1
|
Duan Y, Yao X, Li P, Zhao Y, Zhang B, An S, Wei J, Li X. Death-Associated LIM-Only Protein Reduces Cry1Ac Toxicity by Sequestration of Cry1Ac Protoxin and Activated Toxin in Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18708-18719. [PMID: 39106049 DOI: 10.1021/acs.jafc.4c04657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The extensive use of Bacillus thuringiensis (Bt) in pest management has driven the evolution of pest resistance to Bt toxins, particularly Cry1Ac. Effective management of Bt resistance necessitates a good understanding of which pest proteins interact with Bt toxins. In this study, we screened a Helicoverpa armigera larval midgut cDNA library and captured 208 potential Cry1Ac-interacting proteins. Among these, we further examined the interaction between Cry1Ac and a previously unknown Cry1Ac-interacting protein, HaDALP (H. armigera death-associated LIM-only protein), as well as its role in toxicology. The results revealed that HaDALP specifically binds to both the Cry1Ac protoxin and activated toxin, significantly enhancing cell and larval tolerance to Cry1Ac. Additionally, HaDALP was overexpressed in a Cry1Ac-resistant H. armigera strain. These findings reveal a greater number of Cry1Ac-interacting proteins than previously known and demonstrate, for the first time, that HaDALP reduces Cry1Ac toxicity by sequestering both the protoxin and activated toxin.
Collapse
Affiliation(s)
- Yunpeng Duan
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xue Yao
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Pin Li
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuge Zhao
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo Zhang
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jizhen Wei
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Zheng X, Li Q, Ullah F, Lu Z, Mo W, Guo J, Liu X, Xu H, Lu Y. Abamectin exposure causes chronic toxicity and trypsin/chymotrypsin damages in Chironomus kiiensis Tokunaga (Diptera: Chironomidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105999. [PMID: 39084773 DOI: 10.1016/j.pestbp.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Abamectin has been extensively used in paddy fields to control insect pests. However, little information is available regarding its effects on non-target insects. In this study, we performed acute (3rd instar larvae) and chronic toxicity (newly hatched larvae <24 h) to determine the toxicity effects of abamectin on Chironomus kiiensis. The median lethal concentration (LC50) values of 24 h and 10 d were 0.57 mg/L and 68.12 μg/L, respectively. The chronic exposure significantly prolonged the larvae growth duration and inhibited pupation and emergence. The transcriptome and biochemical parameters were measured using 3rd instar larvae exposed to acute LC10 and LC25 for 24 h. Transcriptome data indicated that five trypsin and four chymotrypsin genes were downregulated, and RT-qPCR verified a significant expression decrease in trypsin3 and chymotrypsin1 genes. Meanwhile, abamectin could significantly inhibit the activities of the serine proteases trypsin and chymotrypsin. RNA interference showed that silencing trypsin3 and chymotrypsin1 genes led to higher mortality of C. kiiensis to abamectin. In conclusion, these findings indicated that trypsin and chymotrypsin are involved in the abamectin toxicity against C. kiiensis, which provides new insights into the mechanism of abamectin-induced ecotoxicity to chironomids.
Collapse
Affiliation(s)
- Xusong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Wujia Mo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiaowei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Pezzini D, Taylor KL, Reisig DD, Fritz ML. Cross-pollination in seed-blended refuge and selection for Vip3A resistance in a lepidopteran pest as detected by genomic monitoring. Proc Natl Acad Sci U S A 2024; 121:e2319838121. [PMID: 38513093 PMCID: PMC10990109 DOI: 10.1073/pnas.2319838121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 03/23/2024] Open
Abstract
The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North American Helicoverpa zea collected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wild H. zea that survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposed H. zea to sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.
Collapse
Affiliation(s)
- Daniela Pezzini
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
| | - Katherine L. Taylor
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
- Department of Entomology, University of Maryland, College Park, MD20742
| | - Dominic D. Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
| | - Megan L. Fritz
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
- Department of Entomology, University of Maryland, College Park, MD20742
| |
Collapse
|
4
|
Zhang J, Liu M, Wen L, Hua Y, Zhang R, Li S, Zafar J, Pang R, Xu H, Xu X, Jin F. MiR-2b-3p Downregulated PxTrypsin-9 Expression in the Larval Midgut to Decrease Cry1Ac Susceptibility of the Diamondback Moth, Plutella xylostella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2263-2276. [PMID: 38235648 DOI: 10.1021/acs.jafc.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingyou Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liang Wen
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Hua
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruonan Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - ShuZhong Li
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rui Pang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Jin M, Shan Y, Peng Y, Wang W, Zhang H, Liu K, Heckel DG, Wu K, Tabashnik BE, Xiao Y. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proc Natl Acad Sci U S A 2023; 120:e2306932120. [PMID: 37874855 PMCID: PMC10622909 DOI: 10.1073/pnas.2306932120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wenhui Wang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, JenaD-07745, Germany
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | | | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| |
Collapse
|
6
|
Wei W, Wang L, Pan S, Wang H, Xia Z, Liu L, Xiao Y, Bravo A, Soberón M, Yang Y, Liu K. Helicoverpa armigera GATAe transcriptional factor regulates the expression of Bacillus thuringiensis Cry1Ac receptor gene ABCC2 by its interplay with additional transcription factors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105516. [PMID: 37532331 DOI: 10.1016/j.pestbp.2023.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Helicoverpa armigera is a worldwide pest that has been efficiently controlled by transgenic plants expressing Bt Cry toxins. To exert toxicity, Cry toxins bind to different receptors located in larval midgut cells. Previously, we reported that GATA transcription factor GATAe activates the expression of multiple H. armigera Cry1Ac receptors in different insect cell lines. Here, the mechanism involved in GATAe regulation of HaABCC2 gene expression, a key receptor of Cry1Ac, was analyzed. HaGATAe gene silencing by RNAi in H. armigera larvae confirmed the activation role of HaGATAe on the expression of HaABCC2 in the midgut. The contribution of all potential GATAe-binding sites was analyzed by site-directed mutagenesis using Hi5 cells expressing a reporter gene under regulation of different modified HaABCC2 promoters. DNA pull-down assays revealed that GATAe bound to different predicted GATA-binding sites and mutations of the different GATAe-binding sites identified two binding sites responsible for the promoter activity. The binding site B9, which is located near the transcription initiator site, has a major contribution on HaABCC2 expression. Also, DNA pull-down assays revealed that all other members of GATA TF family in H. armigera, besides GATAe, HaGATAa, HaGATAb, HaGATAc and HaGATAd also bound to the HaABCC2 promoter and decreased the GATAe dependent promoter activity. Finally, the potential participation in the regulation of HaABCC2 promoter of several TFs other than GATA TFs expressed in the midgut cells was analyzed. HaHR3 inhibited the GATAe dependent activity of the HaABCC2 promoter, while two other midgut-related TFs, HaCDX and HaSox21, also bound to the HaABCC2 promoter region and increased the GATAe dependent promoter activity. All these data showed that GATAe induces HaABCC2 expression by binding to HaGATAe binding sites in the promoter region and that additional TFs participate in modulating the HaGATAe-driven expression of HaABCC2.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences, Central China Normal University, Wuhan 430070, China; Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Ling Wang
- Institute of Hubei Agriculture Academy, Wuhan 430070, China
| | - Shuang Pan
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Haixia Wang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Zhichao Xia
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Leilei Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China; Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| |
Collapse
|
7
|
Jin M, Shan Y, Li Q, Peng Y, Xiao Y. A novel Cry1A resistance allele of fall armyworm in the new invaded region. Int J Biol Macromol 2023; 244:125392. [PMID: 37321433 DOI: 10.1016/j.ijbiomac.2023.125392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a devastating pest in its native range Western Hemisphere and has become a major invasive pest around the globe. Transgenic crops producing Bt toxins have been widely used to control S. frugiperda. However, the evolution of resistance threatens the sustainability of Bt crops. Field-evolved S. frugiperda resistance to Bt crops was observed in America, whereas, no case of field-resistance was reported in its newly invaded East Hemisphere. Here we investigated the molecular mechanism of a Cry1Ab-resistant LZ-R strain of S. frugiperda, which selected 27-generations using Cry1Ab after being collected in corn fields from China. Complementation tests between LZ-R strain and SfABCC2-KO strain, which have been knockout SfABCC2 gene and confer 174-fold resistance to Cry1Ab, showed a similar level of resistance in the F1-progeny as their parent stains, indicating that a common locus of SfABCC2 mutation in LZ-R stain. Sequencing of the full length of SfABCC2 cDNA from LZ-R strain, we characterize a novel mutation allele of SfABCC2. Cross-resistance results showed that Cry1Ab-resistance strain also confers >260-fold resistance to Cry1F, with no cross-resistance to Vip3A. These results provided evidence of a novel SfABCC2 mutation allele in the newly invaded East Hemisphere of S. frugiperda.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qi Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
8
|
Impact of Caterpillar Increased Feeding Rates on Reduction of Bt Susceptibility. Int J Mol Sci 2022; 23:ijms232314856. [PMID: 36499184 PMCID: PMC9735560 DOI: 10.3390/ijms232314856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The use of insect-resistant transgenic crops producing Bacillus thuringiensis protein Cry toxins (Bt) to control caterpillars is wide-spread. Development of a mechanism to prevent Bt from reaching its target site in the digestive system could result in Bt resistance and resistance to other insecticides active per os. Increased feeding rates by increasing temperature in tobacco budworms, Chloridea virescens, and bollworms, Helicoverpa zea, decreased Bt Cry1Ac susceptibility and mortality. The same was found in C. virescens for Bollgard II plant extract containing Bt Cry1Ac and Cry2Ab2 toxins. Furthermore, H. zea from the same inbred laboratory colony that fed faster independent of temperature manipulation were less susceptible to Bt intoxication. A laboratory derived C. virescens Bt resistant strain demonstrated a higher feeding rate on non-Bt artificial diet than the parental, Bt susceptible strain. A laboratory-reared Bt resistant fall armyworm, Spodoptera frugiperda, strain also fed faster on non-Bt diet compared to Bt susceptible caterpillars of the same species, both originally collected from corn. The studies in toto and the literature reviewed support the hypothesis that increased feeding rate is a behavioral mechanism for reducing caterpillar susceptibility to Bt. Its possible role in resistance needs further study.
Collapse
|
9
|
Zhang C, Wei J, Naing ZL, Soe ET, Tang J, Liang G. Up-regulated serpin gene involved in Cry1Ac resistance in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105269. [PMID: 36464374 DOI: 10.1016/j.pestbp.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Insect resistance to Bacillus thuringiensis (Bt) is a critical limiting factor for applying the Bt crops. Some studies indicated that decreased protoxin activation because of lower enzymatic activities of trypsin and chymotrypsin and increased expression of serpin might involve in Bt resistance. Our previous study identified an endogenous serpin could inhibit the midgut proteases to activate Cry1Ac and reduce the insecticide activity to Helicoverpa armigera. We hypothesis that up-regulated serpin involve in resistance via inhibiting enzymatic activities of trypsin and chymotrypsin to decrease protoxin activation. Herein, we found the serpin-e gene relative expression in midgut was significantly higher in the LF30 resistant strain than that in the susceptible strain during all developmental stages. Importantly, RNAi-mediated silencing of serpin-e gene expression caused 4.46-fold mortality changes in LF30 strain, but the trypsin and chymotrypsin proteases activities were only changed 0.79-fold and 2.22-fold. In addition, although proteases activities were significantly lower in LF30 strain than that in the susceptible strain, the resistance ratios of LF30 to Cry1Ac protoxin and to activated Cry1Ac toxin were no difference. The results indicated serpins caused insect resistance to Cry1Ac protoxins partly through inhibiting the trypsin and chymotrypsin proteases activities, but it also existed other mechanisms in LF30.
Collapse
Affiliation(s)
- Caihong Zhang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jizhen Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zaw Lin Naing
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ei Thinzar Soe
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jinrong Tang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Gemei Liang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100,PR China.
| |
Collapse
|
10
|
Benowitz KM, Allan CW, Degain BA, Li X, Fabrick JA, Tabashnik BE, Carrière Y, Matzkin LM. Novel genetic basis of resistance to Bt toxin Cry1Ac in Helicoverpa zea. Genetics 2022; 221:iyac037. [PMID: 35234875 PMCID: PMC9071530 DOI: 10.1093/genetics/iyac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 11/14/2022] Open
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bacillus thuringiensis toxins can improve resistance monitoring, resistance management, and the design of new insecticides. Here, we investigated the genetic basis of resistance to Bacillus thuringiensis toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species, which has 31 chromosomes containing 375 Mb and 15,482 predicted proteins. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250-kb quantitative trait locus on chromosome 13 that was strongly associated with resistance in a strain of Helicoverpa zea that had been selected for resistance in the field and lab. The mutation in this quantitative trait locus contributed to but was not sufficient for resistance, which implies alleles in more than one gene contributed to resistance. This quantitative trait locus contains no genes with a previously reported role in resistance or susceptibility to Bacillus thuringiensis toxins. However, in resistant insects, this quantitative trait locus has a premature stop codon in a kinesin gene, which is a primary candidate as a mutation contributing to resistance. We found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, Austin Peay State University, Clarksville, TN 37040, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Benjamin A Degain
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Jeffrey A Fabrick
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
11
|
Khorramnejad A, Bel Y, Talaei-Hassanloui R, Escriche B. Activation of Bacillus thuringiensis Cry1I to a 50 kDa stable core impairs its full toxicity to Ostrinia nubilalis. Appl Microbiol Biotechnol 2022; 106:1745-1758. [PMID: 35138453 PMCID: PMC8882101 DOI: 10.1007/s00253-022-11808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Bacillus thuringiensis Cry1I insecticidal proteins are structurally similar to other three-domain Cry proteins, although their size, activity spectrum, and expression at the stationary phase are unique among other members of the Cry1 family. The mode of action of Cry1 proteins is not completely understood but the existence of an activation step prior to specific binding is widely accepted. In this study, we attempted to characterize and determine the importance of the activation process in the mode of action of Cry1I, as Cry1Ia protoxin or its partially processed form showed significantly higher toxicity to Ostrinia nubilalis than the fully processed protein either activated with trypsin or with O. nubilalis midgut juice. Oligomerization studies showed that Cry1Ia protoxin, in solution, formed dimers spontaneously, and the incubation of Cry1Ia protoxin with O. nubilalis brush border membrane vesicles (BBMV) promoted the formation of dimers of the partially processed form. While no oligomerization of fully activated proteins after incubation with BBMV was detected. The results of the in vitro competition assays showed that both the Cry1Ia protoxin and the approx. 50 kDa activated proteins bind specifically to the O. nubilalis BBMV and compete for the same binding sites. Accordingly, the in vivo binding competition assays show a decrease in toxicity following the addition of an excess of 50 kDa activated protein. Consequently, as full activation of Cry1I protein diminishes its toxicity against lepidopterans, preventing or decelerating proteolysis might increase the efficacy of this protein in Bt-based products. KEY POINTS: • Processing Cry1I to a 50 kDa stable core impairs its full toxicity to O. nubilalis • Partially processed Cry1Ia protoxin retains the toxicity of protoxin vs O. nubilalis • Protoxin and its final processed forms compete for the same functional binding sites.
Collapse
Affiliation(s)
- Ayda Khorramnejad
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.,Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Yolanda Bel
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.
| | - Reza Talaei-Hassanloui
- Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Baltasar Escriche
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.
| |
Collapse
|
12
|
Lawrie RD, Mitchell RD, Deguenon JM, Ponnusamy L, Reisig D, Pozo-Valdivia AD, Kurtz RW, Roe RM. Characterization of Long Non-Coding RNAs in the Bollworm, Helicoverpa zea, and Their Possible Role in Cry1Ac-Resistance. INSECTS 2021; 13:12. [PMID: 35055855 PMCID: PMC8779162 DOI: 10.3390/insects13010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Multiple insect pest species have developed field resistance to Bt-transgenic crops. There has been a significant amount of research on protein-coding genes that contribute to resistance, such as the up-regulation of protease activity or altered receptors. However, our understanding of the role of non-protein-coding mechanisms in Bt-resistance is minimal, as is also the case for resistance to chemical pesticides. To address this problem relative to Bt, RNA-seq was used to examine statistically significant, differential gene expression between a Cry1Ac-resistant (~100-fold resistant) and Cry1Ac-susceptible strain of Helicoverpa zea, a prevalent caterpillar pest in the USA. Significant differential expression of putative long non-coding RNAs (lncRNAs) was found in the Cry1Ac-resistant strain (58 up- and 24 down-regulated gene transcripts with an additional 10 found only in resistant and four only in susceptible caterpillars). These lncRNAs were examined as potential pseudogenes and for their genomic proximity to coding genes, both of which can be indicative of regulatory relationships between a lncRNA and coding gene expression. A possible pseudogenic lncRNA was found with similarities to a cadherin. In addition, putative lncRNAs were found significantly proximal to a serine protease, ABC transporter, and CYP coding genes, potentially involved in the mechanism of Bt and/or chemical insecticide resistance. Characterization of non-coding genetic mechanisms in Helicoverpa zea will improve the understanding of the genomic evolution of insect resistance, improve the identification of specific regulators of coding genes in general (some of which could be important in resistance), and is the first step for potentially targeting these regulators for pest control and resistance management (using molecular approaches, such as RNAi and others).
Collapse
Affiliation(s)
- Roger D. Lawrie
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
- Environmental and Molecular Toxicology Program, Department of Biology, College of Sciences, North Carolina State University, 2601 Stinson Drive, Raleigh, NC 27606, USA
| | - Robert D. Mitchell
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
- Office of Pesticide Programs, Invertebrate and Vertebrate Branch 1, Registration Division, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, Washington, DC 20460, USA
| | - Jean Marcel Deguenon
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
| | - Dominic Reisig
- Vernon G. James Research & Extension Center, Department of Entomology and Plant Pathology, 207 Research Station Road, Plymouth, NC 27962, USA; (D.R.); (A.D.P.-V.)
| | - Alejandro Del Pozo-Valdivia
- Vernon G. James Research & Extension Center, Department of Entomology and Plant Pathology, 207 Research Station Road, Plymouth, NC 27962, USA; (D.R.); (A.D.P.-V.)
| | - Ryan W. Kurtz
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC 27513, USA;
| | - Richard Michael Roe
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
- Environmental and Molecular Toxicology Program, Department of Biology, College of Sciences, North Carolina State University, 2601 Stinson Drive, Raleigh, NC 27606, USA
| |
Collapse
|
13
|
Perera OP, Little NS, Abdelgaffar H, Jurat-Fuentes JL, Reddy GVP. Genetic Knockouts Indicate That the ABCC2 Protein in the Bollworm Helicoverpa zea Is Not a Major Receptor for the Cry1Ac Insecticidal Protein. Genes (Basel) 2021; 12:1522. [PMID: 34680917 PMCID: PMC8535714 DOI: 10.3390/genes12101522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
Members of the insect ATP binding cassette transporter subfamily C2 (ABCC2) in several moth species are known as receptors for the Cry1Ac insecticidal protein from Bacillus thuringiensis (Bt). Mutations that abolish the functional domains of ABCC2 are known to cause resistance to Cry1Ac, although the reported levels of resistance vary widely depending on insect species. In this study, the function of the ABCC2 gene as a putative Cry1Ac receptor in Helicoverpa zea, a major pest of over 300 crops, was evaluated using CRISPR/Cas9 to progressively eliminate different functional ABCC2 domains. Results from bioassays with edited insect lines support that mutations in ABCC2 were associated with Cry1Ac resistance ratios (RR) ranging from 7.3- to 39.8-fold. No significant differences in susceptibility to Cry1Ac were detected between H. zea with partial or complete ABCC2 knockout, although the highest levels of tolerance were observed when knocking out half of ABCC2. Based on >500-1000-fold RRs reported in similar studies for closely related moth species, the low RRs observed in H. zea knockouts support that ABCC2 is not a major Cry1Ac receptor in this insect.
Collapse
Affiliation(s)
- Omaththage P. Perera
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776, USA; (N.S.L.); (G.V.P.R.)
| | - Nathan S. Little
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776, USA; (N.S.L.); (G.V.P.R.)
| | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (H.A.); (J.L.J.-F.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (H.A.); (J.L.J.-F.)
| | - Gadi V. P. Reddy
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776, USA; (N.S.L.); (G.V.P.R.)
| |
Collapse
|
14
|
Zhang C, Wei J, Naing ZL, Soe ET, Liang G. Endogenous serpin reduces toxicity of Bacillus thuringiensis Cry1Ac against Helicoverpa armigera (Hübner). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104837. [PMID: 33993962 DOI: 10.1016/j.pestbp.2021.104837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Bt protoxins are required to convert to a smaller activated form by insect midgut proteases to exert toxicity against insect pests. Serine protease inhibitors (serpins) play a valuable part in gut protease of insect that hamper digestive proteases activity of insects. Whether the insect serpins induced by Bt protoxin affect the insecticidal activity were rare studied. Here, we identified a serpin-e gene from Helicoverpa armigera, which had potential RCL (Reactive Center Loop) region near the C-terminus like other serpin proteins. It widely expressed in different development stages and in various tissues, but highest expressed in fourth-instar larvae and in larval hemolymph. This Haserpin-e could be induced by Cry1Ac protoxin in vivo and inhibit the midgut proteases to activate Cry1Ac in vitro. Importantly, the functional study indicated it could inhibit the process from Cry1Ac protoxin to activated toxin, and led to the reduction of Cry1Ac insecticide activity to cotton bollworm. Based on our results, we proposed that Haserpin-e involved in the toxicity of Cry1Ac to cotton bollworm by blocking the serine protease to activate the protoxin.
Collapse
Affiliation(s)
- Caihong Zhang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Jizhen Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zaw Lin Naing
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Ei Thinzar Soe
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Gemei Liang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China.
| |
Collapse
|
15
|
Deguenon JM, Dhammi A, Ponnusamy L, Travanty NV, Cave G, Lawrie R, Mott D, Reisig D, Kurtz R, Roe RM. Bacterial Microbiota of Field-Collected Helicoverpa zea (Lepidoptera: Noctuidae) from Transgenic Bt and Non-Bt Cotton. Microorganisms 2021; 9:microorganisms9040878. [PMID: 33923893 PMCID: PMC8072973 DOI: 10.3390/microorganisms9040878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
The bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), is an important agricultural pest in U.S. cotton and is managed using transgenic hybrids that produce insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt). The reduced efficacy against H. zea caterpillars of Bt plants expressing Cry toxins is increasing in the field. In a first step towards understanding Bt cotton–bollworm–microbiota interactions, we investigated the internal bacterial microbiota of second–third stadium H. zea collected in the field from non-Bt versus Bt (WideStrike) cotton in close proximity (in North Carolina, USA). The bacterial populations were analyzed using culture-dependent and -independent molecular approaches. We found that WideStrike samples had a higher bacterial density and diversity per larva than insects collected from non-Bt cotton over two field seasons: 8.42 ± 0.23 and 5.36 ± 0.75 (log10 colony forming units per insect) for WideStrike compared to 6.82 ± 0.20 and 4.30 ± 0.56 for non-Bt cotton for seasons 1 and 2, respectively. Fifteen phyla, 103 families, and 229 genera were identified after performing Illumina sequencing of the 16S rRNA. At the family level, Enterobacteriaceae and Enterococcaceae were the most abundant taxa. The Enterococcaceae family was comprised mostly of Enterococcus species (E. casseliflavus and another Enterococcus sp.). Members of the Enterococcus genus can acidify their environment and can potentially reduce the alkaline activation of some Bt toxins. These findings argue for more research to better understand the role of cotton–bollworm–bacteria interactions and the impact on Bt toxin caterpillar susceptibility.
Collapse
Affiliation(s)
- Jean M. Deguenon
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Anirudh Dhammi
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
- Correspondence:
| | - Nicholas V. Travanty
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Grayson Cave
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Roger Lawrie
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Dan Mott
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Ryan Kurtz
- Cotton Incorporated, Cary, NC 27513, USA;
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| |
Collapse
|
16
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
17
|
Carrière Y, Degain BA, Harpold VS, Unnithan GC, Tabashnik BE. Gene Flow Between Bt and Non-Bt Plants in a Seed Mixture Increases Dominance of Resistance to Pyramided Bt Corn in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2041-2051. [PMID: 32582955 DOI: 10.1093/jee/toaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 06/11/2023]
Abstract
For delaying evolution of pest resistance to transgenic corn producing Bacillus thuringiensis (Bt) toxins, limited data are available to compare the effectiveness of refuges of non-Bt corn planted in seed mixtures versus blocks. Here we addressed this issue in the ear-feeding pest Helicoverpa zea Boddie by measuring its survival and development in the laboratory on ears from field plots with 90% Cry1A.105 + Cry2Ab corn and 10% non-Bt corn planted in a seed mixture or blocks. We compared a strain of H. zea selected for resistance to Cry1Ac in the laboratory, its parent strain not selected in the laboratory, and their F1 progeny. The relative survival of the F1 progeny and dominance of resistance were higher on ears from Bt plants in the seed mixture than the block. Half of the kernels in ears from non-Bt plants in the seed mixture produced both Cry1A.105 and Cry2Ab. However, survival on ears from non-Bt plants did not differ between the block and seed mixture. In simulations based on the observed survival, resistance to Cry1A.105 + Cry2Ab corn evolved faster with the seed mixture than the blocks, because of the higher dominance of resistance in the seed mixture. Increasing the refuge percentage improved durability of Cry1A.105 + Cry2Ab corn more for the blocks than the seed mixture. These findings imply that, for a given percentage of non-Bt corn, resistance of H. zea and other ear-feeding pests to multi-toxin Bt corn is likely to evolve faster for seed mixtures than blocks.
Collapse
Affiliation(s)
- Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
| | - Ben A Degain
- Department of Entomology, University of Arizona, Tucson, AZ
| | | | | | | |
Collapse
|
18
|
Lawrie RD, Mitchell III RD, Deguenon JM, Ponnusamy L, Reisig D, Pozo-Valdivia AD, Kurtz RW, Roe RM. Multiple Known Mechanisms and a Possible Role of an Enhanced Immune System in Bt-Resistance in a Field Population of the Bollworm, Helicoverpa zea: Differences in Gene Expression with RNAseq. Int J Mol Sci 2020; 21:E6528. [PMID: 32906662 PMCID: PMC7555151 DOI: 10.3390/ijms21186528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Several different agricultural insect pests have developed field resistance to Bt (Bacillus thuringiensis) proteins (ex. Cry1Ac, Cry1F, etc.) expressed in crops, including corn and cotton. In the bollworm, Helicoverpa zea, resistance levels are increasing; recent reports in 2019 show up to 1000-fold levels of resistance to Cry1Ac, a major insecticidal protein in Bt-crops. A common method to analyze global differences in gene expression is RNA-seq. This technique was used to measure differences in global gene expression between a Bt-susceptible and Bt-resistant strain of the bollworm, where the differences in susceptibility to Cry1Ac insecticidal proteins were 100-fold. We found expected gene expression differences based on our current understanding of the Bt mode of action, including increased expression of proteases (trypsins and serine proteases) and reduced expression of Bt-interacting receptors (aminopeptidases and cadherins) in resistant bollworms. We also found additional expression differences for transcripts that were not previously investigated, i.e., transcripts from three immune pathways-Jak/STAT, Toll, and IMD. Immune pathway receptors (ex. PGRPs) and the IMD pathway demonstrated the highest differences in expression. Our analysis suggested that multiple mechanisms are involved in the development of Bt-resistance, including potentially unrecognized pathways.
Collapse
Affiliation(s)
- Roger D. Lawrie
- Department of Biology/Environmental and Molecular Toxicology Program, 850 Main Campus Dr, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (L.P.)
| | - Robert D. Mitchell III
- Knipling-Bushland US Livestock Insects Research Laboratory Genomics Center, 2700 Fredericksburg Road, United States Department of Agriculture-Agricultural Research Service, Kerrville, TX 78028, USA;
| | - Jean Marcel Deguenon
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (L.P.)
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (L.P.)
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, Vernon G. James Research & Extension Center, 207 Research Station Road, Plymouth, NC 27962, USA; (D.R.); (A.D.P.-V.)
| | - Alejandro Del Pozo-Valdivia
- Department of Entomology and Plant Pathology, Vernon G. James Research & Extension Center, 207 Research Station Road, Plymouth, NC 27962, USA; (D.R.); (A.D.P.-V.)
| | - Ryan W. Kurtz
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC 27513, USA;
| | - R. Michael Roe
- Department of Biology/Environmental and Molecular Toxicology Program, 850 Main Campus Dr, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (L.P.)
| |
Collapse
|
19
|
Mutations in a Novel Cadherin Gene Associated with Bt Resistance in Helicoverpa zea. G3-GENES GENOMES GENETICS 2020; 10:1563-1574. [PMID: 32179620 PMCID: PMC7202007 DOI: 10.1534/g3.120.401053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transgenic corn and cotton produce crystalline (Cry) proteins derived from the soil bacterium Bacillus thuringiensis (Bt) that are toxic to lepidopteran larvae. Helicoverpa zea, a key pest of corn and cotton in the U.S., has evolved widespread resistance to these proteins produced in Bt corn and cotton. While the genomic targets of Cry selection and the mutations that produce resistant phenotypes are known in other lepidopteran species, little is known about how selection by Cry proteins shape the genome of H. zea. We scanned the genomes of Cry1Ac-selected and unselected H. zea lines, and identified twelve genes on five scaffolds that differed between lines, including cadherin-86C (cad-86C), a gene from a family that is involved in Cry1A resistance in other lepidopterans. Although this gene was expressed in the H. zea larval midgut, the protein it encodes has only 17 to 22% identity with cadherin proteins from other species previously reported to be involved in Bt resistance. An analysis of midgut-expressed cDNAs showed significant between-line differences in the frequencies of putative nonsynonymous substitutions (both SNPs and indels). Our results indicate that cad-86C is a likely target of Cry1Ac selection in H. zea. It remains unclear, however, whether genomic changes at this locus directly disrupt midgut binding of Cry1Ac and cause Bt resistance, or indirectly enhance fitness of H. zea in the presence of Cry1Ac by some other mechanism. Future work should investigate phenotypic effects of these nonsynonymous substitutions and their impact on fitness of H. zea larvae that ingest Cry1Ac.
Collapse
|
20
|
Guo Z, Gong L, Kang S, Zhou J, Sun D, Qin J, Guo L, Zhu L, Bai Y, Bravo A, Soberón M, Zhang Y. Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:23-30. [PMID: 31973862 DOI: 10.1016/j.pestbp.2019.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/21/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) have been widely used to control agricultural pests in both foliage sprays and transgenic crops. Nevertheless, rapid evolution of insect resistance to Cry toxins requires elucidation of the molecular mechanisms involved in Cry resistance. Two proposed models have been described to explain the toxicity of Cry proteins, the classic model states that Cry protoxin is activated by midgut proteases resulting in activated toxin that binds to receptors and forms a pore in the midgut cells triggering larval death, and the newly proposed dual model of the mode of action of Bt Cry toxins states that protoxin and activated toxins may have different mechanisms of action since several resistant strains to activated Cry toxins are still susceptible to the same Cry-protoxin. Protoxin activation by midgut proteases is a key step in both models. Herein, we evaluated Cry1Ac protoxin activation in a susceptible Plutella xylostella (L.) strain (DBM1Ac-S) and in the near-isogenic strain (NIL-R) with high field-evolved Cry1Ac resistance. Previous work showed that Cry1Ac resistance in NIL-R correlates with reduced binding to midgut receptors due to enhanced MAPK signaling pathway and down regulation of ABCC2 receptor. However, reduced midgut trypsin levels and altered midgut protease gene transcription were also observed in the Cry1Ac-resistant field isolated strain that is parent of the NIL-R strain. Therefore, we analyzed the midgut protease activities in both DBM1Ac-S and NIL-R strains. Detection of enzymatic activities showed that caseinolytic protease, trypsin and chymotrypsin activities were not significantly different between the susceptible and resistant strains. Furthermore, treatment with different trypsin or chymotrypsin inhibitors, such as Nα-tosyl-l-lysine chloromethyl ketone (TLCK) or Np-tosyl-L-phenylalanine chloromethyl ketone (TPCK) did not affect the susceptibility to Cry1Ac protoxin of the DBM1Ac-S and NIL-R larvae. Bioassay results indicated that the NIL-R larvae showed similar resistant levels to both Cry1Ac protoxin and trypsin-activated toxin. Taken together, our results demonstrated that high-level field-evolved Cry1Ac resistance in the NIL-R strain is independent of Cry1Ac protoxin activation and the specific protoxin mechanism of action. This discovery will strengthen our comprehensive understanding of the complex mechanistic basis of Bt resistance in different insects.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lijun Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junlei Zhou
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Bai
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Gong L, Kang S, Zhou J, Sun D, Guo L, Qin J, Zhu L, Bai Y, Ye F, Akami M, Wu Q, Wang S, Xu B, Yang Z, Bravo A, Soberón M, Guo Z, Wen L, Zhang Y. Reduced Expression of a Novel Midgut Trypsin Gene Involved in Protoxin Activation Correlates with Cry1Ac Resistance in a Laboratory-Selected Strain of Plutella xylostella (L.). Toxins (Basel) 2020; 12:toxins12020076. [PMID: 31979385 PMCID: PMC7076802 DOI: 10.3390/toxins12020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/05/2022] Open
Abstract
Bacillus thuringiensis (Bt) produce diverse insecticidal proteins to kill insect pests. Nevertheless, evolution of resistance to Bt toxins hampers the sustainable use of this technology. Previously, we identified down-regulation of a trypsin-like serine protease gene PxTryp_SPc1 in the midgut transcriptome and RNA-Seq data of a laboratory-selected Cry1Ac-resistant Plutella xylostella strain, SZ-R. We show here that reduced PxTryp_SPc1 expression significantly reduced caseinolytic and trypsin protease activities affecting Cry1Ac protoxin activation, thereby conferring higher resistance to Cry1Ac protoxin than activated toxin in SZ-R strain. Herein, the full-length cDNA sequence of PxTryp_SPc1 gene was cloned, and we found that it was mainly expressed in midgut tissue in all larval instars. Subsequently, we confirmed that the PxTryp_SPc1 gene was significantly decreased in SZ-R larval midgut and was further reduced when selected with high dose of Cry1Ac protoxin. Moreover, down-regulation of the PxTryp_SPc1 gene was genetically linked to resistance to Cry1Ac in the SZ-R strain. Finally, RNAi-mediated silencing of PxTryp_SPc1 gene expression decreased larval susceptibility to Cry1Ac protoxin in the susceptible DBM1Ac-S strain, supporting that low expression of PxTryp_SPc1 gene is involved in Cry1Ac resistance in P. xylostella. These findings contribute to understanding the role of midgut proteases in the mechanisms underlying insect resistance to Bt toxins.
Collapse
Affiliation(s)
- Lijun Gong
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Junlei Zhou
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Le Guo
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Yang Bai
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Fan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Mazarin Akami
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Zhongxia Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, Mexico; (A.B.); (M.S.)
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, Mexico; (A.B.); (M.S.)
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
- Correspondence: (Z.G.); (L.W.); (Y.Z.); Tel.: +86-10-82109518 (Z.G.); +86-0731-84618163 (L.W.); +86-10-62152945 (Y.Z.)
| | - Lizhang Wen
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Correspondence: (Z.G.); (L.W.); (Y.Z.); Tel.: +86-10-82109518 (Z.G.); +86-0731-84618163 (L.W.); +86-10-62152945 (Y.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
- Correspondence: (Z.G.); (L.W.); (Y.Z.); Tel.: +86-10-82109518 (Z.G.); +86-0731-84618163 (L.W.); +86-10-62152945 (Y.Z.)
| |
Collapse
|