leaf-dipping method showed that most of the compounds exhibited good to excellent larvicidal and ovicidal activities. In particular, five compounds (one with a phthalimidyl group and four with a substituted indolyl group) have lower LC50 values than the commercial acaricide etoxazole (0.088 mg/L against larvae and 0.128 mg/L against eggs). This work lays a foundation for the development of novel acaricides.
Collapse
Affiliation(s)
- Shilin Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
20
|
Yang S, Ren CL, Ma TY, Zou WQ, Dai L, Tian XY, Liu XH, Tan CX. 1,2,4-Oxadiazole-Based Bio-Isosteres of Benzamides: Synthesis, Biological Activity and Toxicity to Zebrafish Embryo. Int J Mol Sci 2021; 22:ijms22052367. [PMID: 33673430 PMCID: PMC7956408 DOI: 10.3390/ijms22052367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
To discover new compounds with broad spectrum and high activity, we designed a series of novel benzamides containing 1,2,4-oxadiazole moiety by bioisosterism, and 28 benzamides derivatives with antifungal activity were synthesized. These compounds were evaluated against four fungi: Botrytis cinereal, FusaHum graminearum, Marssonina mali, and Thanatephorus cucumeris. The results indicated that most of the compounds displayed good fungicidal activities, especially against Botrytis cinereal. For example, 10a (84.4%), 10d (83.6%), 10e (83.3%), 10f (83.1%), 10i (83.3%), and 10l (83.6%) were better than pyraclostrobin (81.4%) at 100 mg/L. In addition, the acute toxicity of 10f to zebrafish embryo was 20.58 mg/L, which was classified as a low-toxicity compound.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cheng-Xia Tan
- Correspondence: ; Tel.: +86-571-8832-0238; Fax: +86-571-8832-0238
| |
Collapse
|
21
|
Li P, Yang Y, Wang X, Wu X. Recent achievements on the agricultural applications of thioether derivatives: A 2010–2020 decade in review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pei Li
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine Kaili University Kaili China
| | - Ying Yang
- Forestry Investigation Planning and Design Institute of Miao and Dong Autonomous Prefecture in Southeast Guizhou Kaili China
| | - Xiang Wang
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine Kaili University Kaili China
| | - Xianzhi Wu
- School of Life and Health Science Kaili University Kaili China
| |
Collapse
|
22
|
Shyam-Sundar N, Sivanesh H, Karthi S, Thanigaivel A, Stanley-Raja V, Chanthini KMP, Ramasubramanian R, Narayanan KR, Senthil-Nathan S. Developmental response of Spodoptera litura Fab in response to plant extract of Desmostachya bipinnata (L.) and its effect on non-target organism, earthworm (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7870-7882. [PMID: 33044694 DOI: 10.1007/s11356-020-11015-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Impact of chloroform extract of Desmostachya bipinnata was evaluated on armyworm Spodoptera litura (Lepidoptera: Noctuidae). The chloroform extract of D. bipinnata was subjected to GC-MS analysis to elucidate the vital 12 compounds. The mortality of S. litura was tested at four different concentrations viz., 0.5, 1.0, 1.5, and 2.0 %, which exhibited a dose-dependent response. Mortality was significant at a concentration of 2%. Accrued LC50 (lethal concentration) value was 0.15%. The developmental duration of larva and pupa was significantly increased in all treatments. Reduction in weight of pupae in treated groups was noticed and was compared with control. Longevity of S. litura decreased in all tested treatments and being most significant at concentrations of 1.5 and 2%. Simultaneous reduction in fecundity of S. litura was observed. Pathological changes were noticed in the mid gut of S. litura at concentrations of 1 and 1.5%. No significant impacts on earthworm were observed. The results of the present study revealed that chloroform extract from D. bipinnata, an old-world perennial grass, shown effective bio-pesticidal activity against S. litura, an important agricultural pest.
Collapse
Affiliation(s)
- Narayanan Shyam-Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | | | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| |
Collapse
|
23
|
Li H, Zhao Y, Sun P, Gao L, Xiong L, Yang N, Zhou S, Li Y, Li Z. Targeted Synthesis of Anthranilic Diamides Insecticides Containing Trifluoroethoxyl Phenylpyrazole. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0287-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Li H, Zhao Y, Sun P, Gao L, Li Y, Xiong L, Yang N, Zhou S, Li Z. Synthesis and Insecticidal Evaluation of Novel Anthranilic Diamides Derivatives Containing
4‐Chlorine
Substituted
N
‐Pyridylpyrazole. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Huangong Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yangyang Zhao
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Pengwei Sun
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Li Gao
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yuxin Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Lixia Xiong
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Na Yang
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Sha Zhou
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zhengming Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
25
|
Zhu L, Zeng H, Liu D, Fu Y, Wu Q, Song B, Gan X. Design, synthesis, and biological activity of novel 1,2,4-oxadiazole derivatives. BMC Chem 2020; 14:68. [PMID: 33292412 PMCID: PMC7680602 DOI: 10.1186/s13065-020-00722-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Background Plant diseases seriously threaten food security, it is urgent to discover efficient and low-risk chemical pesticides. 1,2,4-Oxadiazole derivatives exhibit broad spectrum of agricultural biological activities. For discovering novel molecules with excellent agricultural activities, novel 1,2,4-oxadiazole derivatives were synthesized and evaluated for their agricultural activities. Result Bioassays results showed that the title compounds exhibited moderate nematocidal activity against Meloidogyne incognita and anti-fungal activity to Rhizoctonia solani. It’s worth noting that compounds 5m, 5r, 5u, 5v, 5x and 5y showed strong antibacterial effects on Xanthomonas oryzae pv. oryzae (Xoo), with EC50 values of 36.25, 24.14, 28.82, 19.44, 25.37 and 28.52 μg/mL, respectively, superior to bismerthiazol (BMT, EC50 = 77.46 μg/mL) and thiodiazole copper (TDC, EC50 = 99.31 μg/mL). Compounds 5p, 5u and 5v exhibited excellent antibacterial ability against Xanthomonas oryzae pv. oryzicola (Xoc), with EC50 values of 31.40, 19.04 and 21.78 μg/mL, respectively, better than that of BMT (EC50 = 68.50 μg/mL) and TDC (EC50 = 91.05 μg/mL). In addition, compound 5v exerted moderate antibacterial effects on rice bacterial leaf blight. Conclusions Twenty-six novel 1,2,4-oxadiazole derivatives were obtained and their biological activities were evaluated. Compound 5u and 5v exhibited excellent antibacterial activity Xoo and Xoc. These results indicated that 1,2,4-oxadiazole derivatives containing a trifluoromethyl pyridine moiety could be as potential alternative templates for discovering novel antibacterial agents.![]()
Collapse
Affiliation(s)
- Lingzhi Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yun Fu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Qiong Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
26
|
Yang S, Tian XY, Ma TY, Dai L, Ren CL, Mei JC, Liu XH, Tan CX. Synthesis and Biological Activity of Benzamides Substituted with Pyridine-Linked 1,2,4-Oxadiazole. Molecules 2020; 25:molecules25153500. [PMID: 32752024 PMCID: PMC7435590 DOI: 10.3390/molecules25153500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023] Open
Abstract
To find pesticidal lead compounds with high activity, a series of novel benzamides substituted with pyridine-linked 1,2,4-oxadiazole were designed by bioisosterism, and synthesized easily via esterification, cyanation, cyclization and aminolysis reactions. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR and HRMS. The preliminary bioassay showed that most compounds had good larvicidal activities against mosquito larvae at 10 mg/L, especially compound 7a, with a larvicidal activity as high as 100%, and even at 1 mg/L was still 40%; at 50 mg/L, all the target compounds showed good fungicidal activities against the eight tested fungi. Moreover, compound 7h exhibited better inhibitory activity (90.5%) than fluxapyroxad (63.6%) against Botrytis cinereal. Therefore, this type of compound can be further studied.
Collapse
|
27
|
Khallaf A, Wang P, Liu H, Zhuo S, Zhu H. 1,2,4‐Oxadiazole ring–containing pyridylpyrazole‐4‐carboxamides: Synthesis and evaluation as novel insecticides of the anthranilic diamide family. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdalla Khallaf
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo China
- Department of Applied Chemistry, College of Chemistry and Molecular EngineeringNanjing Tech University Nanjing China
| | - Ping Wang
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo China
| | - Hui Liu
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo China
| | - Shuping Zhuo
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo China
| | - Hongjun Zhu
- Department of Applied Chemistry, College of Chemistry and Molecular EngineeringNanjing Tech University Nanjing China
| |
Collapse
|
28
|
Zhou Y, Wei W, Zhu L, Li Y. Synthesis and Bioactivities Evaluation of Novel Anthranilic Diamides Containing
N
‐(
tert
‐Butyl)benzohydrazide Moiety as Potent Ryanodine Receptor Activator. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunyun Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University, Songhu Road No. 2005 Shanghai 200438 China
| | - Wei Wei
- WuXi AppTec (Tian Jin) Co., Ltd., 168 Nan Hai Road Tianjin 300457 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University, Songhu Road No. 2005 Shanghai 200438 China
| | - Yuxin Li
- State Key Laboratory of Elemento‐Organic Chemistry, Institute of Elemento‐Organic Chemistry, College of ChemistryNankai University, No. 94, Weijin Road, Nankai District Tianjin 300071 China
| |
Collapse
|
29
|
Hua X, Wei W, Zhu L, Zhou Y. Synthesis and Bioactivity Evaluation of Novel N-Pyridylpyrazolemethanamine Derivatives. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Chen J, Gan X, Yi C, Wang S, Yang Y, He F, Hu D, Song B. Synthesis, Nematicidal Activity, and 3D-QSAR of Novel 1,3,4-Oxadiazole/ Thiadiazole Thioether Derivatives. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Chongfen Yi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Yuyuan Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Fangcheng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| |
Collapse
|
31
|
Zhou Y, Wei W, Zhu L, Li Y, Li Z. Synthesis and insecticidal activity study of novel anthranilic diamides analogs containing a diacylhydrazine bridge as effective Ca 2+ modulators. Chem Biol Drug Des 2018; 92:1914-1919. [PMID: 29923690 DOI: 10.1111/cbdd.13349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/19/2018] [Accepted: 06/03/2018] [Indexed: 01/12/2023]
Abstract
Anthranilic diamides is a class of insecticides target at ryanodine receptors (RyRs). To discover potent insecticides targeting at RyRs, a series of novel anthranilic diamides with a diacylhydrazine bridge were designed and synthesized. Their insecticidal activities were evaluated and a preliminary structure-activity relationship (SAR) was summarized. In particular, compound 5g exhibited good lethality against oriental armyworm (Mythimna separata) at a concentration of 5 mg/L. The calcium imaging experimental results indicated that the compound 5g can serve as effective insect Ca2+ level modulators by disrupting the cellular calcium homeostasis in Mythimna separata (Walker) and Spodoptera exigua (Hübner), which probably activated the RyRs on the ER membrane.
Collapse
Affiliation(s)
- Yunyun Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Yangpu District, Shanghai, China
| | - Wei Wei
- WuXi AppTec (Tian Jin) Co., Ltd., Tianjin, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Yangpu District, Shanghai, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
32
|
Sharonova T, Pankrat'eva V, Savko P, Baykov S, Shetnev A. Facile room-temperature assembly of the 1,2,4-oxadiazole core from readily available amidoximes and carboxylic acids. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Tok F, Kocyigit-Kaymakcioglu B, Tabanca N, Estep AS, Gross AD, Geldenhuys WJ, Becnel JJ, Bloomquist JR. Synthesis and structure-activity relationships of carbohydrazides and 1,3,4-oxadiazole derivatives bearing an imidazolidine moiety against the yellow fever and dengue vector, Aedes aegypti. PEST MANAGEMENT SCIENCE 2018; 74:413-421. [PMID: 28869331 PMCID: PMC5817975 DOI: 10.1002/ps.4722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND 1,3,4-Oxadiazole and imidazolidine rings are important heterocyclic compounds exhibiting a variety of biological activities. In this study, novel compounds with oxadiazole and imidazolidine rings were synthesized from 3-(methylsulfonyl)-2-oxoimidazolidine-1-carbonyl chloride and screened for insecticidal activities. The proposed structures of the 17 synthesized compounds were confirmed using elemental analysis, infrared (IR), proton nuclear magnetic resonance (1 H-NMR), and mass spectroscopy. RESULTS None of the compounds showed larvicidal activity at the tested concentrations against first-instar Aedes aegypti larvae. However, nine compounds exhibited promising adulticidal activity, with mortality rates of ≥80% at 5 µg per mosquito. Further dose-response bioassays were undertaken to determine median lethal dose (LD50 ) values. Compounds 1, 2b, 2c, 2d, 2 g, 3b, 3c, 3 g, and 3 h were effective, with typical LD50 values of about 5 - 10 µg per mosquito against female Ae. aegypti. Compounds 2c (bearing a nitro group on the aromatic ring; LD50 = 2.80 ± 0.54 µg per mosquito) and 3 h (double halogen groups at 2,4 position on the phenyl ring; LD50 = 2.80 ± 0.54 µg per mosquito) were the most promising compounds. CONCLUSION Preliminary mode of action studies failed to show consistent evidence of either neurotoxic or mitochondria-directed effects. Further chemical synthesis within this series may lead to the development of new effective insecticides. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | | | - Nurhayat Tabanca
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Center for Medical, Agricultural, and Veterinary Entomology, USDA, ARS, Gainesville, FL, USA
| | - Alden S Estep
- Center for Medical, Agricultural, and Veterinary Entomology, USDA, ARS, Gainesville, FL, USA
- Navy Entomology Center of Excellence, CMAVE Detachment, Gainesville, FL, USA
| | - Aaron D Gross
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - James J Becnel
- Center for Medical, Agricultural, and Veterinary Entomology, USDA, ARS, Gainesville, FL, USA
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Zhou Y, Li Z, Wei W, Zhu L. Synthesis and Bioactivities Evaluation of Novel N-Pyridylpyrazole Derivatives with 1,2,3-Triazole and Quinazolin-4(3H)-one Substructures. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|