1
|
Chen Y, De Schutter K. Biosafety aspects of RNAi-based pests control. PEST MANAGEMENT SCIENCE 2024; 80:3697-3706. [PMID: 38520331 DOI: 10.1002/ps.8098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 03/25/2024]
Abstract
While the overuse of classical chemical pesticides has had a detrimental impact on the environment and human health, the discovery of RNA interference (RNAi) offered the opportunity to develop new and sustainable approaches for pest management. RNAi is a naturally occurring regulation and defense mechanism that can be exploited to effectively protect crops by silencing key genes affecting the growth, development, behavior or fecundity of pests. However, as with all technologies, there is a range of potential risks and challenges associated with the application of RNAi, such as dsRNA stability, the potential for off-target effects, the safety of non-target organisms, and other application challenges. A better understanding of the molecular mechanisms involved in RNAi and in-depth discussion and analysis of these associated safety risks, is required to limit or mitigate potential adverse effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yimeng Chen
- Molecular Entomology Lab, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Molecular Entomology Lab, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Wang B, Zhang Y, Wei Y, Liao M, Cao H, Gao Q. Functional analysis of three odorant receptors in Plutella xylostella response to repellent activity of 2,3-dimethyl-6-(1-hydroxy)-pyrazine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105856. [PMID: 38685238 DOI: 10.1016/j.pestbp.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
Plutella xylostella is an important pest showing resistance to various chemical pesticides, development of botanical pesticides is an effective strategy to resolve above problem and decrease utilization of chemical pesticides. Previous study showed that 2,3-dimethyl-6-(1-hydroxy)-pyrazine has significant repellent activity to P. xylostella adult which mainly effect to the olfactory system, however the molecular targets and mechanism are still unclear. Based on the RNA-Seq and RT-qPCR data, eight ORs (Odorant receptor) in P. xylostella were selected as candidate targets response to repellent activity of 2,3-dimethyl-6-(1-hydroxy)-pyrazine. Here, most of the ORs in P. xylostella were clustered into three branches, which showed similar functions such as recognition, feeding, and oviposition. PxylOR29, PxylOR31, and PxylOR46 were identified as the potential molecular targets based on the results of repellent activity and EAG response tests to the adults which have been injected with dsRNA, respectively. Additionally, the three ORs were higher expressed in antenna of P. xylostella, followed by those in the head segment. Furthermore, it was found that the bindings between these three ORs and 2,3-dimethyl-6-(1-hydroxy)-pyrazine mainly depend on the hydrophobic effect of active cavities, and the binding to PxylOR31 was more stabler and easier with an energy of -16.34 kcal/mol, together with the π-π T-shaped interaction at PHE195 site. These findings pave the way for the complete understanding of pyrazine repellent mechanisms.
Collapse
Affiliation(s)
- Buguo Wang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongjie Zhang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ya Wei
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Min Liao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Ligonniere S, Raymond V, Goven D. Use of double-stranded RNA targeting β2 divergent nicotinic acetylcholine receptor subunit to control pea aphid Acyrthosiphon pisum at larval and adult stages. PEST MANAGEMENT SCIENCE 2024; 80:896-904. [PMID: 37816139 DOI: 10.1002/ps.7820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND In recent years, the use of the RNA interference technology (RNAi) has emerged as one of the new strategies for species-specific control of insect pests. Its specificity depends on the distinctiveness of the target gene sequence for a given species. In this work, we assessed in the pea aphid Acyrthosiphon pisum (A. pisum) the use of a double-stranded RNA (dsRNA) that targets the β2 divergent nicotinic acetylcholine receptor (nAChR) subunit (dsRNA-β2), which shares low sequence identity with other subunits, to control populations of this pest at different developmental stages. Because nAChRs are targeted by neonicotinoid insecticides such as imidacloprid, we also assessed the effect of dsRNA-β2 coupled to this insecticide on aphid survival. Finally, because the effect of a control agent on beneficial insect must be considered before any use of new pest management strategies, the acute toxicity of dsRNA-β2 combined with imidacloprid was evaluated on honeybee Apis mellifera. RESULTS In this work, we demonstrated that dsRNA-β2 alone has an insecticidal effect on aphid larvae and adults. Moreover, dsRNA-β2 and imidacloprid effects on aphid larvae and adults were additive, meaning that dsRNA-β2 did not alter the efficacy of imidacloprid on these two developmental stages. Also, no obvious acute toxicity on Apis mellifera was reported. CONCLUSION Using RNAi that targets β2 divergent nAChR subunit is effective alone or combined with imidacloprid to control A. pisum at larval and adult stages. Because no obvious Apis mellifera mortality has been reported, this RNAi-based pest management strategy should be considered to control insect pest. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
|
4
|
Karthigai Devi S, Banta G, Jindal V. Knockout of ecdysis triggering hormone receptor (ETHr) gene adversely affects the nymphal molting and adult reproduction in Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105766. [PMID: 38458675 DOI: 10.1016/j.pestbp.2023.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 03/10/2024]
Abstract
Bemisia tabaci (Gennadius) is one of the most dangerous polyphagous pests in the world causing damage to various crops by sucking sap during the nymphal and adult stages. Chemical management of whiteflies is challenging because of the emergence of pesticide resistance. RNA interference has been well established in whitefly to study the functions of various genes. G-protein coupled receptors (GPCRs) are important targets for development of new generation insecticides. In this study, Ecdysis triggering hormone receptor (ETHr) gene expression was recorded in different stages of whitefly and its function has been studied through RNAi. The expression of ETHr is highest in third-instar nymphs followed by other nymphal instars, pupae and newly emerged adults. Silencing of ETHr resulted in significantly higher adult mortality (68.88%), reduced fecundity (4.46 eggs /female), reduced longevity of male and female (1.05 and 1.40 days, respectively) when adults were fed with dsETHr @ 1.0 μg/μl. Silencing of ETHr in nymphs lead to significantly higher mortality (81.35%) as compared to control. This study confirms that ETHr gene is essential for growth and development of whitefly nymphs and adults. Hence, it can be future target for developing dsRNA based insecticides for management of whitefly.
Collapse
Affiliation(s)
- S Karthigai Devi
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Geetika Banta
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vikas Jindal
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
5
|
Chen J, Sheng CW, Peng Y, Wang K, Jiao Y, Palli SR, Cao H. Transcript Level and Sequence Matching Are Key Determinants of Off-Target Effects in RNAi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:577-589. [PMID: 38135672 DOI: 10.1021/acs.jafc.3c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Double-stranded RNA (dsRNA) pesticides, those based on RNA interference (RNAi) technology utilizing dsRNA, have shown potential for pest control. However, the off-target effects of dsRNA pose limitations to the widespread application of RNAi and raise concerns regarding potential side effects on other beneficial organisms. The precise impact and underlying factors of these off-target effects are still not well understood. Here, we found that the transcript level and sequence matching jointly regulate off-target effects of dsRNA. The much lower expressed target genes were knocked down to a lesser extent than genes with higher expression levels, and the critical sequence identity of off-target effects is approximately 80%. Moreover, off-target effects could be triggered by a contiguous matching sequence length exceeding 15 nt as well as nearly perfectly matching sequences with one or two base mismatches exceeding 19 nt. Increasing the dosage of dsRNA leads to more severe off-target effects. However, the length of mismatched dsRNA, the choice of different RNAi targets, and the location of target sites within the same gene do not affect the severity of off-target effects. These parameters can be used to guide the design of possibly selective sequences for RNAi, optimize the specificity and efficiency of dsRNA, and facilitate practical applications of RNAi for pest control.
Collapse
Affiliation(s)
- Jiasheng Chen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Cheng-Wang Sheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kangxu Wang
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Yaoyu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Haiqun Cao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
McRae AG, Taneja J, Yee K, Shi X, Haridas S, LaButti K, Singan V, Grigoriev IV, Wildermuth MC. Spray-induced gene silencing to identify powdery mildew gene targets and processes for powdery mildew control. MOLECULAR PLANT PATHOLOGY 2023; 24:1168-1183. [PMID: 37340595 PMCID: PMC10423327 DOI: 10.1111/mpp.13361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023]
Abstract
Spray-induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double-stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole-fungicide target cytochrome P450 51 (CYP51) in the Golovinomyces orontii-Arabidopsis thaliana pathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation: apoptosis-antagonizing transcription factor in essential cellular metabolism and stress response; lipid catabolism genes lipase a, lipase 1, and acetyl-CoA oxidase in energy production; and genes involved in manipulation of the plant host via abscisic acid metabolism (9-cis-epoxycarotenoid dioxygenase, xanthoxin dehydrogenase, and a putative abscisic acid G-protein coupled receptor) and secretion of the effector protein, effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for the Erysiphe necator-Vitis vinifera system and tested six successful targets identified using the G. orontii-A. thaliana system. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in the G. orontii-A. thaliana pathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control.
Collapse
Affiliation(s)
- Amanda G. McRae
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jyoti Taneja
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Kathleen Yee
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Xinyi Shi
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sajeet Haridas
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Kurt LaButti
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Vasanth Singan
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Igor V. Grigoriev
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Mary C. Wildermuth
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
7
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
8
|
Kebede M, Fite T. RNA interference (RNAi) applications to the management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): Its current trends and future prospects. Front Mol Biosci 2022; 9:944774. [PMID: 36158573 PMCID: PMC9490220 DOI: 10.3389/fmolb.2022.944774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is among the invasive insect pests that damages maize and sorghum, the high-priority crops in newly colonized agro-ecologies, including African contexts. Owing to the increasing infestation of the pest and the limitations of current conventional methods for its management, there is a call for discovering advanced pest management approaches. RNA interference (RNAi) is an emerging molecular tool showing flexible potential for the management of S. frugiperda. We conducted a search of the recent application of RNAi literature using Google Scholar and Mendeley to find advanced papers on S. frugiperda management using RNAi molecular tools that led to growth inhibition, developmental aberrations, reduced fecundity, and mortality, mainly by disruption of normal biological processes of the pest. Although efforts have been made to accelerate the utility of RNAi, many factors limit the efficiency of RNAi to achieve successful control over S. frugiperda. Owing to RNAi’s potential bioactivity and economic and ecological acceptability, continued research efforts should focus on improving its broad applicability, including field conditions. Screening and identification of key target genes should be a priority task to achieve effective and sustainable management of this insect via RNAi. In addition, a clear understanding of the present status of RNAi utilization in S. frugiperda management is of paramount importance to improve its efficiency. Therefore, in this review, we highlight the biology of S. frugiperda and the RNAi mechanism as a foundation for the molecular management of the pest. Then, we discuss the current knowledge of the RNAi approach in S. frugiperda management and the factors affecting the efficiency of RNAi application. Finally, the prospects for RNAi-based insect pest management are highlighted for future research to achieve effective management of S. frugiperda.
Collapse
|
9
|
List F, Tarone AM, Zhu‐Salzman K, Vargo EL. RNA meets toxicology: efficacy indicators from the experimental design of RNAi studies for insect pest management. PEST MANAGEMENT SCIENCE 2022; 78:3215-3225. [PMID: 35338587 PMCID: PMC9541735 DOI: 10.1002/ps.6884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 05/27/2023]
Abstract
RNA interference (RNAi) selectively targets genes and silences their expression in vivo, causing developmental defects, mortality and altered behavior. Consequently, RNAi has emerged as a promising research area for insect pest management. However, it is not yet a viable alternative over conventional pesticides despite several theoretical advantages in safety and specificity. As a first step toward a more standardized approach, a machine learning algorithm was used to identify factors that predict trial efficacy. Current research on RNAi for pest management is highly variable and relatively unstandardized. The applied random forest model was able to reliably predict mortality ranges based on bioassay parameters with 72.6% accuracy. Response time and target gene were the most important variables in the model, followed by applied dose, double-stranded RNA (dsRNA) construct size and target species, further supported by generalized linear mixed effect modeling. Our results identified informative trends, supporting the idea that basic principles of toxicology apply to RNAi bioassays and provide initial guidelines standardizing future research similar to studies of traditional insecticides. We advocate for training that integrates genetic, organismal, and toxicological approaches to accelerate the development of RNAi as an effective tool for pest management. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fabian List
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | - Aaron M Tarone
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | | | - Edward L Vargo
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
10
|
Jain RG, Fletcher SJ, Manzie N, Robinson KE, Li P, Lu E, Brosnan CA, Xu ZP, Mitter N. Foliar application of clay-delivered RNA interference for whitefly control. NATURE PLANTS 2022; 8:535-548. [PMID: 35577960 DOI: 10.1038/s41477-022-01152-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Whitefly (Bemisia tabaci) is a phloem-feeding global agricultural pest belonging to the order Hemiptera. Foliar application of double-stranded RNA (dsRNA) represents an attractive avenue for pest control; however, limited uptake and phloem availability of the dsRNA has restricted the development of RNA interference (RNAi)-based biopesticides against sap-sucking insects. Following high-throughput single and combinational target gene identification for additive effects, we report here that foliar application of dsRNA loaded onto layered double hydroxide (LDH), termed BioClay, can effectively disrupt multiple whitefly developmental stages in planta. Adjuvants were shown to enhance uptake and movement of foliar-applied dsRNA to vascular bundles and into the whitefly. Notably, delivering the dsRNA as a BioClay spray instead of as naked dsRNA improved protection against immature insect stages, demonstrating the platform's potential to extend the benefits offered by RNA insecticides towards complete life cycle control of whitefly and potentially other pests.
Collapse
Affiliation(s)
- Ritesh G Jain
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Stephen J Fletcher
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Narelle Manzie
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Elvin Lu
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Christopher A Brosnan
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
11
|
Shen X, Peng Y, Song H, Wang J, Zhao J, Tang P, Han Z, Wang K. Key factors determining competitions between double-stranded RNAs in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105009. [PMID: 35082032 DOI: 10.1016/j.pestbp.2021.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Combinatorial delivery of different double-stranded RNAs (dsRNAs) can result in competitive inhibition in insect pests and remains one of the obstacles in the way of future applications of the RNA interference (RNAi)-based pest control. In this study, we attempted to discover the basic competition characteristics between dsRNAs and provided insight into the solutions of competitive inhibition. RNAi sensitive insect species Tribolium castaneum were treated, and competitions between dsRNA fragments influencing the effectiveness of RNAi response could be measured. A chimeric dsRNA strategy for conjugating different dsRNA fragments into a single molecule and a nanoparticle carbon quantum dots-mediated dsRNA delivery were confirmed as efficient methods to knock down multiple target genes simultaneously. Furthermore, in vitro assays were conducted for determining the accumulation speed of serially diluted and incubated dsRNA in the midgut tissues. Our data showed that the accumulation of dsRNAs of different treated amounts was 0.25 μg ≈ 0.5 μg > 1 μg ≥ 2 μg > 4 μg, indicating that accumulation speed would be affected by treated dsRNA. Overall, our results strongly suggest that endocytic components influencing cellular uptake might be oversaturated when an excess amount of dsRNAs were treated, thereby causing competitive inhibition of target genes.
Collapse
Affiliation(s)
- Xu Shen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Joint Laboratory for International Cooperation in Grain Circulation and security, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Yingchuan Peng
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huifang Song
- Faculty of Biological Science & Technology, Changzhi University, Changzhi 046011, China
| | - Jinda Wang
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhao
- State Tobacco Monopoly Administration Key Laboratory for Green Prevention and Control of Tobacco Diseases and Pests in Huanghuai Tobacco Area, Institute of Tobacco Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peian Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Joint Laboratory for International Cooperation in Grain Circulation and security, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Zhaojun Han
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangxu Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Joint Laboratory for International Cooperation in Grain Circulation and security, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China; The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Nitnavare RB, Bhattacharya J, Singh S, Kour A, Hawkesford MJ, Arora N. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. FRONTIERS IN PLANT SCIENCE 2021; 12:673576. [PMID: 34733295 PMCID: PMC8558349 DOI: 10.3389/fpls.2021.673576] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/22/2021] [Indexed: 06/02/2023]
Abstract
RNA interference (RNAi) is a method of gene silencing where dsRNA is digested into small interfering RNA (siRNA) in the presence of enzymes. These siRNAs then target homologous mRNA sequences aided by the RNA-induced silencing complex (RISC). The mechanism of dsRNA uptake has been well studied and established across many living organisms including insects. In insects, RNAi is a novel and potential tool to develop future pest management means targeting various classes of insects including dipterans, coleopterans, hemipterans, lepidopterans, hymenopterans and isopterans. However, the extent of RNAi in individual class varies due to underlying mechanisms. The present review focuses on three major insect classes viz hemipterans, lepidopterans and coleopterans and the rationale behind this lies in the fact that studies pertaining to RNAi has been extensively performed in these groups. Additionally, these classes harbour major agriculturally important pest species which require due attention. Interestingly, all the three classes exhibit varying levels of RNAi efficiencies with the coleopterans exhibiting maximum response, while hemipterans are relatively inefficient. Lepidopterans on the other hand, show minimum response to RNAi. This has been attributed to many facts and few important being endosomal escape, high activity dsRNA-specific nucleases, and highly alkaline gut environment which renders the dsRNA unstable. Various methods have been established to ensure safe delivery of dsRNA into the biological system of the insect. The most common method for dsRNA administration is supplementing the diet of insects via spraying onto leaves and other commonly eaten parts of the plant. This method is environment-friendly and superior to the hazardous effects of pesticides. Another method involves submergence of root systems in dsRNA solutions and subsequent uptake by the phloem. Additionally, more recent techniques are nanoparticle- and Agrobacterium-mediated delivery systems. However, due to the novelty of these biotechnological methods and recalcitrant nature of certain crops, further optimization is required. This review emphasizes on RNAi developments in agriculturally important insect species and the major hurdles for efficient RNAi in these groups. The review also discusses in detail the development of new techniques to enhance RNAi efficiency using liposomes and nanoparticles, transplastomics, microbial-mediated delivery and chemical methods.
Collapse
Affiliation(s)
- Rahul B. Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Department of Plant Science, Rothamsted Research, Harpenden, United Kingdom
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Satnam Singh
- Punjab Agricultural University (PAU), Regional Research Station, Faridkot, India
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Amardeep Kour
- Punjab Agricultural University (PAU), Regional Research Station, Bathinda, India
| | | | - Naveen Arora
- Department of Genetics and Plant Breeding, Punjab Agricultural University (PAU), Ludhiana, India
| |
Collapse
|
13
|
Silver K, Cooper AM, Zhu KY. Strategies for enhancing the efficiency of RNA interference in insects. PEST MANAGEMENT SCIENCE 2021; 77:2645-2658. [PMID: 33440063 DOI: 10.1002/ps.6277] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Low RNA interference (RNAi) efficiency in many insect pests has significantly prevented its widespread application for insect pest management. This article provides a comprehensive review of recent research in developing various strategies for enhancing RNAi efficiency. Our review focuses on the strategies in target gene selection and double-stranded RNA (dsRNA) delivery technologies. For target gene selection, genome-wide or large-scale screening strategies have been used to identify most susceptible target genes for RNAi. Other strategies include the design of dsRNA constructs and manipulate the structure of dsRNA to maximize the RNA efficiency for a target gene. For dsRNA delivery strategies, much recent research has focused on the applications of complexed or encapsulated dsRNA using various reagents, polymers, or peptides to enhance dsRNA stability and cellular uptake. Other dsRNA delivery strategies include genetic engineering of microbes (e.g. fungi, bacteria, and viruses) and plants to produce insect-specific dsRNA. The ingestion of the dsRNA-producing organisms or tissues will have lethal or detrimental effects on the target insect pests. This article also identifies obstacles to further developing RNAi for insect pest management and suggests future avenues of research that will maximize the potential for using RNAi for insect pest management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
14
|
Jain RG, Robinson KE, Asgari S, Mitter N. Current scenario of RNAi-based hemipteran control. PEST MANAGEMENT SCIENCE 2021; 77:2188-2196. [PMID: 33099867 DOI: 10.1002/ps.6153] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is an homology-dependent gene silencing mechanism that is a feasible and sustainable avenue for the management of hemipteran pests. Commercial implementation of RNAi-based control strategies is impeded by limited knowledge about the mechanism of double-stranded RNA (dsRNA) uptake, the function of core RNAi genes and systemic RNAi mechanisms in hemipteran insects. This review briefly summarizes recent progress in RNAi-based studies aimed to reduce insect populations, viral transmission and insecticide resistance focusing on hemipteran pests. This review explores RNAi-mediated management of hemipteran insects and offers potential solutions, including in silico approaches coupled with laboratory-based toxicity assays to circumvent potential off-target effects against beneficial organisms. We further explore ways to mitigate degradation of dsRNA in the environment and the insect such as stacking and formulation of dsRNA effectors. Finally, we conclude by considering nontransformative RNAi approaches, concatomerization of RNAi sequences and pyramiding RNAi with active constituents to reduce dsRNA production and application cost, and to improve broad-spectrum hemipteran pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ritesh G Jain
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| | - Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Arraes FBM, Martins-de-Sa D, Noriega Vasquez DD, Melo BP, Faheem M, de Macedo LLP, Morgante CV, Barbosa JARG, Togawa RC, Moreira VJV, Danchin EGJ, Grossi-de-Sa MF. Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biol 2020; 18:1653-1681. [PMID: 33302789 DOI: 10.1080/15476286.2020.1861816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.
Collapse
Affiliation(s)
| | - Diogo Martins-de-Sa
- Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Daniel D Noriega Vasquez
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil
| | - Bruno Paes Melo
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Viçosa University, UFV, Viçosa-MG, Brazil
| | - Muhammad Faheem
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Department of Biological Sciences, National University of Medical Sciences, Punjab, Pakistan
| | | | - Carolina Vianna Morgante
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Embrapa Semiarid, Petrolina-PE, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| | | | - Roberto Coiti Togawa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil
| | - Valdeir Junio Vaz Moreira
- Biotechnology Center, Brazil.,Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Etienne G J Danchin
- National Institute of Science and Technology, Jakarta Embrapa-Brazil.,INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| |
Collapse
|
16
|
Dias NP, Cagliari D, Dos Santos EA, Smagghe G, Jurat-Fuentes JL, Mishra S, Nava DE, Zotti MJ. Insecticidal Gene Silencing by RNAi in the Neotropical Region. NEOTROPICAL ENTOMOLOGY 2020; 49:1-11. [PMID: 31749122 DOI: 10.1007/s13744-019-00722-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Insecticidal gene silencing by RNA interference (RNAi) involves a post-transcriptional mechanism with great potential for insect control. Here, we aim to summarize the progress on RNAi research toward control of insect pests in the Neotropical region and discuss factors determining its efficacy and prospects for pest management. We include an overview of the available RNAi information for Neotropical pests in the Lepidoptera, Coleoptera, Diptera, and Hemiptera orders. Emphasis is put on significant findings in the use of RNAi against relevant Neotropical pests, including diamondback moth (Plutella xylostella L.), Asian citrus psyllid (Diaphorina citri Kuwayama), and the cotton boll weevil (Anthonomus grandis Boheman). We also examine the main factors involved in insecticidal RNAi efficiency and major advances to improve screening of lethal genes, formulation, and delivery. Few studies detail resistance mechanisms to RNAi, demonstrating a need for more research. Advances in formulation, delivery, and resistance management tools for insecticidal RNAi in the Neotropics can provide a basis for efficient field application.
Collapse
Affiliation(s)
- N P Dias
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil.
| | - D Cagliari
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil
| | - E A Dos Santos
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil
| | - G Smagghe
- Dept of Plants and Crops, Ghent Univ, Ghent, Belgium
| | - J L Jurat-Fuentes
- Dept of Entomology and Plant Pathology, The Univ of Tennessee, Knoxville, USA
| | - S Mishra
- Dept of Entomology and Plant Pathology, The Univ of Tennessee, Knoxville, USA
| | - D E Nava
- Entomology Lab, EmbrapaClima Temperado, Pelotas, Brasil
| | - M J Zotti
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil.
| |
Collapse
|
17
|
Kunte N, McGraw E, Bell S, Held D, Avila LA. Prospects, challenges and current status of RNAi through insect feeding. PEST MANAGEMENT SCIENCE 2020; 76:26-41. [PMID: 31419022 DOI: 10.1002/ps.5588] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 05/06/2023]
Abstract
RNA interference is a phenomenon in which the introduction of double-stranded RNA (dsRNA) into cells triggers the degradation of the complementary messenger RNA in a sequence-specific manner. Suppressing expression of vital genes could lead to insect death, therefore this technology has been considered as a potential strategy for insect pest control. There are three main routes of dsRNA administration into insects: (i) injections to the hemolymph, (ii) topical, and (iii) feeding. In this review, we focus on dsRNA administration through feeding. We summarize novel strategies that have been developed to improve the efficacy of this method, such as the use of nano-based formulations, engineered microorganisms, and transgenic plants. We also expose the hurdles that have to be overcome in order to use this technique as a reliable pest management method. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nitish Kunte
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Erin McGraw
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Sydney Bell
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - David Held
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Luz-Adriana Avila
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|