1
|
Wang M, Li G, Zhou L, Hao Y, Wang L, Mao X, Zhang G, Zhao C. Design, synthesis and bioactivity of a new class of antifungal amino acid-directed phthalide compounds. PEST MANAGEMENT SCIENCE 2024; 80:3182-3193. [PMID: 38358013 DOI: 10.1002/ps.8028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Peanut southern blight disease, caused by Sclerotium rolfsii, is a destructive soil-borne fungal disease. The current control measures, which mainly employ succinate dehydrogenase inhibitors, are prone to resistance and toxicity to non-target organisms. As a result, it is necessary to explore the potential of eco-friendly fungicides for this disease. RESULTS Fourteen novel phthalide compounds incorporating amino acid moieties were designed and synthesized. The in vitro activity of analog A1 [half maximal effective concentration (EC50) = 332.21 mg L-1] was slightly lower than that of polyoxin (EC50 = 284.32 mg L-1). It was observed that on the seventh day, the curative activity of A1 at a concentration of 600.00 mg L-1 was 57.75%, while the curative activity of polyoxin at a concentration of 300.00 mg L-1 was 42.55%. These results suggested that our compound exhibited in vivo activity. Peanut plants treated with A1 showed significant agronomic improvements compared to the untreated control. Several compounds in this series exhibited superior root absorption and conduction in comparison to the endothermic fungicide thifluzamide. The growth promotion and absorption-conduction experiments demonstrated the reason for the superior in vivo activity of the target compound. Cytotoxic assays have demonstrated that this series of targeted compounds exhibit low toxicity levels toward human lo2 liver cells. CONCLUSION Our results provide a new strategy for the design and synthesis of novel green compounds. Furthermore, the target compound A1 can serve as a lead for further development of green fungicides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meizi Wang
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guangyao Li
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Youwu Hao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Longfei Wang
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xuewei Mao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guoyan Zhang
- Plant Protection and Quarantine Station of Henan Province, Zhengzhou, China
| | - Chenxiang Zhao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Ma D, Xu J, Wu M, Zhang R, Hu Z, Ji CA, Wang Y, Zhang Z, Yu R, Liu X, Yang L, Li G, Shen D, Liu M, Yang Z, Zhang H, Wang P, Zhang Z. Phenazine biosynthesis protein MoPhzF regulates appressorium formation and host infection through canonical metabolic and noncanonical signaling function in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2024; 242:211-230. [PMID: 38326975 PMCID: PMC10940222 DOI: 10.1111/nph.19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M. oryzae produces PCA or it has any other functions remains unknown. Here, we found that the MoPHZF gene encodes the phenazine biosynthesis protein MoPhzF, synthesizes PCA in M. oryzae, and regulates appressorium formation and host virulence. MoPhzF is likely acquired through an ancient horizontal gene transfer event and has a canonical function in PCA synthesis. In addition, we found that PCA has a role in suppressing the accumulation of host-derived reactive oxygen species (ROS) during infection. Further examination indicated that MoPhzF recruits both the endoplasmic reticulum membrane protein MoEmc2 and the regulator of G-protein signaling MoRgs1 to the plasma membrane (PM) for MoRgs1 phosphorylation, which is a critical regulatory mechanism in appressorium formation and pathogenicity. Collectively, our studies unveiled a canonical function of MoPhzF in PCA synthesis and a noncanonical signaling function in promoting appressorium formation and host infection.
Collapse
Affiliation(s)
- Danying Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiming Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang-an Ji
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Xiao Y, Wei X, Hu C, Hsiang T, Yin J, Li J. Multiple amino acid transporters as carriers load L-valine-phenazine-1-carboxylic acid conjugate into Ricinus sieve tubes for the phloem translocation. Int J Biol Macromol 2024; 257:128730. [PMID: 38081490 DOI: 10.1016/j.ijbiomac.2023.128730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Some transporters play important roles in the uptake and acropetal xylem translocation of vectorized agrochemicals. However, it is poorly understood the basipetally phloem-loading functions of transporters toward vectorized agrochemicals. Here, L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate) uptake was demonstrated carrier-mediated. RcAAP2, RcANT7, and RcLHT1 showed a similarly up-regulated expression pattern from 62 transporter coding genes in Ricinus at 1 h after L-Val or L-Val-PCA treatment. Subcellular localization revealed that fusion RcAAP2-eGFP, RcANT7-eGFP and RcLHT1-eGFP proteins were expressed in the plasma membrane of mesophyll and phloem cells. Yeast assays found that RcAAP2, RcANT7, and RcLHT1 facilitated L-Val-PCA uptake. To further demonstrate the phloem-loading functions, using vacuum infiltration strategy, an Agrobacterium-mediated RNA interference (RNAi) protocol was constructed in seedlings. HPLC detection indicated that L-Val-PCA phloem sap concentrations were significantly decreased 54.5 %, 27.6 %, and 41.6 % after silencing for 72 h and increased 48.3 %, 52.6 %, and 52.4 % after overexpression, respectively. In conclusion, the plasma membrane-located RcAAP2, RcANT7, and RcLHT1 can loaded L-Val-PCA into Ricinus sieve tubes for the phloem translocation, which may aid in the utilization of transporters and molecular design of phloem-mobile fungicides target root or vascular pathogens.
Collapse
Affiliation(s)
- Yongxin Xiao
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xuehua Wei
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ciyin Hu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Junkai Li
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
4
|
Shi J, Tian Y, Chen S, Liao C, Mao G, Deng X, Yu L, Zhu X, Li J. Design, synthesis and antifungal evaluation of phenylthiazole-1,3,4-oxadiazole thione (ketone) derivatives inspired by natural thiasporine A. PEST MANAGEMENT SCIENCE 2023; 79:3439-3450. [PMID: 36966468 DOI: 10.1002/ps.7481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Plant pathogenic fungal infections have become a severe threat to the yield and quality of agricultural products, and new green antifungal agents with high efficiency and low toxicity are needed. In this study, a series of thiasporine A derivatives containing phenylthiazole-1,3,4-oxadiazole thione (ketone) structures were designed and synthesized, and their antifungal activities against six invasive and highly destructive phytopathogenic fungi were evaluated. RESULTS The results found that all compounds showed moderate to potent antifungal activity against six phytopathogenic fungi, and most of the E series compounds showed remarkable antifungal activity against Sclerotinia sclerotiorum and Colletotrichum camelliaet. In particular, compounds E1-E5, E7, E8, E13, E14, E17, and E22 showed more significant antifungal activity against S. sclerotiorum, with half-maximal effective concentration (EC50 ) values of 0.22, 0.48, 0.56, 0.65, 0.51, 0.39, 0.60, 0.56, 0.60, 0.63, and 0.45 μg mL-1 , respectively, which were superior to that of carbendazim (0.70 μg mL-1 ). Further activity studies showed that compound E1 possessed superior curative activities against S. sclerotiorum in vivo and better inhibitory effects on sclerotia germination and the formation of S. sclerotiorum compared with those of carbendazim. CONCLUSIONS This study indicates that these thiasporine A derivatives containing phenylthiazole-1,3,4-oxadiazole thione structures might be used as antifungal agents against S. sclerotiorum. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinchao Shi
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Yao Tian
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Shunshun Chen
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Changzhou Liao
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guoqing Mao
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaoqian Deng
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Linhua Yu
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiang Zhu
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Junkai Li
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Yao G, Han S, Wen Y, Xiao Y, Zhao C, Xu H. Design, synthesis, insecticidal activities and translocation of amino acid-tralopyril conjugates as vectorizing agrochemicals. PEST MANAGEMENT SCIENCE 2023; 79:4018-4024. [PMID: 37278576 DOI: 10.1002/ps.7599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Conjugating amino acid moieties to active ingredients has been recognized as an effective method for improving the precise targeting of the active form to the specific site. Based on the vectorization strategy, a series of amino acid-tralopyril conjugates were designed and synthesized as novel proinsecticide candidates, with the potential capability of root uptake and translocation to the foliage of crops. RESULTS Bioassay results showed excellent insecticidal activities of some conjugates, in particular, the conjugates 6b, 6e, and 7e, against the diamondback moth (Plutella xylostella), with equivalent insecticidal activity to chlorfenapyr (CFP). Importantly, conjugate 6e exhibited significantly higher in vivo insecticidal activity against P. xylostella than CFP. Furthermore, the systemic test experiments with Brassica chinensis demonstrated that conjugates 6e and 7e could be transported to the leaves, in contrast to CFP, which remained in the root. CONCLUSION This study demonstrated the feasibility of amino acid fragment conjugation as a vectorization strategy for transporting non-systemic insecticides into the leaves of B. chinensis while maintaining in vivo insecticidal activity. The findings also provide insights for subsequent mechanism studies on the uptake and transport of amino acid-insecticide conjugates in plants. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangkai Yao
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shuo Han
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yingjie Wen
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuyan Xiao
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Deng S, Guo Q, Gao Y, Li J, Xu Z. Induced resistance to rice sheath blight (Rhizoctonia solani Kühn) by β-amino-butyric acid conjugate of phenazine-1-carboxylic acid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105502. [PMID: 37532322 DOI: 10.1016/j.pestbp.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
Rice sheath blight caused by Rhizoctonia solani Kühn is a major fungal disease that plagues commercially grown rice. Occurring mainly in leaf sheaths and leaves, the disease leads to great losses in food production. β-amino-butyric acid (BABA) has been demonstrated to activate an induced resistance response and is a potent inducer of broad-spectrum disease resistance in different plant species. In this study, β-amino-butyric acid conjugate of phenazine-1-carboxylic acid (PCA) with prominent induced resistance to rice sheath blight was tested. The in vitro fungicidal activity, as well as in vivo efficacy, systemicity, induced resistance and defense enzyme activity of BABA conjugate of PCA against R. solani in rice seedlings was systematically evaluated. The results indicated that in vitro fungicidal activity of PCA-β-aminobutyric acid (4e) against R. solani was lower than that of PCA, but in vivo curative ability of 4e was the highest among all tested compounds. The systemicity tests in rice seedlings revealed that PCA did not possess phloem mobility, while 4e exhibited moderate phloem mobility but much lower thanα-amino-butyric acid conjugate of PCA (4d). In addition, Compound 4e showed the highest induced activity against rice sheath blight. The observed effects of defense enzymes help to explain this high level of induced activity. The current research results indicate that in rice seedlings, BABA conjugate of PCA induce observable resistance to rice sheath blight and exhibit moderate phloem mobility, which could be used as an induced resistance fungicide against rice sheath blight in commercial rice production. The BABA conjugate of PCA might provide a useful example of induced resistance to R. solani.
Collapse
Affiliation(s)
- Shenchuan Deng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qiannan Guo
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yaqiang Gao
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Junkai Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China; Institute of Pesticides, Yangtze University, Jingzhou 434025, China
| | - Zhihong Xu
- College of Agriculture, Yangtze University, Jingzhou 434025, China; Institute of Pesticides, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
7
|
Xiao Y, Hu C, Hsiang T, Li J. Amino acid permease RcAAP1 increases the uptake and phloem translocation of an L-valine-phenazine-1-carboxylic acid conjugate. FRONTIERS IN PLANT SCIENCE 2023; 14:1191250. [PMID: 37332709 PMCID: PMC10272580 DOI: 10.3389/fpls.2023.1191250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Amino acid conjugates of pesticides can promote the phloem translocation of parent ingredients, allowing for the reduction of usage, and decreased environmental pollution. Plant transporters play important roles in the uptake and phloem translocation of such amino acid-pesticide conjugates such as L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate). However, the effects of an amino acid permease, RcAAP1, on the uptake and phloem mobility of L-Val-PCA are still unclear. Here, the relative expression levels of RcAAP1 were found to be up-regulated 2.7-fold and 2.2-fold by the qRT-PCR after L-Val-PCA treatments of Ricinus cotyledons for 1 h and 3 h, respectively. Subsequently, expression of RcAAP1 in yeast cells increased the L-Val-PCA uptake (0.36 μmol/107 cells), which was 2.1-fold higher than the control (0.17 μmol/107 cells). Pfam analysis suggested RcAAP1 with its 11 transmembrane domains belongs to the amino acid transporter family. Phylogenetic analysis found RcAAP1 to be strongly similar to AAP3 in nine other species. Subcellular localization showed that fusion RcAAP1-eGFP proteins were observed in the plasma membrane of mesophyll cells and phloem cells. Furthermore, overexpression of RcAAP1 for 72 h significantly increased the phloem mobility of L-Val-PCA in Ricinus seedlings, and phloem sap concentration of the conjugate was 1.8-fold higher than the control. Our study suggested that RcAAP1 as carrier was involved in the uptake and phloem translocation of L-Val-PCA, which could lay foundation for the utilization of amino acids and further development of vectorized agrochemicals.
Collapse
Affiliation(s)
- Yongxin Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
| | - Ciyin Hu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Junkai Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Rhein-Amino Acid Ester Conjugates as Potential Antifungal Agents: Synthesis and Biological Evaluation. Molecules 2023; 28:molecules28052074. [PMID: 36903319 PMCID: PMC10004406 DOI: 10.3390/molecules28052074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the search for crop protectants, amino acid ester conjugates have been widely investigated as potential antifungal agents. In this study, a series of rhein-amino acid ester conjugates were designed and synthesized in good yields, and their structures were confirmed by 1H-NMR, 13C-NMR and HRMS. The bioassay results revealed that most of the conjugates exhibited potent inhibitory activity against R. solani and S. sclerotiorum. In particular, conjugate 3c had the highest antifungal activity against R. solani with an EC50 value of 0.125 mM. For S. sclerotiorum, conjugate 3m showed the highest antifungal activity with an EC50 value of 0.114 mM. Satisfactorily, conjugate 3c exhibited better protective effects than that of the positive control, physcion, against powdery mildew in wheat. This research supports the role of rhein-amino acid ester conjugates as potential antifungal agents for plant fungal diseases.
Collapse
|
9
|
Serafim B, Bernardino AR, Freitas F, Torres CAV. Recent Developments in the Biological Activities, Bioproduction, and Applications of Pseudomonas spp. Phenazines. Molecules 2023; 28:molecules28031368. [PMID: 36771036 PMCID: PMC9919295 DOI: 10.3390/molecules28031368] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Phenazines are a large group of heterocyclic nitrogen-containing compounds with demonstrated insecticidal, antimicrobial, antiparasitic, and anticancer activities. These natural compounds are synthesized by several microorganisms originating from diverse habitats, including marine and terrestrial sources. The most well-studied producers belong to the Pseudomonas genus, which has been extensively investigated over the years for its ability to synthesize phenazines. This review is focused on the research performed on pseudomonads' phenazines in recent years. Their biosynthetic pathways, mechanism of regulation, production processes, bioactivities, and applications are revised in this manuscript.
Collapse
Affiliation(s)
- Bruno Serafim
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Ana R. Bernardino
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Filomena Freitas
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Cristiana A. V. Torres
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- Correspondence:
| |
Collapse
|
10
|
An Exploration of the Effect of the Kleier Model and Carrier-Mediated Theory to Design Phloem-Mobile Pesticides Based on Researching the N-Alkylated Derivatives of Phenazine-1-Carboxylic Acid-Glycine. Molecules 2022; 27:molecules27154999. [PMID: 35956949 PMCID: PMC9370529 DOI: 10.3390/molecules27154999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide’s physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a−4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil−water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 μΜ, 13.98 μΜ, and 17.63 μΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 μΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides.
Collapse
|
11
|
Lu X, Qin C, Cai J, Zhang M, Yu L, Li J, Wu Q. Study on the selectivity and phloem mobility of Fenoxaprop-P amino acid ester conjugates on rice and barnyard grass. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105086. [PMID: 35430076 DOI: 10.1016/j.pestbp.2022.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
To improve the selectivity of the fenoxaprop herbicide to rice and barnyard grass, a series of fenoxaprop-P-ethyl-amino acid ester conjugates were designed and synthesized, and tested for biological activity as well as their phloem mobility. The bioassay results indicated that the target compounds possessed better activity against barnyard grass (Echinochloa crusgalli) than rape (Brassica campestris L.) at the concentration of 0.5 mmol/L. Compounds 3h and 3i, showed more than 70% control efficiency against barnyard grass, while less than 30% for rape. The compounds showed less impact on rice after spray treatment than in the germination test. Compounds 3i, 3j, and 3k showed excellently herbicidal activities against barnyard grass and low phytotoxicity to rice. Compound 3k showed 6.1% phytotoxicity to rice at a spray concentration of 0.25 mmol/L, better than fenoxaprop-P-ethyl (61.6%) at the same concentration. The selectivity results of the target compounds revealed that most of compounds obviously reduced phytotoxicity to rice while retaining herbicidal activity of barnyard grass. The herbicidal activity of compound 3d compared to FPE was increased by 50%, while its safety on rice was also increased by 50%. The concentration of the compounds in barnyard grass roots was higher than in rice roots, showing greater phloem mobility. In particular, the concentration of compound 3d on barnyard grass exhibited 142.72 mg/kg which was 3 times as much as Fenoxaprop, while its concentration on rice exhibited 3.65 mg/kg, the results revealed that the difference of phloem mobility might be the important reason for causing the selectivity.
Collapse
Affiliation(s)
- Xingliang Lu
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Chuan Qin
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Jinlong Cai
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Min Zhang
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Linhua Yu
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Junkai Li
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China; Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Qinglai Wu
- School of Agriculture, Yangtze University, Jingmi Road 88, Jingzhou 434025, China; Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China.
| |
Collapse
|
12
|
Zhu X, Zhang M, Xiao Y, Hsiang T, Hu C, Li J. Systemic fungicidal activity of phenazine-1-carboxylic acid-valine conjugate against tobacco sore shin and its translocation and accumulation in tobacco (Nicotiana tabacum L.). PEST MANAGEMENT SCIENCE 2022; 78:1117-1127. [PMID: 34796616 DOI: 10.1002/ps.6724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tobacco sore shin caused by Rhizoctonia solani Kühn is a major soil-borne fungal disease of tobacco, gradually causing infected stems to become thin and dry, leading to great losses to China's tobacco industry. Fungicides with phloem mobility are needed for application to foliage to effectively control root or vascular system pathogens. In this study, phenazine-1-carboxylic acid-valine conjugate (PCA-Val) with strong phloem mobility was tested for control of tobacco sore shin. In vitro fungicidal activity, systemicity, and in vivo efficacy of PCA-Val against R. solani in tobacco seedling were evaluated. RESULTS In vitro fungicidal activity of PCA-L-Val against R. solani was lower than that of PCA or PCA-D-Val, but the in vivo protective activity and curative activity of PCA-L-Val was the highest among these chemicals tested. The systemicity tests in tobacco seedlings revealed that PCA did not possess phloem mobility, while PCA-L-Val and PCA-D-Val exhibited strong phloem mobility and could be transported and accumulated in the lower part of the seedling as well as throughout the phloem. In addition, we also found that, just like reported hormone amino acid conjugates, PCA-L-Val could be hydrolyzed by tobacco seedlings, to release free PCA. CONCLUSIONS The current research results indicated that PCA-L-Val possess good phloem transport in tobacco and promising in vivo antifungal activity against R. solani, which can be used as a phloem-mobile fungicide against tobacco sore shin in production practice.
Collapse
Affiliation(s)
- Xiang Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Min Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Yongxin Xiao
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Ciyin Hu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Junkai Li
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| |
Collapse
|
13
|
Xiao Y, Zhang J, Li Y, Hsiang T, Zhang X, Zhu Y, Du X, Yin J, Li J. An efficient overexpression method for studying genes in Ricinus that transport vectorized agrochemicals. PLANT METHODS 2022; 18:11. [PMID: 35081982 PMCID: PMC8793271 DOI: 10.1186/s13007-022-00842-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant plasma membrane transporters play essential roles during the translocation of vectorized agrochemicals. Therefore, transporters associated with phloem loading of vectorized agrochemicals have drawn increasing attention. As a model system, castor bean (Ricinus communis L.) has been widely used to detect the phloem mobility of agrochemicals. However, there is still a lack of an efficient protocol for the Ricinus seedling model system that can be directly used to investigate the recognition and phloem loading functions of plasmalemma transporters toward vectorized agrochemicals. RESULTS Here, using vacuum infiltration strategy, we overexpressed the coding gene for enhanced green fluorescent protein (eGFP) in R. communis seedlings by Agrobacterium tumefaciens-mediated transformation system. Strong fluorescence signals were observed in leaves, demonstrating that exogenous genes can be successfully overexpressed in seedlings. Subsequently, gene expression time and vacuum infiltration parameters were optimized. Observation of fluorescence and qRT-PCR analysis showed that eGFP strength and expression level reached a peak at 72 h after overexpression in seedlings. Parameter optimization showed Agrobacterium concentration at OD600 = 1.2, and infiltration for 20 min (0.09 MPa), return to atmospheric pressure, and then infiltration for another 20 min, were the suitable transformation conditions. To test the application of vacuum agroinfiltration in directly examining the loading functions of plasma membrane transporters to vectorized agrochemicals in seedlings, two LHT (lysine/histidine transporter) genes, RcLHT1 and RcLHT7, were overexpressed. Subcellular localization showed the strong fluorescent signals of the fusion proteins RcLHT1-eGFP and RcLHT7-eGFP were observed on the cell membrane of mesophyll cells, and their relative expression levels determined by qRT-PCR were up-regulated 47- and 52-fold, respectively. Furthermore, the concentrations of L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate) in phloem sap collected from seedling sieve tubes were significantly increased 1.9- and 2.3-fold after overexpression of RcLHT1 and RcLHT7, respectively, implying their roles in recognition and phloem loading of L-Val-PCA. CONCLUSIONS We successfully constructed a transient expression system in Ricinus seedlings and laid the foundation for researchers to directly investigate the loading functions of plasma membrane transporters to vectorized agrochemicals in the Ricinus system.
Collapse
Affiliation(s)
- Yongxin Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jinying Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yiting Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xingping Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaoying Du
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Junkai Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
14
|
Zhu X, Chen S, Zheng Y, Zhang Y, Hsiang T, Huang R, Qi J, Gan T, Chang Y, Li J. Antifungal and insecticidal activities of rhein derivatives: synthesis, characterization and preliminary structure-activity relationship studies. Nat Prod Res 2021; 36:4140-4146. [PMID: 34533080 DOI: 10.1080/14786419.2021.1977804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There is an urgent need to replace highly polluting pesticides with environmentally friendly green pesticides of high efficiency and low toxicity, because of the growing concern for quality and safety of agricultural products. To discover new pesticides with diverse chemical structures from natural products, a series of rhein derivatives 3a-9b were designed, synthesized, and evaluated for their antifungal activity and insecticidal activity. The bioassay showed that some compounds exhibited moderate antifungal activity against Rhizoctonia solani, but lower activity against the other five pathogens. Surprisingly, most compounds displayed potent insecticidal activity against Spodoptera litura and Tetranychus cinnabarinus at a concentration of 2 μmol/mL. In particular, compounds 3a, 5a and 3 b exhibited potent insecticidal activities against S. litura at 72 h, with mortality rates of 100%, 100% and 92.1%, respectively, which were equivalent to that of the insecticide fipronil (100%). Their structure-activity relationships were also discussed. The findings of this experiment provide helpful research ideas for the development of these rhein derivatives as novel natural product-based pesticides in crop protection.
Collapse
Affiliation(s)
- Xiang Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Shunshun Chen
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Yan Zheng
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Yong Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Rong Huang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Jingwei Qi
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tian Gan
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Yue Chang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Junkai Li
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Xiong Y, Zhu X, Hu J, Wang Y, Du X, Li J, Wu Q. Effect of introducing amino acids into phenazine-1-carboxylic acid on phloem mobility. Nat Prod Res 2020; 35:4373-4379. [PMID: 31984778 DOI: 10.1080/14786419.2020.1716347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To develop new phenazine carboxylic acid derivatives with better phloem mobility, five novel 7-amino acid substituted phenazine-1-carboxylic acids were synthesised by introducing amino acids into PCA at the 7-position. The phloem mobility experiments in Ricinus communis seedlings showed that retaining the carboxyl group of PCA and conjugating amino acids to its phenazine ring can also endow PCA with phloem mobility. Comparing our previous research, we found the amino acids substituted at 7-position on phenazine ring of PCA could clearly enhance the phloem mobility of PCA than that of amino acids conjugated with carboxyl group. Especially, the phloem transport concentration of the compound 7-L-isoleucine substituted PCA (7d) was 21 times higher than PCA-L-isoleucine conjugate (8d). These data suggest that the introduction of amino acids at different structural sites on the phenazine ring could effectively enhance the phloem mobility of PCA and it is worth a further study.
Collapse
Affiliation(s)
- Yongtong Xiong
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Xiang Zhu
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Jinyu Hu
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Yunping Wang
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaoying Du
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Junkai Li
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Qinglai Wu
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| |
Collapse
|
16
|
Zheng XR, Zhang MJ, Shang XL, Fang SZ, Chen FM. Etiology of Cyclocarya paliurus Anthracnose in Jiangsu Province, China. FRONTIERS IN PLANT SCIENCE 2020; 11:613499. [PMID: 33537048 PMCID: PMC7847979 DOI: 10.3389/fpls.2020.613499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 05/13/2023]
Abstract
Cyclocarya paliurus is an extremely valuable and multifunctional tree species whose leaves have traditionally been used in used in medicine or as a medicinal tea in China. In recent years, anthracnose has been frequently observed on young leaves of C. paliurus in several nurseries located in Jiangsu Province, resulting in great yield and quality losses. To date, no information is available about the prevalence of C. paliurus anthracnose in China. The main purpose of the present study was to characterize the etiology of C. paliurus anthracnose. Phylogenetic analysis of the eight-loci concatenated dataset revealed that all 44 single-spore Colletotrichum isolates belonged to three species in the Colletotrichum gloeosporioides species complex, namely, Colletotrichum aenigma, Colletotrichum fructicola, and C. gloeosporioides sensu stricto. Phenotypic features, including the colony appearance and the morphology of conidia, appressoria, and ascospores, were consistent with the phylogenetic grouping. Virulence tests validated that the three Colletotrichum species could cause typical symptoms of anthracnose on C. paliurus leaves, similar to those observed in the field. The optimum mycelial growth temperature ranged from 25 to 30°C for all representative isolates, while C. gloeosporioides s. s. isolates exhibited greater tolerance to high temperature (40°C). Fungicide sensitivity assays indicated that all three Colletotrichum species were sensitive to tetramycin, which may be a potential alternative for the management of C. paliurus anthracnose. To our knowledge, this study provides the first report of C. aenigma, C. fructicola, and C. gloeosporioides s. s. causing C. paliurus anthracnose in China as well as in the world.
Collapse
|