1
|
Wang B, Chang J, Mapuranga J, Zhao C, Wu Y, Qi Y, Yuan S, Zhang N, Yang W. Effector Pt9226 from Puccinia triticina Presents a Virulence Role in Wheat Line TcLr15. Microorganisms 2024; 12:1723. [PMID: 39203565 PMCID: PMC11357290 DOI: 10.3390/microorganisms12081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Effectors are considered to be virulence factors secreted by pathogens, which play an important role during host-pathogen interactions. In this study, the candidate effector Pt9226 was cloned from genomic DNA of Puccinia triticina (Pt) pathotype THTT, and there were six exons and five introns in the 877 bp sequence, with the corresponding open reading frame of 447 bp in length, encoding a protein of 148 amino acids. There was only one polymorphic locus of I142V among the six Pt pathotypes analyzed. Bioinformatics analysis showed that Pt9226 had 96.46% homology with the hypothetical putative protein PTTG_26361 (OAV96349.1) in the Pt pathotype BBBD. RT-qPCR analyses showed that the expression of Pt9226 was induced after Pt inoculation, with a peak at 36 hpi, which was 20 times higher than the initial expression at 0 hpi, and another high expression was observed at 96 hpi. No secretory function was detected for the Pt9226-predicted signal peptide. The subcellular localization of Pt9226Δsp-GFP was found to be multiple, localized in the tobacco leaves. Pt9226 could inhibit programmed cell death (PCD) induced by BAX/INF1 in tobacco as well as DC3000-induced PCD in wheat. The transient expression of Pt9226 in 26 wheat near-isogenic lines (NILs) by a bacterial type III secretion system of Pseudomonas fluorescens EtHAn suppressed callose accumulation triggered by Ethan in wheat near-isogenic lines TcLr15, TcLr25, and TcLr30, and it also suppressed the ROS accumulation in TcLr15. RT-qPCR analysis showed that the expression of genes coded for pathogenesis-related protein TaPR1, TaPR2, and thaumatin-like protein TaTLP1, were suppressed, while the expression of PtEF-1α was induced, with 1.6 times at 72 h post inoculation, and TaSOD was induced only at 24 and 48 h compared with the control, when the Pt pathotype THTT was inoculated on a transient expression of Pt9226 in wheat TcLr15. Combining all above, Pt9226 acts as a virulence effector in the interaction between the Pt pathotype THTT and wheat.
Collapse
Affiliation(s)
- Bingxue Wang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Jiaying Chang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Johannes Mapuranga
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Chenguang Zhao
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Yanhui Wu
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Yue Qi
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shengliang Yuan
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Na Zhang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Wenxiang Yang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| |
Collapse
|
2
|
Schuster M, Schweizer G, Reißmann S, Happel P, Aßmann D, Rössel N, Güldener U, Mannhaupt G, Ludwig N, Winterberg S, Pellegrin C, Tanaka S, Vincon V, Presti LL, Wang L, Bender L, Gonzalez C, Vranes M, Kämper J, Seong K, Krasileva K, Kahmann R. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of Ustilago maydis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:250-263. [PMID: 38416124 DOI: 10.1094/mpmi-09-23-0139-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mariana Schuster
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Gabriel Schweizer
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Independent Data Lab UG, 80937 Munich, Germany
| | - Stefanie Reißmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Daniela Aßmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Rössel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Ulrich Güldener
- Deutsches Herzzentrum München, Technische Universität München, 80636 München, Germany
| | - Gertrud Mannhaupt
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Ludwig
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Research & Development, Weed Control Bayer AG, Crop Science Division, 65926 Frankfurt am Main, Germany
| | - Sarah Winterberg
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Clément Pellegrin
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Shigeyuki Tanaka
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Volker Vincon
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Libera Lo Presti
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lei Wang
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lena Bender
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Pharmaceutics and Biopharmaceutics, Phillips-University Marburg, 35037 Marburg, Germany
| | - Carla Gonzalez
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Miroslav Vranes
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Jörg Kämper
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
3
|
Blackman C, Subramaniam R. A Bioinformatic Guide to Identify Protein Effectors from Phytopathogens. Methods Mol Biol 2023; 2659:95-101. [PMID: 37249888 DOI: 10.1007/978-1-0716-3159-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytopathogenic fungi are a diverse and widespread group that has a significant detrimental impact on crops with an estimated annual average loss of 15% worldwide. Understanding the interaction between host plants and pathogenic fungi is critical to delineate underlying mechanisms of plant defense to mitigate agricultural losses. Fungal pathogens utilize suites of secreted molecules, called effectors, to modulate plant metabolism and immune response to overcome host defenses and promote colonization. Effectors come in many flavors including proteinaceous products, small RNAs, and metabolites such as mycotoxins. This review will focus on methods for identifying protein effectors from fungi. Excellent reviews have been published to identify secondary metabolites and small RNAs from fungi and therefore will not be part of this review.
Collapse
Affiliation(s)
- Christopher Blackman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
5
|
Depotter JRL, Ökmen B, Ebert MK, Beckers J, Kruse J, Thines M, Doehlemann G. High Nucleotide Substitution Rates Associated with Retrotransposon Proliferation Drive Dynamic Secretome Evolution in Smut Pathogens. Microbiol Spectr 2022; 10:e0034922. [PMID: 35972267 PMCID: PMC9603552 DOI: 10.1128/spectrum.00349-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Transposable elements (TEs) play a pivotal role in shaping diversity in eukaryotic genomes. The covered smut pathogen on barley, Ustilago hordei, encountered a recent genome expansion. Using long reads, we assembled genomes of 6 U. hordei strains and 3 sister species, to study this genome expansion. We found that larger genome sizes can mainly be attributed to a higher genome fraction of long terminal repeat retrotransposons (LTR-RTs). In the studied smut genomes, LTR-RTs fractions are the largest in U. hordei and are positively correlated with the mating-type locus sizes, which is up to ~560 kb in U. hordei. Furthermore, LTR-RTs were found to be associated with higher nucleotide substitution levels, as these occur in specific genome regions of smut species with a recent LTR-RT proliferation. Moreover, genes in genome regions with higher nucleotide substitution levels generally reside closer to LTR-RTs than other genome regions. Genome regions with many nucleotide substitutions encountered an especially high fraction of CG substitutions, which is not observed for LTR-RT sequences. The high nucleotide substitution levels particularly accelerate the evolution of secretome genes, as their more accessory nature results in substitutions that often lead to amino acid alterations. IMPORTANCE Genomic alteration can be generated through various means, in which transposable elements (TEs) can play a pivotal role. Their mobility causes mutagenesis in itself and can disrupt the function of the sequences they insert into. They also impact genome evolution as their repetitive nature facilitates nonhomologous recombination. Furthermore, TEs have been linked to specific epigenetic genome organizations. We report a recent TE proliferation in the genome of the barley covered smut fungus, Ustilago hordei. This proliferation is associated with a distinct nucleotide substitution regime that has a higher rate and a higher fraction of CG substitutions. This different regime shapes the evolution of genes in subjected genome regions. We hypothesize that TEs may influence the error-rate of DNA polymerase in a hitherto unknown fashion.
Collapse
Affiliation(s)
- J. R. L. Depotter
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - B. Ökmen
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - M. K. Ebert
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - J. Beckers
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - J. Kruse
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - G. Doehlemann
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Miltenburg MG, Bonner C, Hepworth S, Huang M, Rampitsch C, Subramaniam R. Proximity-dependent biotinylation identifies a suite of candidate effector proteins from Fusarium graminearum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:369-382. [PMID: 35986640 DOI: 10.1111/tpj.15949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Fusarium graminearum is a fungal pathogen that causes Fusarium head blight in cereal crops. The identification of proteins secreted from pathogens to overcome plant defenses and cause disease, collectively known as effectors, can reveal the etiology of a disease process. Proximity-dependent biotin identification (BioID) was used to identify potential effector proteins secreted in planta by F. graminearum during the infection of Arabidopsis. Mass spectrometry analysis of streptavidin affinity-purified proteins revealed over 300 proteins from F. graminearum, of which 62 were candidate effector proteins (CEPs). An independent analysis of secreted proteins from axenic cultures of F. graminearum showed a 42% overlap with CEPs, thereby assuring confidence in the BioID methodology. The analysis also revealed that 19 out of 62 CEPs (approx. 30%) had been previously characterized with virulence function in fungi. The functional characterization of additional CEPs was undertaken through deletion analysis by the CRISPR/Cas9 method, and by overexpression into Triticum aestivum (wheat) leaves by the Ustilago hordei delivery system. Deletion studies of 12 CEPs confirmed the effector function of three previously characterized CEPs and validated the function of another four CEPs on wheat inflorescence or vegetative tissues. Lastly, overexpression in wheat showed that all seven CEPs enhanced resistance against the bacterial pathogen Pseudomonas syringae DC3000.
Collapse
Affiliation(s)
- Mary G Miltenburg
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Ottawa Research and Development Centre, Agriculture Canada, 960 Carling Avenue, Ottawa, ON, K1S 5B6, Canada
| | - Christopher Bonner
- Ottawa Research and Development Centre, Agriculture Canada, 960 Carling Avenue, Ottawa, ON, K1S 5B6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Shelley Hepworth
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Mei Huang
- Morden Research and Development Centre, Agriculture Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Christof Rampitsch
- Morden Research and Development Centre, Agriculture Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Ottawa Research and Development Centre, Agriculture Canada, 960 Carling Avenue, Ottawa, ON, K1S 5B6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
7
|
Indirect recognition of pathogen effectors by NLRs. Essays Biochem 2022; 66:485-500. [PMID: 35535995 DOI: 10.1042/ebc20210097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
To perceive pathogen threats, plants utilize both plasma membrane-localized and intracellular receptors. Nucleotide-binding domain leucine-rich repeat containing (NLR) proteins are key receptors that can recognize pathogen-derived intracellularly delivered effectors and activate downstream defense. Exciting recent findings have propelled our understanding of the various recognition and activation mechanisms of plant NLRs. Some NLRs directly bind to effectors, but others can perceive effector-induced changes on targeted host proteins (guardees), or non-functional host protein mimics (decoys). Such guarding strategies are thought to afford the host more durable resistance to quick-evolving and diverse pathogens. Here, we review classic and recent examples of indirect effector recognition by NLRs and discuss strategies for the discovery and study of new NLR-decoy/guardee systems. We also provide a perspective on how executor NLRs and helper NLRs (hNLRs) provide recognition for a wider range of effectors through sensor NLRs and how this can be considered an expanded form of indirect recognition. Furthermore, we summarize recent structural findings on NLR activation and resistosome formation upon indirect recognition. Finally, we discuss existing and potential applications that harness NLR indirect recognition for plant disease resistance and crop resilience.
Collapse
|
8
|
Short Linear Motifs (SLiMs) in “Core” RxLR Effectors of
Phytophthora parasitica
var.
nicotianae
: a Case of PpRxLR1 Effector. Microbiol Spectr 2022; 10:e0177421. [PMID: 35404090 PMCID: PMC9045269 DOI: 10.1128/spectrum.01774-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oomycetes of the genus Phytophthora encompass several of the most successful plant pathogens described to date. The success of infection by Phytophthora species is attributed to the pathogens’ ability to secrete effector proteins that alter the host’s physiological processes. Structural analyses of effector proteins mainly from bacterial and viral pathogens have revealed the presence of intrinsically disordered regions that host short linear motifs (SLiMs). These motifs play important biological roles by facilitating protein-protein interactions as well as protein translocation. Nonetheless, SLiMs in Phytophthora species RxLR effectors have not been investigated previously and their roles remain unknown. Using a bioinformatics pipeline, we identified 333 candidate RxLR effectors in the strain INRA 310 of Phytophthora parasitica. Of these, 71 (21%) were also found to be present in 10 other genomes of P. parasitica, and hence, these were designated core RxLR effectors (CREs). Within the CRE sequences, the N terminus exhibited enrichment in intrinsically disordered regions compared to the C terminus, suggesting a potential role of disorder in effector translocation. Although the disorder content was reduced in the C-terminal regions, it is important to mention that most SLiMs were in this terminus. PpRxLR1 is one of the 71 CREs identified in this study, and its genes encode a 6-amino acid (aa)-long SLiM at the C terminus. We showed that PpRxLR1 interacts with several host proteins that are implicated in defense. Structural analysis of this effector using homology modeling revealed the presence of potential ligand-binding sites. Among key residues that were predicted to be crucial for ligand binding, L102 and Y106 were of interest since they form part of the 6-aa-long PpRxLR1 SLiM. In silico substitution of these two residues to alanine was predicted to have a significant effect on both the function and the structure of PpRxLR1 effector. Molecular docking simulations revealed possible interactions between PpRxLR1 effector and ubiquitin-associated proteins. The ubiquitin-like SLiM carried in this effector was shown to be a potential mediator of these interactions. Further studies are required to validate and elucidate the underlying molecular mechanism of action. IMPORTANCE The continuous gain and loss of RxLR effectors makes the control of Phytophthora spp. difficult. Therefore, in this study, we endeavored to identify RxLR effectors that are highly conserved among species, also known as “core” RxLR effectors (CREs). We reason that these highly conserved effectors target conserved proteins or processes; thus, they can be harnessed in breeding for durable resistance in plants. To further understand the mechanisms of action of CREs, structural dissection of these proteins is crucial. Intrinsically disordered regions (IDRs) that do not adopt a fixed, three-dimensional fold carry short linear motifs (SLiMs) that mediate biological functions of proteins. The presence and potential role of these SLiMs in CREs of Phytophthora spp. have been overlooked. To our knowledge, we have effectively identified CREs as well as SLiMs with the potential of promoting effector virulence. Together, this work has advanced our comprehension of Phytophthora RxLR effector function and may facilitate the development of innovative and effective control strategies.
Collapse
|
9
|
Clare SJ, Duellman KM, Richards JK, Poudel RS, Merrick LF, Friesen TL, Brueggeman RS. Association mapping reveals a reciprocal virulence/avirulence locus within diverse US Pyrenophora teres f. maculata isolates. BMC Genomics 2022; 23:285. [PMID: 35397514 PMCID: PMC8994276 DOI: 10.1186/s12864-022-08529-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Spot form net blotch (SFNB) caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm) is an economically important disease of barley that also infects wheat. Using genetic analysis to characterize loci in Ptm genomes associated with virulence or avirulence is an important step to identify pathogen effectors that determine compatible (virulent) or incompatible (avirulent) interactions with cereal hosts. Association mapping (AM) is a powerful tool for detecting virulence loci utilizing phenotyping and genotyping data generated for natural populations of plant pathogenic fungi.
Results
Restriction-site associated DNA genotyping-by-sequencing (RAD-GBS) was used to generate 4,836 single nucleotide polymorphism (SNP) markers for a natural population of 103 Ptm isolates collected from Idaho, Montana and North Dakota. Association mapping analyses were performed utilizing the genotyping and infection type data generated for each isolate when challenged on barley seedlings of thirty SFNB differential barley lines. A total of 39 marker trait associations (MTAs) were detected across the 20 barley lines corresponding to 30 quantitative trait loci (QTL); 26 novel QTL and four that were previously mapped in Ptm biparental populations. These results using diverse US isolates and barley lines showed numerous barley-Ptm genetic interactions with seven of the 30 Ptm virulence/avirulence loci falling on chromosome 3, suggesting that it is a reservoir of diverse virulence effectors. One of the loci exhibited reciprocal virulence/avirulence with one haplotype predominantly present in isolates collected from Idaho increasing virulence on barley line MXB468 and the alternative haplotype predominantly present in isolates collected from North Dakota and Montana increasing virulence on barley line CI9819.
Conclusions
Association mapping provided novel insight into the host pathogen genetic interactions occurring in the barley-Ptm pathosystem. The analysis suggests that chromosome 3 of Ptm serves as an effector reservoir in concordance with previous reports for Pyrenophora teres f. teres, the causal agent of the closely related disease net form net blotch. Additionally, these analyses identified the first reported case of a reciprocal pathogen virulence locus. However, further investigation of the pathosystem is required to determine if multiple genes or alleles of the same gene are responsible for this genetic phenomenon.
Collapse
|
10
|
Receptor-mediated nonhost resistance in plants. Essays Biochem 2022; 66:435-445. [PMID: 35388900 PMCID: PMC9528085 DOI: 10.1042/ebc20210080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023]
Abstract
Nonhost resistance (NHR) is a plant immune response that prevents many microorganisms in the plant's environment from pathogenicity against the plant. Since successful pathogens have adapted to overcome the immune systems of their host, the durable nature of NHR has potential in the management of plant disease. At present, there is genetic and molecular evidence that the underlying molecular mechanisms of NHR are similar to the plant immune responses that occur in host plants following infection by adapted pathogens. We consider that the molecular basis of NHR is multilayered, conferred by physicochemical barriers and defense responses that are induced following molecular recognition events. Moreover, the relative contribution of each component may depend on evolutionary distances between host and nonhost plants of given pathogen species. This mini-review has focused on the current knowledge of plant NHR, especially the recognition of non-adapted pathogens by nonhost plants at the cellular level. Recent gains in understanding the roles of plasma membrane-localized pattern-recognition receptors (PRRs) and the cytoplasmic nucleotide-binding leucine-rich repeat receptors (NLRs) associated with these processes, as well as the genes involved, are summarized. Finally, we provide a theoretical perspective on the durability of receptor-mediated NHR and its practical potential as an innovative strategy for crop protection against pathogens.
Collapse
|
11
|
Plant chitinases and their role in plant defense – a comprehensive review. Enzyme Microb Technol 2022; 159:110055. [DOI: 10.1016/j.enzmictec.2022.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
|
12
|
Rocher F, Alouane T, Philippe G, Martin ML, Label P, Langin T, Bonhomme L. Fusarium graminearum Infection Strategy in Wheat Involves a Highly Conserved Genetic Program That Controls the Expression of a Core Effectome. Int J Mol Sci 2022; 23:ijms23031914. [PMID: 35163834 PMCID: PMC8836836 DOI: 10.3390/ijms23031914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Fusarium graminearum, the main causal agent of Fusarium Head Blight (FHB), is one of the most damaging pathogens in wheat. Because of the complex organization of wheat resistance to FHB, this pathosystem represents a relevant model to elucidate the molecular mechanisms underlying plant susceptibility and to identify their main drivers, the pathogen’s effectors. Although the F. graminearum catalog of effectors has been well characterized at the genome scale, in planta studies are needed to confirm their effective accumulation in host tissues and to identify their role during the infection process. Taking advantage of the genetic variability from both species, a RNAseq-based profiling of gene expression was performed during an infection time course using an aggressive F. graminearum strain facing five wheat cultivars of contrasting susceptibility as well as using three strains of contrasting aggressiveness infecting a single susceptible host. Genes coding for secreted proteins and exhibiting significant expression changes along infection progress were selected to identify the effector gene candidates. During its interaction with the five wheat cultivars, 476 effector genes were expressed by the aggressive strain, among which 91% were found in all the infected hosts. Considering three different strains infecting a single susceptible host, 761 effector genes were identified, among which 90% were systematically expressed in the three strains. We revealed a robust F. graminearum core effectome of 357 genes expressed in all the hosts and by all the strains that exhibited conserved expression patterns over time. Several wheat compartments were predicted to be targeted by these putative effectors including apoplast, nucleus, chloroplast and mitochondria. Taken together, our results shed light on a highly conserved parasite strategy. They led to the identification of reliable key fungal genes putatively involved in wheat susceptibility to F. graminearum, and provided valuable information about their putative targets.
Collapse
Affiliation(s)
- Florian Rocher
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Tarek Alouane
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Géraldine Philippe
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Marie-Laure Martin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, 91190 Gif sur Yvette, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91190 Gif sur Yvette, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Philippe Label
- UMR 547 Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant, INRAE, Université Clermont Auvergne, 63178 Aubière, France;
| | - Thierry Langin
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
- Correspondence:
| |
Collapse
|
13
|
Chepsergon J, Motaung TE, Moleleki LN. "Core" RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Virulence 2021; 12:1921-1935. [PMID: 34304703 PMCID: PMC8516161 DOI: 10.1080/21505594.2021.1948277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Phytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "core" RxLR effectors (CREs). Currently, there is a considerable number of CREs that have been identified in oomycetes. Functional characterization of these CREs propose their virulence role with the potential of targeting central cellular processes that are conserved across diverse plant species. We reason that effectors that are highly conserved and recognized by the host, could be harnessed in engineering plants for durable as well as broad-spectrum resistance.
Collapse
Affiliation(s)
- Jane Chepsergon
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Thabiso E. Motaung
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
14
|
Boufleur TR, Massola Júnior NS, Tikami Í, Sukno SA, Thon MR, Baroncelli R. Identification and Comparison of Colletotrichum Secreted Effector Candidates Reveal Two Independent Lineages Pathogenic to Soybean. Pathogens 2021; 10:pathogens10111520. [PMID: 34832675 PMCID: PMC8625359 DOI: 10.3390/pathogens10111520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum is one of the most important plant pathogenic genus of fungi due to its scientific and economic impact. A wide range of hosts can be infected by Colletotrichum spp., which causes losses in crops of major importance worldwide, such as soybean. Soybean anthracnose is mainly caused by C. truncatum, but other species have been identified at an increasing rate during the last decade, becoming one of the most important limiting factors to soybean production in several regions. To gain a better understanding of the evolutionary origin of soybean anthracnose, we compared the repertoire of effector candidates of four Colletotrichum species pathogenic to soybean and eight species not pathogenic. Our results show that the four species infecting soybean belong to two lineages and do not share any effector candidates. These results strongly suggest that two Colletotrichum lineages have acquired the capability to infect soybean independently. This study also provides, for each lineage, a set of candidate effectors encoding genes that may have important roles in pathogenicity towards soybean offering a new resource useful for further research on soybean anthracnose management.
Collapse
Affiliation(s)
- Thaís R. Boufleur
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; (N.S.M.J.); (Í.T.)
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Salamanca, Spain; (S.A.S.); (M.R.T.)
- Correspondence: (T.R.B.); (R.B.)
| | - Nelson S. Massola Júnior
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; (N.S.M.J.); (Í.T.)
| | - Ísis Tikami
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; (N.S.M.J.); (Í.T.)
| | - Serenella A. Sukno
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Salamanca, Spain; (S.A.S.); (M.R.T.)
| | - Michael R. Thon
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Salamanca, Spain; (S.A.S.); (M.R.T.)
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, 37185 Villamayor, Salamanca, Spain; (S.A.S.); (M.R.T.)
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, 40126 Bologna, Italy
- Correspondence: (T.R.B.); (R.B.)
| |
Collapse
|
15
|
Mutiga SK, Rotich F, Were VM, Kimani JM, Mwongera DT, Mgonja E, Onaga G, Konaté K, Razanaboahirana C, Bigirimana J, Ndayiragije A, Gichuhi E, Yanoria MJ, Otipa M, Wasilwa L, Ouedraogo I, Mitchell T, Wang GL, Correll JC, Talbot NJ. Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. PLANT DISEASE 2021; 105:2749-2770. [PMID: 34253045 DOI: 10.1094/pdis-03-21-0593-fe] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.
Collapse
Affiliation(s)
- Samuel K Mutiga
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Felix Rotich
- Department of Agricultural Resource Management, University of Embu, Embu, Kenya
| | - Vincent M Were
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| | - John M Kimani
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - David T Mwongera
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Geoffrey Onaga
- National Agricultural Research Organization, Kampala, Uganda
| | - Kadougoudiou Konaté
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | | | | | | | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Miriam Otipa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Ibrahima Ouedraogo
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | - Thomas Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| |
Collapse
|
16
|
Zuo W, Depotter JRL, Gupta DK, Thines M, Doehlemann G. Cross-species analysis between the maize smut fungi Ustilago maydis and Sporisorium reilianum highlights the role of transcriptional change of effector orthologs for virulence and disease. THE NEW PHYTOLOGIST 2021; 232:719-733. [PMID: 34270791 DOI: 10.1111/nph.17625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The constitution and regulation of effector repertoires shape host-microbe interactions. Ustilago maydis and Sporisorium reilianum are two closely related smut fungi, which both infect maize but cause distinct disease symptoms. Understanding how effector orthologs are regulated in these two pathogens can therefore provide insights into the evolution of different infection strategies. We tracked the infection progress of U. maydis and S. reilianum in maize leaves and used two distinct infection stages for cross-species RNA-sequencing analyses. We identified 207 of 335 one-to-one effector orthologs as differentially regulated during host colonization, which might reflect the distinct disease development strategies. Using CRISPR-Cas9-mediated gene conversion, we identified two differentially expressed effector orthologs with conserved function between two pathogens. Thus, differential expression of functionally conserved genes might contribute to species-specific adaptation and symptom development. Interestingly, another differentially expressed orthogroup (UMAG_05318/Sr10075) showed divergent protein function, providing a possible case for neofunctionalization. Collectively, we demonstrated that the diversification of effector genes in related pathogens can be caused both by alteration on the transcriptional level and through functional diversification of the encoded effector proteins.
Collapse
Affiliation(s)
- Weiliang Zuo
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47a, Cologne, 50674, Germany
| | - Jasper R L Depotter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47a, Cologne, 50674, Germany
| | - Deepak K Gupta
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, 60325, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, 60325, Germany
- Integrative Fungal Research Cluster (IPF), Frankfurt am Main, 60325, Germany
| | - Marco Thines
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, 60325, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, 60325, Germany
- Integrative Fungal Research Cluster (IPF), Frankfurt am Main, 60325, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47a, Cologne, 50674, Germany
| |
Collapse
|
17
|
Figueroa M, Ortiz D, Henningsen EC. Tactics of host manipulation by intracellular effectors from plant pathogenic fungi. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102054. [PMID: 33992840 DOI: 10.1016/j.pbi.2021.102054] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Fungal pathogens can secrete hundreds of effectors, some of which are known to promote host susceptibility. This biological complexity, together with the lack of genetic tools in some fungi, presents a substantial challenge to develop a broad picture of the mechanisms these pathogens use for host manipulation. Nevertheless, recent advances in understanding individual effector functions are beginning to flesh out our view of fungal pathogenesis. This review discusses some of the latest findings that illustrate how effectors from diverse species use similar strategies to modulate plant physiology to their advantage. We also summarize recent breakthroughs in the identification of effectors from challenging systems, like obligate biotrophs, and emerging concepts such as the 'iceberg model' to explain how the activation of plant immunity can be turned off by effectors with suppressive activity.
Collapse
Affiliation(s)
- Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Diana Ortiz
- National Research Institute for Agriculture, Food and Environment, Unit of Genetics and Breeding of Fruit and Vegetables, Domaine St Maurice, CS 60094, F-84143 Montfavet, France
| | - Eva C Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
18
|
Veneault-Fourrey C, Rep M. Quantitative resistance linked to late effectors. THE NEW PHYTOLOGIST 2021; 231:1301-1303. [PMID: 34107082 DOI: 10.1111/nph.17462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Claire Veneault-Fourrey
- Laboratory of Excellence ARBRE, INRAE, UMR1136 Trees-Microbes Interactions, University of Lorraine, Nancy, F-54000, France
| | - Martijn Rep
- Swammerdam Institute for Life Sciences, Molecular Plant Pathology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| |
Collapse
|
19
|
Singh NK, Badet T, Abraham L, Croll D. Rapid sequence evolution driven by transposable elements at a virulence locus in a fungal wheat pathogen. BMC Genomics 2021; 22:393. [PMID: 34044766 PMCID: PMC8157644 DOI: 10.1186/s12864-021-07691-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plant pathogens cause substantial crop losses in agriculture production and threaten food security. Plants evolved the ability to recognize virulence factors and pathogens have repeatedly escaped recognition due rapid evolutionary change at pathogen virulence loci (i.e. effector genes). The presence of transposable elements (TEs) in close physical proximity of effector genes can have important consequences for gene regulation and sequence evolution. Species-wide investigations of effector gene loci remain rare hindering our ability to predict pathogen evolvability. RESULTS Here, we performed genome-wide association studies (GWAS) on a highly polymorphic mapping population of 120 isolates of Zymoseptoria tritici, the most damaging pathogen of wheat in Europe. We identified a major locus underlying significant variation in reproductive success of the pathogen and damage caused on the wheat cultivar Claro. The most strongly associated locus is intergenic and flanked by genes encoding a predicted effector and a serine-type endopeptidase. The center of the locus contained a highly dynamic region consisting of multiple families of TEs. Based on a large global collection of assembled genomes, we show that the virulence locus has undergone substantial recent sequence evolution. Large insertion and deletion events generated length variation between the flanking genes by a factor of seven (5-35 kb). The locus showed also strong signatures of genomic defenses against TEs (i.e. RIP) contributing to the rapid diversification of the locus. CONCLUSIONS In conjunction, our work highlights the power of combining GWAS and population-scale genome analyses to investigate major effect loci in pathogens.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Leen Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
20
|
Tamayo-Ordóñez MC, Contreras-Esquivel JC, Ayil-Gutiérrez BA, De la Cruz-Arguijo EA, Tamayo-Ordóñez FA, Ríos-González LJ, Tamayo-Ordóñez YJ. Interspecific evolutionary relationships of alpha-glucuronidase in the genus Aspergillus. Fungal Biol 2021; 125:560-575. [PMID: 34140152 DOI: 10.1016/j.funbio.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022]
Abstract
The increased availability and production of lignocellulosic agroindustrial wastes has originated proposals for their use as raw material to obtain biofuels (ethanol and biodiesel) or derived products. However, for biomass generated from lignocellulosic residues to be successfully degraded, in most cases it requires a physical (thermal), chemical, or enzymatic pretreatment before the application of microbial or enzymatic fermentation technologies (biocatalysis). In the context of enzymatic technologies, fungi have demonstrated to produce enzymes capable of degrading polysaccharides like cellulose, hemicelluloses and pectin. Because of this ability for degrading lignocellulosic material, researchers are making efforts to isolate and identify fungal enzymes that could have a better activity for the degradation of plant cell walls and agroindustrial biomass. We performed an in silico analysis of alpha-glucoronidase in 82 accessions of the genus Aspergillus. The constructed dendrograms of amino acid sequences defined the formation of 6 groups (I, II, III, IV, V, and VI), which demonstrates the high diversity of the enzyme. Despite this ample divergence between enzyme groups, our 3D structure modeling showed both conservation and differences in amino acid residues participating in enzyme-substrate binding, which indicates the possibility that some enzymes are functionally specialized for the specific degradation of a substrate depending on the genetics of each species in the genus and the condition of the habitat where they evolved. The identification of alpha-glucuronidase isoenzymes would allow future use of genetic engineering and biocatalysis technologies aimed at specific production of the enzyme for its use in biotransformation.
Collapse
Affiliation(s)
- M C Tamayo-Ordóñez
- Laboratorio de Ingeniería Genética, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico
| | - J C Contreras-Esquivel
- Laboratorio de Glicobiotecnologia Aplicada, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico
| | - B A Ayil-Gutiérrez
- CONACYT- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Biotecnologia Vegetal. Blvd. del Maestro, s/n, Esq. Elías Piña, Reynosa, 88710, Mexico
| | - E A De la Cruz-Arguijo
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro, s/n, Esq. Elías Piña, Reynosa, 88710, Mexico
| | - F A Tamayo-Ordóñez
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 No. 4 por Av. Concordia, Campus Principal, 24180, Ciudad del Carmen, Campeche, Mexico
| | - L J Ríos-González
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing Cárdenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico
| | - Y J Tamayo-Ordóñez
- Estancia Posdoctoral Nacional-CONACyT, Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cardenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico.
| |
Collapse
|
21
|
Abstract
Plant pathogens can adapt to quantitative resistance, eroding its effectiveness. The aim of this work was to reveal the genomic basis of adaptation to such a resistance in populations of the fungus Pseudocercospora fijiensis, a major devastating pathogen of banana, by studying convergent adaptation on different cultivars. Samples from P. fijiensis populations showing a local adaptation pattern on new banana hybrids with quantitative resistance were compared, based on a genome scan approach, with samples from traditional and more susceptible cultivars in Cuba and the Dominican Republic. Whole-genome sequencing of pools of P. fijiensis isolates (pool-seq) sampled from three locations per country was conducted according to a paired population design. The findings of different combined analyses highly supported the existence of convergent adaptation on the study cultivars between locations within but not between countries. Five to six genomic regions involved in this adaptation were detected in each country. An annotation analysis and available biological data supported the hypothesis that some genes within the detected genomic regions may play a role in quantitative pathogenicity, including gene regulation. The results suggested that the genetic basis of fungal adaptation to quantitative plant resistance is at least oligogenic, while highlighting the existence of specific host-pathogen interactions for this kind of resistance.IMPORTANCE Understanding the genetic basis of pathogen adaptation to quantitative resistance in plants has a key role to play in establishing durable strategies for resistance deployment. In this context, a population genomic approach was developed for a major plant pathogen (the fungus Pseudocercospora fijiensis causing black leaf streak disease of banana) whereby samples from new resistant banana hybrids were compared with samples from more susceptible conventional cultivars in two countries. A total of 11 genomic regions for which there was strong evidence of selection by quantitative resistance were detected. An annotation analysis and available biological data supported the hypothesis that some of the genes within these regions may play a role in quantitative pathogenicity. These results suggested a polygenic basis of quantitative pathogenicity in this fungal pathogen and complex molecular plant-pathogen interactions in quantitative disease development involving several genes on both sides.
Collapse
|
22
|
Duke SO. A Journal of the Plague Year. PEST MANAGEMENT SCIENCE 2021; 77:9-11. [PMID: 33289934 DOI: 10.1002/ps.6175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
23
|
Depotter JRL, Zuo W, Hansen M, Zhang B, Xu M, Doehlemann G. Effectors with Different Gears: Divergence of Ustilago maydis Effector Genes Is Associated with Their Temporal Expression Pattern during Plant Infection. J Fungi (Basel) 2020; 7:16. [PMID: 33383948 PMCID: PMC7823823 DOI: 10.3390/jof7010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
Plant pathogens secrete a variety of effector proteins that enable host colonization but are also typical pathogen detection targets for the host immune system. Consequently, effector genes encounter high selection pressures, which typically makes them fast evolving. The corn smut pathogen Ustilago maydis has an effector gene repertoire with a dynamic expression across the different disease stages. We determined the amino acid divergence of U. maydis effector candidates with Sporisorium reilianum orthologs, a close relative of U. maydis. Intriguingly, there are two distinct groups of effector candidates, ones with a respective conserved and diverged protein evolution. Conservatively evolving effector genes especially have their peak expression during the (pre-)penetration stages of the disease cycle. In contrast, expression of divergently evolving effector genes generally peaks during fungal proliferation within the host. To test if this interspecific effector diversity corresponds to intraspecific diversity, we sampled and sequenced a diverse collection of U. maydis strains from the most important maize breeding and production regions in China. Effector candidates with a diverged interspecific evolution had more intraspecific amino acid variation than candidates with a conserved evolution. In conclusion, we highlight diversity in evolution within the U. maydis effector repertoire with dynamically and conservatively evolving members.
Collapse
Affiliation(s)
- Jasper R. L. Depotter
- Institute for Plant Sciences, University of Cologne, CEPLAS, D-50674 Cologne, Germany; (J.R.L.D.); (W.Z.); (M.H.)
| | - Weiliang Zuo
- Institute for Plant Sciences, University of Cologne, CEPLAS, D-50674 Cologne, Germany; (J.R.L.D.); (W.Z.); (M.H.)
| | - Maike Hansen
- Institute for Plant Sciences, University of Cologne, CEPLAS, D-50674 Cologne, Germany; (J.R.L.D.); (W.Z.); (M.H.)
| | - Boqi Zhang
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China; (B.Z.); (M.X.)
| | - Mingliang Xu
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China; (B.Z.); (M.X.)
| | - Gunther Doehlemann
- Institute for Plant Sciences, University of Cologne, CEPLAS, D-50674 Cologne, Germany; (J.R.L.D.); (W.Z.); (M.H.)
| |
Collapse
|
24
|
Neik TX, Amas J, Barbetti M, Edwards D, Batley J. Understanding Host-Pathogen Interactions in Brassica napus in the Omics Era. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1336. [PMID: 33050509 PMCID: PMC7599536 DOI: 10.3390/plants9101336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
Collapse
Affiliation(s)
- Ting Xiang Neik
- Sunway College Kuala Lumpur, Bandar Sunway 47500, Selangor, Malaysia;
| | - Junrey Amas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Martin Barbetti
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| |
Collapse
|
25
|
Kanja C, Hammond‐Kosack KE. Proteinaceous effector discovery and characterization in filamentous plant pathogens. MOLECULAR PLANT PATHOLOGY 2020; 21:1353-1376. [PMID: 32767620 PMCID: PMC7488470 DOI: 10.1111/mpp.12980] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 07/05/2020] [Indexed: 05/26/2023]
Abstract
The complicated interplay of plant-pathogen interactions occurs on multiple levels as pathogens evolve to constantly evade the immune responses of their hosts. Many economically important crops fall victim to filamentous pathogens that produce small proteins called effectors to manipulate the host and aid infection/colonization. Understanding the effector repertoires of pathogens is facilitating an increased understanding of the molecular mechanisms underlying virulence as well as guiding the development of disease control strategies. The purpose of this review is to give a chronological perspective on the evolution of the methodologies used in effector discovery from physical isolation and in silico predictions, to functional characterization of the effectors of filamentous plant pathogens and identification of their host targets.
Collapse
Affiliation(s)
- Claire Kanja
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
26
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|