1
|
Ma T, Gao S, Zhao LX, Ye F, Fu Y. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Molecular Design to Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17125-17137. [PMID: 39047218 DOI: 10.1021/acs.jafc.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Weed resistance is a critical issue in crop production. Among the known herbicides, 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are crucial for addressing weed resistance. HPPD inhibitors constitute a pivotal aspect of contemporary crop protection strategies. The advantages of these herbicides are their broad weed spectrum, flexible application, and excellent compatibility with other herbicides. They also exhibit satisfactory crop selectivity and low toxicity and are environmentally friendly. An increasing number of new HPPD inhibitors have been designed by combining computer-aided drug design with conventional design approaches. Herein, the molecular design and structural features of innovative HPPD inhibitors are reviewed to guide the development of new HPPD inhibitors possessing an enhanced biological efficacy.
Collapse
Affiliation(s)
- Tengfei Ma
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Leng XY, Pang QF, Ma YF, Ye BW, Ye F, Fu Y. Integrated Virtual Screening and Validation toward Potential HPPD Inhibition Herbicide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4587-4595. [PMID: 38408430 DOI: 10.1021/acs.jafc.3c06312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is one of the most widely studied herbicide targets and has gained significant attention. To identify potential effective HPPD inhibitors, a rational multistep virtual screening workflow was built, which included CBP models (based on the receptor-ligand interactions in the crystal complex), Hypogen models with activity prediction ability (according to the derivation of structure-activity relationships from a set of molecules with reported activity values), and a consensus docking procedure (consisting of LibDock, Glide, and CDOCKER). About 1 million molecules containing diketone or β-keto-enol substructures were filtered by Lipinski's rules, CBP model, and Hypogen model. A total of 12 compounds with similar docking postures were generated by consensus docking. Eventually, four molecules were screened based on the specific binding pattern and affinity of the HPPD inhibitor. The biological evaluation in vivo displayed that compounds III-1 and III-2 exhibited comparable herbicidal activity to isoxaflutole and possessed superior safety on various crops (wheat, rice, sorghum, and maize). The ADMET prediction (absorption, distribution, metabolism, excretion, and toxicity) showed that compound III possessed relatively good toxicological results. This work provides a theoretical basis and valuable reference for the virtual screening and molecular design of novel HPPD inhibition herbicides.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Qi-Fan Pang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yi-Fan Ma
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Wen Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Wei S, Zhao Z, Chen Y, Li Z, Huang Y, Zhang H, Ji Z. N-benzyl-2-methoxy-5-propargyloxybenzoamides, a new type of bleaching herbicides targeting the biosynthesis pathway of plastoquinone. PEST MANAGEMENT SCIENCE 2023; 79:5087-5095. [PMID: 37559430 DOI: 10.1002/ps.7708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previously, the herbicidal activity of N-benzyl-2-methoxybenzamides was discovered during a random screening program in our laboratory. The chemicals resulted in bleaching effect of newly grown leaves by interfering with the biosynthesis of β-carotene in plant. RESULTS A total of 28 benzamides were synthesized and subjected for the evaluation of herbicidal activity. Structure-activity relationship (SAR) showed that introducing propargyloxy group at 5-position of benzoyl-benzene ring and fluorine or methyl group at 3- or 4-position of benzyl-benzene ring is beneficial for the activity. Post-emergence herbicidal activities of compounds 406 and 412 were comparable to those of mesotrione and diflufenican. Studies on MOA showed that 406 decreased the level of both β-carotene and plastoquinone (PQ) in treated plants. The bleaching effect in green alga caused by 406 could be reversed by supplying exogenous homogentisic acid (HGA), the precursor of plastoquinone. CONCLUSION N-benzyl-2-methoxy-5-propargyloxybenzoamides were discovered as new candidates for bleaching herbicides. Preliminary investigation on mechanism of action (MOA) showed that the title compounds might indirectly interfere with carotenoid biosynthesis by blocking the production of PQ. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaopeng Wei
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticides, Northwest A&F University, Yangling, China
| | - Zhuoran Zhao
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yu Chen
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhanbin Li
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuqian Huang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Huixia Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhiqin Ji
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticides, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Jiang ZB, Gao S, Hu W, Sheng BR, Shi J, Ye F, Fu Y. Design, synthesis and biological activity of novel triketone herbicides containing natural product fragments. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105493. [PMID: 37532319 DOI: 10.1016/j.pestbp.2023.105493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) belongs to the non-heme Fe2+ - containing enzyme family and is an important enzyme in tyrosine decomposition. HPPD is crucial to the discovery of novel bleaching herbicides. To develop novel HPPD inhibitor herbicides containing the β-triketone motif, a series of 4-hydroxyl-3-(substituted aryl)-pyran-2-one derivatives were designed using the active fragment splicing method. The title compounds were synthesized and characterized through infrared spectroscopy (IR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry (HRMS). The X-ray diffraction method determined the single crystal structure of I-17. Preliminary bioassay data revealed that several novel compounds, especially I-12 and II-3, showed excellent herbicidal activity against broadleaf and monocotyledonous weeds at a dose of 150 g ai/ha. The results of crop selectivity and carotenoids determination indicated that compound I-12 is more suitable for wheat and cotton fields than mesotrione. Additionally, compound II-3 is safer for soybeans and peanuts than mesotrione. The inhibitory activity of Arabidopsis thaliana HPPD (AtHPPD) verified that compound II-3 showed the most activity with an IC50 value of 0.248 μM, which was superior to that of mesotrione (0.283 μM) in vitro. The binding mode of compound II-3 and AtHPPD was confirmed through molecular docking and molecular dynamics simulations. This study provides insights into the future development of natural and efficient herbicides.
Collapse
Affiliation(s)
- Zi-Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Wei Hu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Ren Sheng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Capucho LR, Pereira IV, de Faria AC, Daré JK, da Cunha EFF, Freitas MP. Multivariate image analysis applied to quantitative structure-activity relationships and docking studies of recent hydroxyphenylpyruvate deoxygenase inhibitors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37021557 DOI: 10.1002/jsfa.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Mesotrione is a triketone widely used as an inhibitor of the hydroxyphenylpyruvate deoxygenase (HPPD) enzyme. However, new agrochemicals should be developed continuously to tackle the problem of herbicide resistance. Two sets of mesotrione analogs have been synthesized recently and they have demonstrated successful phytotoxicity against weeds. In this study, these compounds were joined to form a single data set and the HPPD inhibition of this enlarged library of triketones was modeled using multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR). Docking studies were also carried out to validate the MIA-QSAR findings and to aid the interpretation of ligand-enzyme interactions responsible for the bioactivity (pIC50 ). RESULTS The MIA-QSAR models based on van der Waals radii (rvdW ), electronegativity (ε), and the rvdW /ε ratio as molecular descriptors were both predictive to an acceptable degree (r2 ≥ 0.80, q2 ≥ 0.68 and r2 pred ≥ 0.68). Subsequently, partial least squares (PLS) regression parameters were applied to predict the pIC50 values of newly proposed derivatives, yielding a few promising agrochemical candidates. The calculated log P for most of these derivatives was found to be higher than that of mesotrione and the library compounds, indicating that they should be less prone to leach out and contaminate groundwater. CONCLUSION Multivariate image analysis descriptors corroborated by docking studies were capable of modeling the herbicidal activities of 68 triketones reliably. Due to the substituent effects at the triketone framework, particularly of a nitro group in R3 , promising analogs could be designed. The P9 proposal demonstrated higher calculated activity and log P than commercial mesotrione. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luiz R Capucho
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil
| | - Ingrid V Pereira
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil
| | - Adriana C de Faria
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil
| | - Joyce K Daré
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil
| | - Elaine F F da Cunha
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil
| | - Matheus P Freitas
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil
| |
Collapse
|
6
|
Lin HY, Dong J, Dong J, Yang WC, Yang GF. Insights into 4-hydroxyphenylpyruvate dioxygenase-inhibitor interactions from comparative structural biology. Trends Biochem Sci 2023; 48:568-584. [PMID: 36959016 DOI: 10.1016/j.tibs.2023.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a key role in tyrosine metabolism and has been identified as a promising target for herbicide and drug discovery. The structures of HPPD complexed with different types of inhibitors have been determined previously. We summarize the structures of HPPD complexed with structurally diverse molecules, including inhibitors, natural products, substrates, and catalytic intermediates; from these structures, the detailed inhibitory mechanisms of different inhibitors were analyzed and compared, and the key structural factors determining the slow-binding behavior of inhibitors were identified. Further, we propose four subpockets that accommodate different inhibitor substructures. We believe that these analyses will facilitate in-depth understanding of the enzymatic reaction mechanism and enable the design of new inhibitors with higher potency and selectivity.
Collapse
Affiliation(s)
- Hong-Yan Lin
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jiangqing Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Wen-Chao Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
7
|
Dong J, Dong J, Yu XH, Yan YC, Nan JX, Ye BQ, Yang WC, Lin HY, Yang GF. Discovery of Subnanomolar Inhibitors of 4-Hydroxyphenylpyruvate Dioxygenase via Structure-Based Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1170-1177. [PMID: 36599124 DOI: 10.1021/acs.jafc.2c06727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High-potency 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are usually featured by time-dependent inhibition. However, the molecular mechanism underlying time-dependent inhibition by HPPD inhibitors has not been fully elucidated. Here, based on the determination of the HPPD binding mode of natural products, the π-π sandwich stacking interaction was found to be a critical element determining time-dependent inhibition. This result implied that, for the time-dependent inhibitors, strengthening the π-π sandwich stacking interaction might improve their inhibitory efficacy. Consequently, modification with one methyl group on the bicyclic ring of quinazolindione inhibitors was achieved, thereby strengthening the stacking interaction and significantly improving the inhibitory efficacy. Further introduction of bulkier hydrophobic substituents with higher flexibility resulted in a series of HPPD inhibitors with outstanding subnanomolar potency. Exploration of the time-dependent inhibition mechanism and molecular design based on the exploration results are very successful cases of structure-based rational design and provide a guiding reference for future development of HPPD inhibitors.
Collapse
Affiliation(s)
- Jin Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jiangqing Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xin-He Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jia-Xu Nan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Bao-Qin Ye
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
8
|
Liao C, Ruan H, Jiang J, Luo L, Hu Y. Synthesis and Activity Evaluation of 3-Aryl-2-imino-benzo[ e][1,3]-oxazin-4-ol Derivatives. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
9
|
Computer-Aided and AILDE Approaches to Design Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. Int J Mol Sci 2022; 23:ijms23147822. [PMID: 35887168 PMCID: PMC9320391 DOI: 10.3390/ijms23147822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/19/2023] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a pivotal enzyme in tocopherol and plastoquinone synthesis and a potential target for novel herbicides. Thirty-five pyridine derivatives were selected to establish a Topomer comparative molecular field analysis (Topomer CoMFA) model to obtain correlation information between HPPD inhibitory activity and the molecular structure. A credible and predictive Topomer CoMFA model was established by "split in two R-groups" cutting methods and fragment combinations (q2 = 0.703, r2 = 0.957, ONC = 6). The established model was used to screen out more active compounds and was optimized through the auto in silico ligand directing evolution (AILDE) platform to obtain potential HPPD inhibitors. Twenty-two new compounds with theoretically good HPPD inhibition were obtained by combining the high-activity contribution substituents in the existing molecules with the R-group search via Topomer search. Molecular docking results revealed that most of the 22 fresh compounds could form stable π-π interactions. The absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction and drug-like properties made 9 compounds potential HPPD inhibitors. Molecular dynamics simulation indicated that Compounds Y12 and Y14 showed good root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values and stability. According to the AILDE online verification, 5 new compounds with potential HPPD inhibition were discovered as HPPD inhibitor candidates. This study provides beneficial insights for subsequent HPPD inhibitor design.
Collapse
|
10
|
Governa P, Bernardini G, Braconi D, Manetti F, Santucci A, Petricci E. Survey on the Recent Advances in 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) Inhibition by Diketone and Triketone Derivatives and Congeneric Compounds: Structural Analysis of HPPD/Inhibitor Complexes and Structure-Activity Relationship Considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6963-6981. [PMID: 35652597 DOI: 10.1021/acs.jafc.2c02010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The serendipitous discovery of the HPPD inhibitors from allelopathic plants opened the way for searching new and effective herbicidal agents by application of classical hit-to-lead optimization approaches. A plethora of active and selective compounds were discovered that belong to three major classes of cyclohexane-based triketones, pyrazole-based diketones, and diketonitriles. In addition, to enhance inhibitory constant and herbicidal activity, many efforts were also made to gain broader weed control, crop safety, and eventual agricultural applicability. Moreover, HPPD inhibitors emerged as therapeutic agents for inherited and metabolic human diseases as well as vector-selective insecticides in the control of hematophagous arthropods. Given the large set of experimental data available, structure-activity relationship analysis could be used to derive suggestions for next generation optimized compounds.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
11
|
Wang JY, Gao S, Shi J, Cao HF, Ye T, Yue ML, Ye F, Fu Y. Virtual screening based on pharmacophore model for developing novel HPPD inhibitors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105109. [PMID: 35715048 DOI: 10.1016/j.pestbp.2022.105109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an important target for herbicide design. A multilayered virtual screening workflow was constructed by combining two pharmacophore models based on ligand and crystal complexes, molecular docking, molecular dynamics (MD), and biological activity determination to identify novel small-molecule inhibitors of HPPD. About 110, 000 compounds of Bailingwei and traditional Chinese medicine databases were screened. Of these, 333 were analyzed through docking experiments. Five compounds were selected by analyzing the binding pattern of inhibitors with amino acid residues in the active pocket. All five compounds could produce stable coordination with cobalt ion, and form favorable π-π interactions. MD simulation demonstrated that Phe381 and Phe424 made large contributions to the strength of binding. The enzyme activity experiment verified that compound-139 displayed excellent potency against AtHPPD (IC50 = 0.742 μM), however, compound-5222 had inhibitory effect on human HPPD (IC50 = 6 nM). Compound-139 exhibited herbicidal activity to some extent on different gramineous weeds. This work provided a strong insight into the design and development of novel HPPD inhibitor using in silico techniques.
Collapse
Affiliation(s)
- Jia-Yu Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Feng Cao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tong Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Li Yue
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Fu Q, Kang SJ, Zhong LK, Chen J, Tan CX, Weng JQ, Xu TM, Liu XH. Synthesis and herbicidal activity of new pyrazole ketone derivatives. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1828884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qing Fu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Sheng-Jie Kang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Liang-Kun Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Jie Chen
- School of Forestry & Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Cheng-Xia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Tian-Ming Xu
- Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Based on the Virtual Screening of Multiple Pharmacophores, Docking and Molecular Dynamics Simulation Approaches toward the Discovery of Novel HPPD Inhibitors. Int J Mol Sci 2020; 21:ijms21155546. [PMID: 32756361 PMCID: PMC7432800 DOI: 10.3390/ijms21155546] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an iron-dependent non-heme oxygenase involved in the catabolic pathway of tyrosine, which is an important enzyme in the transformation of 4-hydroxyphenylpyruvic acid to homogentisic acid, and thus being considered as herbicide target. Within this study, a set of multiple structure-based pharmacophore models for HPPD inhibitors were developed. The ZINC and natural product database were virtually screened, and 29 compounds were obtained. The binding mode of HPPD and its inhibitors obtained through molecular docking study showed that the residues of Phe424, Phe381, His308, His226, Gln307 and Glu394 were crucial for activity. Molecular-mechanics-generalized born surface area (MM/GBSA) results showed that the coulomb force, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. These efforts will greatly contribute to design novel and effective HPPD inhibitory herbicides.
Collapse
|
14
|
Liu YX, Zhao LX, Ye T, Gao S, Li JZ, Ye F, Fu Y. Identification of key residues determining the binding specificity of human 4-hydroxyphenylpyruvate dioxygenase. Eur J Pharm Sci 2020; 154:105504. [PMID: 32750420 DOI: 10.1016/j.ejps.2020.105504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is the second enzyme of the tyrosine catabolic pathway. Its physiological function is to catalyze the conversion of 4-hydroxyphenylpyruvic acid to homogentisic acid, which displays different physiological effects in mammals and plants. Insights on the selective inhibition of human HPPD (hHPPD) by triketone inhibitors were furnished by the integrated application of molecular simulation and biological testing. The binding free energy of hHPPD and inhibitors was obtained through molecular dynamics (MD) simulations, and the result was in agreement with the inhibition experiment in vitro. The binding free energy contribution demonstrated that the formation of hHPPD-inhibitor complexes was mainly driven by van der Waals energy. Ser226, Asn241, Gln265, Phe336, Phe359 and Phe364 made great contributions to binding affinities of all the systems. Among the residues involved in the interaction between nitisinone (NTBC) and hHPPD, Tyr221 and Leu224, whose mutation into Ala caused significant decrease of NTBC binding ability, were two key residues in determining the selective binding affinity of inhibitor and hHPPD. This work provides valuable theoretical basis for rational design of highly selective inhibitors targeting hHPPD.
Collapse
Affiliation(s)
- Yong-Xuan Liu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jia-Zhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Combined 3D-quantitative structure-activity relationships and topomer technology-based molecular design of human 4-hydroxyphenylpyruvate dioxygenase inhibitors. Future Med Chem 2020; 12:795-811. [PMID: 32223563 DOI: 10.4155/fmc-2019-0349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: 4-Hydroxyphenylpyruvate dioxygenase (HPPD) has attracted increasing attention as an important target against tyrosinemia type I. This paper aimed to explore the structure-activity relationship of HPPD inhibitors with pyrazole scaffolds and to design novel HPPD inhibitors. Methodology & results: The best 3D-quantitative structure-activity relationships model was established by two different strategies based on 40 pyrazole scaffold-based analogs. Screening of molecular fragments by topomer technology, combined with molecular docking, 14 structures were identified for potential human HPPD inhibitory activity. Molecular dynamics results demonstrated that all the compounds obtained bound to the enzyme and possessed a satisfactory binding free energy. Conclusion: The quantitative structure-activity relationship of HPPD inhibitors of pyrazole scaffolds was clarified and 14 original structures with potential human HPPD inhibitory activity were obtained.
Collapse
|
16
|
Fu Q, Cai PP, Cheng L, Zhong LK, Tan CX, Shen ZH, Han L, Xu TM, Liu XH. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. PEST MANAGEMENT SCIENCE 2020; 76:868-879. [PMID: 31429196 DOI: 10.1002/ps.5591] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) has been a good target for herbicide discovery. In order to discover novel HPPD herbicides, a series of pyrazole aromatic ketone analogs were designed and synthesized. RESULTS The 25 pyrazole aromatic ketone analogs synthesized were tested for herbicidal activity and compounds A1, A3, A4, A17, A20 and A25 displayed excellent herbicidal activity against Chenopodium serotinum, Stellaria media and Brassica juncea at 37.5 g ha-1 . In addition, compounds A1, A5, A9, A10, A16, A17, A20 and A25 exhibited good crop selectivity for wheat, maize and rice at 150 g ha-1 . Inhibition activities against AtHPPD proved the compounds were HPPD inhibitors. The structure-activity relationship of these pyrazole aromatic ketone analogs was studied using molecular docking. CONCLUSION These pyrazole aromatic ketone derivatives could be used as lead structures for development of HPPD herbicides against dicotyledonous weeds with further structure modification. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Fu
- Institute of Pesticide, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Synthesis Centre, Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Peng-Peng Cai
- Institute of Pesticide, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Synthesis Centre, Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Long Cheng
- Institute of Pesticide, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Synthesis Centre, Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Liang-Kun Zhong
- Institute of Pesticide, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Synthesis Centre, Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Cheng-Xia Tan
- Institute of Pesticide, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Hua Shen
- Institute of Pesticide, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Liang Han
- Institute of Pesticide, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Tian-Ming Xu
- Synthesis Centre, Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| | - Xing-Hai Liu
- Institute of Pesticide, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
17
|
Wang MM, Huang H, Shu L, Liu JM, Zhang JQ, Yan YL, Zhang DY. Synthesis and herbicidal activities of aryloxyacetic acid derivatives as HPPD inhibitors. Beilstein J Org Chem 2020; 16:233-247. [PMID: 32180842 PMCID: PMC7059547 DOI: 10.3762/bjoc.16.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
A series of aryloxyacetic acid derivatives were designed and synthesized as 4-hydoxyphenylpyruvate dioxygenase (HPPD) inhibitors. Preliminary bioassay results reveal that these derivatives are promising Arabidopsis thaliana HPPD (AtHPPD) inhibitors, in particular compounds I12 (Ki = 0.011 µM) and I23 (Ki = 0.012 µM), which exhibit similar activities to that of mesotrione, a commercial HPPD herbicide (Ki = 0.013 µM). Furthermore, the newly synthesized compounds show significant greenhouse herbicidal activities against tested weeds at dosages of 150 g ai/ha. In particular, II4 exhibited high herbicidal activity for pre-emergence treatment that was slightly better than that of mesotrione. In addition, compound II4 was safe for weed control in maize fields at a rate of 150 g ai/ha, and was identified as the most potent candidate for a novel HPPD inhibitor herbicide. The compounds described herein may provide useful guidance for the design of new HPPD inhibiting herbicides and their modification.
Collapse
Affiliation(s)
- Man-Man Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hao Huang
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lei Shu
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian-Min Liu
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian-Qiu Zhang
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi-Le Yan
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Da-Yong Zhang
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
18
|
Rao J, Liu L, Zeng D, Wang M, Xiang M, Yang S. Antibiotic activities of propanolamine containing 1,4-benzoxazin-3-ones against phytopathogenic bacteria. RSC Adv 2020; 10:682-688. [PMID: 35494425 PMCID: PMC9047368 DOI: 10.1039/c9ra09639f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/18/2019] [Indexed: 01/25/2023] Open
Abstract
Various 1,4-benzoxazin-3-one derivatives containing propanolamine groups have been shown to exhibit good antibacterial activity against Pseudomonas syringae pv actinidiae (Psa), X. axonopodis pv citri (Xac) and Xanthomonas oryzae pv oryzae (Xoo). 1,4-benzoxazin-3-one 4n showed the best inhibitory effects against Psa, Xac and Xoo, exhibiting in vitro EC50 values of 4.95, 4.71 and 8.50 μg mL−1, respectively. These potencies were superior to the corresponding EC50 values of the commercial antibiotics bismerthiazol (BT, 89.10, and 116.90 μg mL−1) and thiodiazole copper (TC, 127.30, 82.73 and 87.50 μg mL−1). Treatment on the bacterial leaf blight of rice revealed that compound 4n displayed better curative (51%) and protective (48%) activities for reducing rice BLB than either BT (41%, 39%) or TC (43%, 41%). Scanning electron microscopy (SEM) imaging of Xoo that had been treated with 1,4-benzoxazin-3-one 4n (50–100 μg mL−1) revealed that the bacterial cells had experienced extensive cell wall damage, which is the likely cause of its antimicrobial activity and bacterial death. Various 1,4-benzoxazin-3-one derivatives containing propanolamine groups have been shown to exhibit good antibacterial activity against Pseudomonas syringae pv actinidiae (Psa), X. axonopodis pv citri (Xac) and Xanthomonas oryzae pv oryzae (Xoo).![]()
Collapse
Affiliation(s)
- Jiarui Rao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Mingwei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Meng Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| |
Collapse
|
19
|
Lei K, Li P, Yang XF, Wang SB, Wang XK, Hua XW, Sun B, Ji LS, Xu XH. Design and Synthesis of Novel 4-Hydroxyl-3-(2-phenoxyacetyl)-pyran-2-one Derivatives for Use as Herbicides and Evaluation of Their Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10489-10497. [PMID: 31452371 DOI: 10.1021/acs.jafc.9b03109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In order to develop a novel herbicide containing the β-triketone motif, a series of 4-hydroxyl-3-(2-phenoxyacetyl)-pyran-2-one derivatives were designed and synthesized. The bioassay results showed that compound II15 had good pre-emergent herbicidal activity even at a dosage of 187.5 g ha-1. Moreover, compound II15 showed a broader spectrum of weed control when compared with a commercial herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), and displayed good crop safety to Triticum aestivum L. and Zea mays Linn. when applied at 375 g ha-1 under pre-emergence conditions, which indicated its great potential as a herbicide. More importantly, studying the molecular mode of action of compound II15 revealed that the novel triketone structure is a proherbicide of its corresponding phenoxyacetic acid auxin herbicide, which has a herbicidal mechanism similar to that of 2,4-D. The present work indicates that the 4-hydroxyl-3-(2-phenoxyacetyl)-pyran-2-one motif may be a potential lead structure for further development of novel auxin-type herbicides.
Collapse
Affiliation(s)
- Kang Lei
- School of Pharmacy , Liaocheng University , Liaocheng 252059 , China
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Pan Li
- School of Pharmacy , Liaocheng University , Liaocheng 252059 , China
| | - Xue-Fang Yang
- College of Agriculture , Shanxi Agricultural University , Jinzhong , Shanxi 030800 , China
| | - Shi-Ben Wang
- School of Pharmacy , Liaocheng University , Liaocheng 252059 , China
| | - Xue-Kun Wang
- School of Pharmacy , Liaocheng University , Liaocheng 252059 , China
| | - Xue-Wen Hua
- School of Pharmacy , Liaocheng University , Liaocheng 252059 , China
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Bin Sun
- School of Pharmacy , Liaocheng University , Liaocheng 252059 , China
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Lu-Sha Ji
- School of Pharmacy , Liaocheng University , Liaocheng 252059 , China
| | - Xiao-Hua Xu
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
20
|
Dontsu YS, Pashkovskii FS, Rubinov DB, Lakhvich FA. Synthesis of 2-[3-Aryl-3-(5-phenylisoxazol-3-yl)propyl] Derivatives of 5,5-Dimethylcyclohexane- and Cyclopenthane-1,3-diones Proceeding from 2-(4-Nitro-3-arylbutyl) Precursors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018080195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lygin AV, Kaundun SS, Morris JA, Mcindoe E, Hamilton AR, Riechers DE. Metabolic Pathway of Topramezone in Multiple-Resistant Waterhemp ( Amaranthus tuberculatus) Differs From Naturally Tolerant Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:1644. [PMID: 30519248 PMCID: PMC6258821 DOI: 10.3389/fpls.2018.01644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 05/08/2023]
Abstract
Waterhemp [Amaranthus tuberculatus (Moq.) Sauer] is a problematic dicot weed in maize, soybean, and cotton production in the United States. Waterhemp has evolved resistance to several commercial herbicides that inhibit the 4-hydroxyphenylpyruvate-dioxygenase (HPPD) enzyme in sensitive dicots, and research to date has shown that HPPD-inhibitor resistance is conferred by rapid oxidative metabolism of the parent compound in resistant populations. Mesotrione and tembotrione (both triketones) have been used exclusively to study HPPD-inhibitor resistance mechanisms in waterhemp and a related species, A. palmeri (S. Wats.), but the commercial HPPD inhibitor topramezone (a pyrazolone) has not been investigated from a mechanistic standpoint despite numerous reports of cross-resistance in the field and greenhouse. The first objective of our research was to determine if two multiple herbicide-resistant (MHR) waterhemp populations (named NEB and SIR) metabolize topramezone more rapidly than two HPPD inhibitor-sensitive waterhemp populations (named SEN and ACR). Our second objective was to determine if initial topramezone metabolite(s) detected in MHR waterhemp are qualitatively different than those formed in maize. An excised leaf assay and whole-plant study investigated initial rates of topramezone metabolism (<24 h) and identified topramezone metabolites at 48 hours after treatment (HAT), respectively, in the four waterhemp populations and maize. Results indicated both MHR waterhemp populations metabolized more topramezone than the sensitive (SEN) population at 6 HAT, while only the SIR population metabolized more topramezone than SEN at 24 HAT. Maize metabolized more topramezone than any waterhemp population at each time point examined. LC-MS analysis of topramezone metabolites at 48 HAT showed maize primarily formed desmethyl and benzoic acid metabolites, as expected based on published reports, whereas SIR formed two putative hydroxylated metabolites. Subsequent LC-MS/MS analyses identified both hydroxytopramezone metabolites in SIR as different hydroxylation products of the isoxazole ring, which were also present in maize 48 HAT but at very low levels. These results indicate that SIR initially metabolizes and detoxifies topramezone in a different manner than tolerant maize.
Collapse
Affiliation(s)
- Anatoli V. Lygin
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Shiv S. Kaundun
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - James A. Morris
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Eddie Mcindoe
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Andrea R. Hamilton
- Department of Chemistry, Truman State University, Kirksville, MO, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- *Correspondence: Dean E. Riechers,
| |
Collapse
|