1
|
Zhang S, Li H, Wang X, Sun P, Zhang H, Yin W, Fan K, Yang H, Zhang Z, Zhong J, Sun Y, Sun N. The effect and mechanism of sanguinarine against PCV2 based on the analysis of network pharmacology and TMT quantitative proteomics. Int J Biol Macromol 2025; 296:139767. [PMID: 39800034 DOI: 10.1016/j.ijbiomac.2025.139767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Porcine circovirus type 2 (PCV2) is highly prevalent in nature and serves as the primary pathogen responsible for porcine circovirus-associated disease (PCVD/PCVAD), posing a significant threat to pig production. Currently, vaccination alone could not provide the complete protection for PCV2 infection. The active ingredients of traditional Chinese medicine have shown a positive effect in combating viral infections. This study employed tandem mass tag (TMT) labeled proteomic analyses and network pharmacology to examine the effect and mechanism of sanguinarine against PCV2. IFIH1, IFITM1, p38α, and JNK were identified as the key targets of sanguinarine against PCV2 based on proteomics and network pharmacology. Using PCV2-infected PK-15 cells, it was discovered that sanguinarine inhibited the expression of the PCV2 CAP gene by upregulating IFIH1, thereby promoting STAT1 phosphorylation and activating MAVS expression. This, in turn, facilitated IRF3 phosphorylation, leading to increase IFITM1 expression. Simultaneously, sanguinarine suppressed the expression of the PCV2 CAP gene by inhibiting the expression of p38α, JNK, and p-JNK protein. In conclusion, the results of this study suggest that sanguinarine exerts anti-PCV2 effects through different targets and pathways, which lays the foundation for the subsequent development of new anti-PCV2 veterinary drugs.
Collapse
Affiliation(s)
- Sihuan Zhang
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hongquan Li
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Xuzhen Wang
- Shanxi Animal Husbandry and Veterinary School, Taiyuan 030024, Shanxi, China
| | - Panpan Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hua Zhang
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Wei Yin
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Huizhen Yang
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Zhenbiao Zhang
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jia Zhong
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yaogui Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Na Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
2
|
Yang Y, Hu L, Chen T, Zhang L, Wang D, Chen Z. Chemical and Biological Investigations of Antiviral Agents Against Plant Viruses Conducted in China in the 21st Century. Genes (Basel) 2024; 15:1654. [PMID: 39766921 PMCID: PMC11728098 DOI: 10.3390/genes15121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Research into the biology of plant viruses, their mechanisms of pathogenicity, and the induction of host resistance has laid a solid foundation for the discovery of antiviral agents and their targets and the development of effective control technologies. Additionally, recent advancements in fields such as chemical biology, cheminformatics, bioinformatics, and synthetic biology have provided valuable methods and tools for the design of antiviral drugs, the synthesis of drug molecules, assessment of their activity, and investigation of their modes of action. Compared with drug development for human viral diseases, the control of plant viral diseases presents greater challenges, including the cost-benefit of agents, simplification of control technologies, and the effectiveness of treatments. Therefore, in the current context of complex outbreaks and severe damage caused by plant viral diseases, it is crucial to delve deeper into the research and development of antiviral agents. This review provides a detailed overview of the biological characteristics of current targets for antiviral agents, the mode of interaction between plant virus targets and antivirals, and insights for future drug development. We believe this review will not only facilitate the in-depth analysis of the development of antivirals for crops but also offer valuable perspectives for the development of antiviral agents for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Yuanyou Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Lei Hu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Tongtong Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Libo Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| |
Collapse
|
3
|
Liao YM, Cheng L, Luo RS, Guo Q, Shao WB, Feng YM, Zhou X, Liu LW, Yang S. Discovery of New 1,2,4-Triazole/1,3,4-Oxadiazole-Decorated Quinolinones as Agrochemical Alternatives for Controlling Viral Infection by Inhibiting the Viral Replication and Self-Assembly Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27750-27761. [PMID: 39625458 DOI: 10.1021/acs.jafc.4c05234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Tobacco mosaic virus (TMV), a representative plant virus, is widely known and causes severe crop losses worldwide. In order to ensure the demand for crop and food security, the exploration of novel antiviral agents with outstanding activity and unique mechanisms of action is necessary. Herein, 40 new azole-quinolinone molecules were elaborately designed and systematically evaluated for their anti-TMV activity. Notably, compound A21 had significant therapeutic activity against TMV (EC50 value = 200 μg/mL), which was superior to commercial ningnanmycin (280 μg/mL). Studies on the anti-TMV mechanism showed that compound A21 could suppress the expression level of important TMV genes and affect the assembly of TMV viral particles by disrupting the self-assembly process of TMV coat protein (TMV-CP). In-depth antiviral behaviors were verified by molecular docking, fluorescence titration analysis, and TMV assembly assays, suggesting that compound A21 strongly interacted with TMV coat protein through various interactions. Overall, this promising work discloses a new paradigm for the exploitation of 2-quinolinone-based virucidal agents for hindering plant viral infection through triggering versatile antiviral behavior.
Collapse
Affiliation(s)
- Yan-Mei Liao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Long Cheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Rong-Shuang Luo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qian Guo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Zeng W, Sun Z, Zhang Y, Hu Y, Zhou Q, Qiu Y, Li J, Xue W. New chalcone derivatives containing morpholine-thiadiazole: Design, synthesis and evaluation of against tobacco mosaic virus. Fitoterapia 2024; 179:106272. [PMID: 39447986 DOI: 10.1016/j.fitote.2024.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Twenty chalcone derivatives containing morpholine-thiadiazole were designed and synthesized from the natural product chalcone. The bioactivity test results indicate that some compounds exhibit good antiviral activity against tobacco mosaic virus (TMV). In particular, the EC50 values for the curative and protective activity of S14 against TMV were 91.8 and 130.6 μg/mL, which was better than that of the antiviral agent ningnanmycin (NNM, 237.8, 220.6 μg/mL). The results of preliminary mechanism study indicated that S14 had strong binding capacity and affinity to tobacco mosaic virus coat protein (TMV-CP). In the chlorophyll content assay, the chlorophyll content of tobacco leaves increased significantly after the action of S14, so that it can enhance the photosynthetic capacity of plants. In addition, the results of malondialdehyde (MDA) content assay also indicated that S14 could improve the disease resistance of tobacco.
Collapse
Affiliation(s)
- Wei Zeng
- State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhiling Sun
- State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yufang Zhang
- State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuzhi Hu
- State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qing Zhou
- State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yujiao Qiu
- State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jieyu Li
- State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Borges A, Calvo MLM, Vaz JA, Calhelha RC. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4199. [PMID: 39274589 PMCID: PMC11395905 DOI: 10.3390/ma17174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Wound healing, a complex physiological process orchestrating intricate cellular and molecular events, seeks to restore tissue integrity. The burgeoning interest in leveraging the therapeutic potential of natural substances for advanced wound dressings is a recent phenomenon. Notably, Sericin, a silk-derived protein, and Chelidonium majus L. (C. majus), a botanical agent, have emerged as compelling candidates, providing a unique combination of natural elements that may revolutionize conventional wound care approaches. Sericin, renowned for its diverse properties, displays unique properties that accelerate the wound healing process. Simultaneously, C. majus, with its diverse pharmacological compounds, shows promise in reducing inflammation and promoting tissue regeneration. As the demand for innovative wound care solutions increases, understanding the therapeutic potential of natural products becomes imperative. This review synthesizes current knowledge on Sericin and C. majus, envisioning their future roles in advancing wound management strategies. The exploration of these natural substances as constituents of wound dressings provides a promising avenue for developing sustainable, effective, and biocompatible materials that could significantly impact the field of wound healing.
Collapse
Affiliation(s)
- Ana Borges
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Desarrollo y Evaluación de Formas Farmacéuticas y Sistemas de Liberación Controlada, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - María Luisa Martín Calvo
- Grupo de Investigación en Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Josiana A Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
6
|
Li XL, Sun YP, Wang M, Wang ZB, Kuang HX. Alkaloids in Chelidonium majus L: a review of its phytochemistry, pharmacology and toxicology. Front Pharmacol 2024; 15:1440979. [PMID: 39239653 PMCID: PMC11374730 DOI: 10.3389/fphar.2024.1440979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Chelidonium majus L. (C. majus), commonly known as "Bai Qu Cai" in China, belongs to the genus Chelidonium of the Papaveraceae family. It has rich medicinal value, such as alleviating coughs, asthma, spasms and pain. Recent studies have demonstrated that C. majus is abundant in various alkaloids, which are the primary components of C. majus and have a range of pharmacological effects, including anti-microbial, anti-inflammatory, anti-viral, and anti-tumor effects. So far, 94 alkaloids have been isolated from C. majus, including benzophenanthridine, protoberberine, aporphine, protopine and other types of alkaloids. This paper aims to review the research progress in phytochemistry, pharmacology and toxicology of C. majus alkaloids, in order to provide a theoretical basis for the application of C. majus in the field of medicinal chemistry and to afford reference for further research and development efforts.
Collapse
Affiliation(s)
- Xin-Lan Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Li ZX, Hu JH, Luo RS, Zhang TH, Ding Y, Zhou X, Liu LW, Wu ZB, Yang S. Identification of natural Rutaecarpine as a potent tobacco mosaic virus (TMV) helicase candidate for managing intractable plant viral diseases. PEST MANAGEMENT SCIENCE 2024; 80:805-819. [PMID: 37794206 DOI: 10.1002/ps.7817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Naturally occurring alkaloids are particularly suitable for use as pesticide precursors and further modifications due to their cost-effectiveness, unique mechanism of action, tolerable degradation, and environmental friendliness. The famous tobacco mosaic virus (TMV) is a persistent plant pathogenic virus that can parasitize many plants and severely reduce crop production. To treat TMV disease, TMV helicase acts as a crucial target by hydrolyzing adenosine triphosphate (ATP) to provide energy for double-stranded RNA unwinding. RESULTS To seek novel framework alkaloid leads targeting TMV helicase, this work successfully established an efficient screening platform for TMV helicase inhibitors based on natural alkaloids. In vivo activity screening, enzyme activity detection, and binding assays showed that Rutaecarpine from Evodia rutaecarpa (Juss.) Benth exhibited excellent TMV helicase inhibitory properties [dissociation constant (Kd ) = 1.1 μm, half maximal inhibitory concentration (IC50 ) = 227.24 μm] and excellent anti-TMV ability. Molecular docking and dynamic simulations depicted that Rutaecarpine could stably bind in active pockets of helicase with low binding energy (ΔGbind = -17.8 kcal/mol) driven by hydrogen bonding and hydrophobic interactions. CONCLUSION Given Rutaecarpine's laudable bioactivity and structural modifiability, it can serve as a privileged building block for further pesticide discovery.
Collapse
Affiliation(s)
- Zhen-Xing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin-Hong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Luo SH, Hua J, Liu Y, Li SH. The Chemical Ecology of Plant Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:57-183. [PMID: 39101984 DOI: 10.1007/978-3-031-59567-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.
Collapse
Affiliation(s)
- Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866, Liaoning Province, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, LiuTai Avenue 1166, Wenjiang District, Chengdu, 611137, Sichuan Province, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China.
| |
Collapse
|
9
|
Shao WB, Liao YM, Luo RS, Ji J, Xiao WL, Zhou X, Liu LW, Yang S. Discovery of novel phenothiazine derivatives as new agrochemical alternatives for treating plant viral diseases. PEST MANAGEMENT SCIENCE 2023; 79:4231-4243. [PMID: 37345486 DOI: 10.1002/ps.7623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Plant viral diseases, namely 'plant cancer', are extremely difficult to control. Even worse, few antiviral agents can effectively control and totally block viral infection. There is an urgent need to explore and discover novel agrochemicals with high activity and a unique mode of action to manage these refractory diseases. RESULTS Forty-one new phenothiazine derivatives were prepared and their inhibitory activity against tobacco mosaic virus (TMV) was assessed. Compound A8 had the highest protective activity against TMV, with a half-maximal effective concentration (EC50 ) of 115.67 μg/mL, which was significantly better than that of the positive controls ningnanmycin (271.28 μg/mL) and ribavirin (557.47 μg/mL). Biochemical assays demonstrated that compound A8 could inhibit TMV replication by disrupting TMV self-assembly, but also enabled the tobacco plant to enhance its defense potency by increasing the activities of various defense enzymes. CONCLUSION In this study, novel phenothiazine derivatives were elaborately fabricated and showed remarkable anti-TMV behavior that possessed the dual-action mechanisms of inhibiting TMV assembly and invoking the defense responses of tobacco plants. Moreover, new agrochemical alternatives based on phenothiazine were assessed for their antiviral activities and showed extended agricultural application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yan-Mei Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin Ji
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Li Z, Yang B, Ding Y, Meng J, Hu J, Zhou X, Liu L, Wu Z, Yang S. Insights into a class of natural eugenol and its optimized derivatives as potential tobacco mosaic virus helicase inhibitors by structure-based virtual screening. Int J Biol Macromol 2023; 248:125892. [PMID: 37473893 DOI: 10.1016/j.ijbiomac.2023.125892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Plant diseases caused by malignant and refractory phytopathogenic viruses have considerably restricted crop yields and quality. To date, drug design targeting functional proteins or enzymes of viruses is an efficient and viable strategy to guide the development of new pesticides. Herein, a series of novel eugenol derivatives targeting the tobacco mosaic virus (TMV) helicase have been designed using structure-based virtual screening (SBVS). Structure-activity relationship indicated that 2 t displayed the most powerful bonding capability (Kd = 0.2 μM) along with brilliant TMV helicase ATPase inhibitory potency (IC50 = 141.9 μM) and applausive anti-TMV capability (EC50 = 315.7 μg/mL), ostentatiously outperforming that of commercial Acyclovir (Kd = 23.0 μM, IC50 = 183.7 μM) and Ribavirin (EC50 = 624.3 μg/mL). Molecular dynamics simulations and docking suggested ligand 2 t was stable and bound in the active pocket of the TMV helicase by multiple interactions. Given these superior properties, eugenol-based derivatives could be considered as the novel potential plant viral helicase inhibitors. Furthermore, this effective and feasible SBVS strategy established a valuable screening platform for helicase-targeted drug development.
Collapse
Affiliation(s)
- Zhenxing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Binxin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinhong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
11
|
Liu Q, Zhang C, Fang H, Yi L, Li M. Indispensable Biomolecules for Plant Defense Against Pathogens: NBS-LRR and "nitrogen pool" Alkaloids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111752. [PMID: 37268110 DOI: 10.1016/j.plantsci.2023.111752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
In a complex natural environment, plants have evolved intricate and subtle defense response regulatory mechanisms for survival. Plant specific defenses, including the disease resistance protein nucleotide-binding site leucine-rich repeat (NBS-LRR) protein and metabolite derived alkaloids, are key components of these complex mechanisms. The NBS-LRR protein can specifically recognize the invasion of pathogenic microorganisms to trigger the immune response mechanism. Alkaloids, synthesized from amino acids or their derivatives, can also inhibit pathogens. This study reviews NBS-LRR protein activation, recognition, and downstream signal transduction in plant protection, as well as the synthetic signaling pathways and regulatory defense mechanisms associated with alkaloids. In addition, we clarify the basic regulation mechanism and summarize their current applications and the development of future applications in biotechnology for these plant defense molecules. Studies on the NBS-LRR protein and alkaloid plant disease resistance molecules may provide a theoretical foundation for the cultivation of disease resistant crops and the development of botanical pesticides.
Collapse
Affiliation(s)
- Qian Liu
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Chunhong Zhang
- Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Huiyong Fang
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.
| | - Letai Yi
- Inner Mongolia Medical University, Hohhot, China.
| | - Minhui Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China; Inner Mongolia Institute of Traditional Chinese and Mongolian Medicine, Hohhot, China.
| |
Collapse
|
12
|
Sanguinarine Exhibits Antiviral Activity against Porcine Reproductive and Respiratory Syndrome Virus via Multisite Inhibition Mechanisms. Viruses 2023; 15:v15030688. [PMID: 36992397 PMCID: PMC10052745 DOI: 10.3390/v15030688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), the etiological agent of PRRS, is prevalent worldwide, causing substantial and immense economic losses to the global swine industry. While current commercial vaccines fail to efficiently control PRRS, the development of safe and effective antiviral drugs against PRRSV is urgently required. Alkaloids are natural products with wide pharmacological and biological activities. Herein, sanguinarine, a benzophenanthridine alkaloid that occurs in many plants such as Macleaya cordata, was demonstrated as a potent antagonist of PRRSV. Sanguinarine attenuated PRRSV proliferation by targeting the internalization, replication, and release stages of the viral life cycle. Furthermore, ALB, AR, MAPK8, MAPK14, IGF1, GSK3B, PTGS2, and NOS2 were found as potential key targets related to the anti-PRRSV effect of sanguinarine as revealed by network pharmacology and molecular docking. Significantly, we demonstrated that the combination of sanguinarine with chelerythrine, another key bioactive alkaloid derived from Macleaya cordata, improved the antiviral activity. In summary, our findings reveal the promising potential of sanguinarine as a novel candidate for the development of anti-PRRSV agents.
Collapse
|
13
|
Mohan Kumar R, Anantapur R, Peter A, H V C. Computational investigation of phytoalexins as potential antiviral RAP-1 and RAP-2 (Replication Associated Proteins) inhibitor for the management of cucumber mosaic virus (CMV): a molecular modeling, in silico docking and MM-GBSA study. J Biomol Struct Dyn 2022; 40:12165-12183. [PMID: 34463218 DOI: 10.1080/07391102.2021.1968500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Replication Associated Proteins (RAP-1 and RAP-2) encoded by CMV ORF 1a and ORF 2a are required for the different stages of the viral replication cycle; being multi-functional, they are good inhibitory targets for anti-CMV compounds. As a new perspective for sustainable crop improvement, we investigated the natural plant-based antimicrobial phytoalexins for their anti-CMV potential. Here, we modeled and predicted the functional domains of RAP-1 and RAP-2, docked with a ligand library comprising 128 phytoalexins reported with broad-spectrum activity, determined their binding energies (BEs), molecular interactions, and inhibition constant (Ki), and compared with the reference plant antiviral compounds ribavirin, ningnanmycin, and benzothiadiazole (BTH). Further, the change in Gibb's free energy of binding (ΔG) and the per residue contribution of the selected top-scored ligand molecules was assessed by the prime MM-GBSA approach. Our results revealed RAP-1 as a discontinuous two-domain and RAP-2 as a multi-domain protein. The compounds glyceollidin (9.8 kcal/mol) and moracin D (7.8 kcal/mol) topped the list for RAP-1 and RAP-2 protein targets respectively and also, the lead molecules had energetically more favorable and comparative ΔG values than the top-scored plant antiviral agent ningnanmycin. The evaluation of in vitro toxicity and agrochemical-like properties showed the least toxicity of these anti-CMV compounds. Taken together, our results provide new insights in understanding the inhibitory effects of phytoalexins towards the RAP proteins and could be employed as new promising anti-CMV candidate compounds for their application in agriculture as biopesticides to combat the CMV disease incidence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roshni Mohan Kumar
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Ramachandra Anantapur
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Anitha Peter
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Chaitra H V
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
14
|
Hao DC, Xu LJ, Zheng YW, Lyu HY, Xiao PG. Mining Therapeutic Efficacy from Treasure Chest of Biodiversity and Chemodiversity: Pharmacophylogeny of Ranunculales Medicinal Plants. Chin J Integr Med 2022; 28:1111-1126. [PMID: 35809180 PMCID: PMC9282152 DOI: 10.1007/s11655-022-3576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Ranunculales, comprising of 7 families that are rich in medicinal species frequently utilized by traditional medicine and ethnomedicine, represents a treasure chest of biodiversity and chemodiversity. The phylogenetically related species often have similar chemical profile, which makes them often possess similar therapeutic spectrum. This has been validated by both ethnomedicinal experiences and pharmacological investigations. This paper summarizes molecular phylogeny, chemical constituents, and therapeutic applications of Ranunculales, i.e., a pharmacophylogeny study of this representative medicinal order. The phytochemistry/metabolome, ethnomedicine and bioactivity/pharmacology data are incorporated within the phylogenetic framework of Ranunculales. The most studied compounds of this order include benzylisoquinoline alkaloid, flavonoid, terpenoid, saponin and lignan, etc. Bisbenzylisoquinoline alkaloids are especially abundant in Berberidaceae and Menispermaceae. The most frequent ethnomedicinal uses are arthritis, heat-clearing and detoxification, carbuncle-abscess and sore-toxin. The most studied bioactivities are anticancer/cytotoxic, antimicrobial, and anti-inflammatory activities, etc. The pharmacophylogeny analysis, integrated with both traditional and modern medicinal uses, agrees with the molecular phylogeny based on chloroplast and nuclear DNA sequences, in which Ranunculales is divided into Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae, Papaveraceae, and Eupteleaceae families. Chemical constituents and therapeutic efficacy of each taxonomic group are reviewed and the underlying connection between phylogeny, chemodiversity and clinical uses is revealed, which facilitate the conservation and sustainable utilization of Ranunculales pharmaceutical resources, as well as developing novel plant-based pharmacotherapy.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Li-Jia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yu-Wei Zheng
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Huai-Yu Lyu
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
15
|
Gao R, Xu L, Sun M, Xu M, Hao C, Guo X, Colombari FM, Zheng X, Král P, de Moura AF, Xu C, Yang J, Kotov NA, Kuang H. Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles. Nat Catal 2022. [DOI: 10.1038/s41929-022-00823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Cao J, Zheng Y, Liu T, Liu J, Liu J, Wang J, Sun Q, Li W, Wei Y. Fluorescence, Absorption, Chromatography and Structural Transformation of Chelerythrine and Ethoxychelerythrine in Protic Solvents: A Comparative Study. Molecules 2022; 27:molecules27154693. [PMID: 35897862 PMCID: PMC9331999 DOI: 10.3390/molecules27154693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Chelerythrine (CH) and ethoxychelerythrine (ECH) are chemical reference substances for quality control of Chinese herbal medicines, and ECH is the dihydrogen derivative of CH. In this study, their fluorescence and absorption spectra, as well as their structural changes in different protic solvents were compared. It was observed that their emission fluorescence spectra in methanol were almost the same (both emitted at 400 nm), which may be attributed to the nucleophilic and exchange reactions of CH and ECH with methanol molecules with the common product of 6-methoxy-5,6-dihydrochelerythrine (MCH). When diluted with water, MCH was converted into CH, which mainly existed in the form of positively charged CH+ under acidic and near-neutral conditions with the fluorescence emission at 550 nm. With the increase of pH value of the aqueous solution, CH+ converted to 6-hydroxy-5,6-dihydrochelerythrine (CHOH) with the fluorescence emission at 410 nm. The fluorescence quantum yields of MCH and CHOH were 0.13 and 0.15, respectively, and both the fluorescence intensities were much stronger than that of CH+. It is concluded that CH and ECH can substitute each other in the same protic solvent, which was further verified by high-performance liquid chromatography. This study will help in the investigation of structural changes of benzophenanthridine alkaloids and will provide the possibility for the mutual substitution of standard substances in relevant drug testing.
Collapse
Affiliation(s)
- Jinjin Cao
- Department of Environmental and Chemical Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, China; (J.C.); (T.L.); (J.L.); (J.L.)
| | - Yanhui Zheng
- Department of Preschool and Arts Education, Shijiazhuang Vocational College of Finance & Economics, Shijiazhuang 050061, China
- Correspondence: (Y.Z.); (W.L.); Tel.: +86-13784038302(W.L.)
| | - Ting Liu
- Department of Environmental and Chemical Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, China; (J.C.); (T.L.); (J.L.); (J.L.)
| | - Jiamiao Liu
- Department of Environmental and Chemical Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, China; (J.C.); (T.L.); (J.L.); (J.L.)
| | - Jinze Liu
- Department of Environmental and Chemical Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, China; (J.C.); (T.L.); (J.L.); (J.L.)
| | - Jing Wang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (J.W.); (Q.S.); (Y.W.)
| | - Qirui Sun
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (J.W.); (Q.S.); (Y.W.)
| | - Wenhong Li
- Department of Environmental and Chemical Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, China; (J.C.); (T.L.); (J.L.); (J.L.)
- Correspondence: (Y.Z.); (W.L.); Tel.: +86-13784038302(W.L.)
| | - Yongju Wei
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (J.W.); (Q.S.); (Y.W.)
| |
Collapse
|
17
|
Chen J, Luo X, Chen Y, Wang Y, Peng J, Xing Z. Recent Research Progress: Discovery of Anti-Plant Virus Agents Based on Natural Scaffold. Front Chem 2022; 10:926202. [PMID: 35711962 PMCID: PMC9196591 DOI: 10.3389/fchem.2022.926202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Plant virus diseases, also known as “plant cancers”, cause serious harm to the agriculture of the world and huge economic losses every year. Antiviral agents are one of the most effective ways to control plant virus diseases. Ningnanmycin is currently the most successful anti-plant virus agent, but its field control effect is not ideal due to its instability. In recent years, great progress has been made in the research and development of antiviral agents, the mainstream research direction is to obtain antiviral agents or lead compounds based on structural modification of natural products. However, no antiviral agent has been able to completely inhibit plant viruses. Therefore, the development of highly effective antiviral agents still faces enormous challenges. Therefore, we reviewed the recent research progress of anti-plant virus agents based on natural products in the past decade, and discussed their structure-activity relationship (SAR) and mechanism of action. It is hoped that this review can provide new inspiration for the discovery and mechanism of action of novel antiviral agents.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jixiang Chen,
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Yuan T, Wang Z, Liu D, Zeng H, Liang J, Hu D, Gan X. Ferulic acid derivatives with piperazine moiety as potential antiviral agents. PEST MANAGEMENT SCIENCE 2022; 78:1749-1758. [PMID: 35001496 DOI: 10.1002/ps.6794] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/26/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant virus diseases are difficult to control and severely threaten the productivity of crops, which leads to huge financial losses. To discover the new antiviral drugs, 34 novel ferulic acid derivatives with piperazine moiety were synthesized, and the antiviral activities were systematically screened as well. RESULTS Bioassay results indicated that most of the target compounds had outstanding antiviral activities against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) in vivo. In particular, compound E2 exhibited remarkable curative activities to TMV and CMV with EC50 values of 189.0 and 401.7 μg/mL compared to those for ningnanmycin (387.0, 519.3 μg/mL) and ribavirin (542.1, 721.5 μg/mL). And then the mechanisms of compound E2 were studied by chlorophyll content, differentially expressed proteins and genes tests. CONCLUSION The excellent antiviral activity of compound E2 was closely associated with the increase in host photosynthesis, which was confirmed by chlorophyll content, differentially expressed proteins and genes assays. Compound E2 can be considered as a lead structure for the discovery of new antiviral agents. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Juncheng Liang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
19
|
In Silico Pesticide Discovery for New Anti-Tobacco Mosaic Virus Agents: Reactivity, Molecular Docking, and Molecular Dynamics Simulations. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Considerable data are available regarding the molecular genetics of the tobacco mosaic virus. The disease caused by the tobacco mosaic virus is still out of control due to the lack of an efficient functional antagonist chemical molecule. Extensive research was carried out to try to find effective new anti-tobacco mosaic virus agents, however no study could find an effective agent which could completely inhibit the disease caused by the virus. In recent years, molecular docking, combined with molecular dynamics, which is considered to be one of the most important methods of drug discovery and design, were used to evaluate the type of binding between the ligand and its protein enzyme. The aim of the current work was to assess the in silico anti-tobacco mosaic virus activity for a selection of 41 new and 2 reference standard compounds. These compounds were chosen to examine their reactivity and binding efficiency with the tobacco mosaic virus coat protein (PDB ID: 2OM3). A comparison was made between the activity of the selected compounds and that for ningnanmycin and ribavirin, which are common inhibitors of plant viruses. The simulation results obtained from the molecular docking and molecular dynamics showed that two compounds of the antofine analogues could bind with the tobacco mosaic virus coat protein receptor better than ningnanmycin and ribavirin.
Collapse
|
20
|
Scopolia mild mottle virus: a new tobamovirus isolated from a Scopolia japonica plant in Japan. Arch Virol 2022; 167:947-951. [PMID: 35103854 DOI: 10.1007/s00705-022-05371-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 11/02/2022]
Abstract
A tobamovirus was isolated from leaves of a Scopolia japonica plant showing mild yellowing. Back-inoculation of healthy Scopolia japonica with the isolated virus induced mild mottle on upper leaves. Phylogenetic analysis based on coat protein and replicase protein sequences revealed that the newly isolated tobamovirus was most closely related to yellow tailflower mild mottle virus (YTMMV). The newly isolated tobamovirus shared the highest nucleotide sequence identity (71%) with YTMMV, which is lower than the cutoff (90%) set for species demarcation in the genus Tobamovirus. Thus, our result suggested that scopolia mild mottle virus (SMMoV) is a new tobamovirus that infects Scopolia japonica plants in Japan.
Collapse
|
21
|
Iobbi V, Lanteri AP, Minuto A, Santoro V, Ferrea G, Fossa P, Bisio A. Autoxidation Products of the Methanolic Extract of the Leaves of Combretum micranthum Exert Antiviral Activity against Tomato Brown Rugose Fruit Virus (ToBRFV). Molecules 2022; 27:760. [PMID: 35164024 PMCID: PMC8838289 DOI: 10.3390/molecules27030760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) is a new damaging plant virus of great interest from both an economical and research point of view. ToBRFV is transmitted by contact, remains infective for months, and to-date, no resistant cultivars have been developed. Due to the relevance of this virus, new effective, sustainable, and operator-safe antiviral agents are needed. Thus, 4-hydroxybenzoic acid was identified as the main product of the alkaline autoxidation at high temperature of the methanolic extract of the leaves of C. micranthum, known for antiviral activity. The autoxidized extract and 4-hydroxybenzoic acid were assayed in in vitro experiments, in combination with a mechanical inoculation test of tomato plants. Catechinic acid, a common product of rearrangement of catechins in hot alkaline solution, was also tested. Degradation of the viral particles, evidenced by the absence of detectable ToBRFV RNA and the loss of virus infectivity, as a possible consequence of disassembly of the virus coat protein (CP), were shown. Homology modeling was then applied to prepare the protein model of ToBRFV CP, and its structure was optimized. Molecular docking simulation showed the interactions of the two compounds, with the amino acid residues responsible for CP-CP interactions. Catechinic acid showed the best binding energy value in comparison with ribavirin, an anti-tobamovirus agent.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| | - Anna Paola Lanteri
- CeRSAA—Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (A.M.)
| | - Andrea Minuto
- CeRSAA—Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (A.M.)
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Giuseppe Ferrea
- Azienda Sanitaria Locale 1, Regione Liguria, Via Aurelia 97, Bussana, 18038 Sanremo, Italy;
| | - Paola Fossa
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| |
Collapse
|
22
|
Li Y, Ye S, Hu Z, Hao N, Bo X, Liang H, Tian X. Identification of anti-TMV active flavonoid glycosides and their mode of action on virus particles from Clematis lasiandra Maxim. PEST MANAGEMENT SCIENCE 2021; 77:5268-5277. [PMID: 34310837 DOI: 10.1002/ps.6569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tobacco mosaic virus (TMV) is a disreputable plant pathogen that causes a decline in the quality and yield of various economic crops. Natural products are important potential sources of biopesticides to control TMV. This study focuses on the discovery of anti-TMV active flavonoid glycosides and their mode of action on TMV particles from Clematis lasiandra Maxim. RESULTS A new benzoyl acylated flavonoid glycoside, kaempferol 3-O-(2''-benzoyl)-β-d-glucopyranosyl-7-O-α-l-rhamnopyranoside (1), and nine known flavonoids (2-10) were identified first from C. lasiandra. The hydroxyl group at C-7, E-p-coumarate at C-6'' in the Glc of C-6, and the glucuronic acid at C-3 were functional groups for the antiviral flavonoid glycosides. Flavonoids 2, 5, and 6 showed higher inactivation efficacies of 64.62% to 82.54% compared with ningnanmycin at 500 μg ml-1 . The protective and curative efficacies for 2 and 5 were 57.44-59.00% and 41.17-43.92% at 500 μg ml-1 , respectively. Compound 5 showed higher TMV systemic resistance with control efficacies of 41.64%, 36.56% and 27.62% at concentrations of 500, 250 and 125 μg ml-1 compared with ningnanmycin in K326 tobaccos, respectively. Compound 5 can directly fracture TMV particles into small fragments combining with the fusion phenomena, and TMV-CP was an important target for 5 to break TMV particles. CONCLUSION Flavonoid glycosides from C. lasiandra showed potent antiviral activities against TMV with multiple modes of action including inactivation, protective and curative effects, and inducing systemic resistance. TMV-CP was an important target for active flavonoid glycosides to fracture TMV particles. The results provided evidence that flavonoid glycosides from C. lasiandra have the potential to control TMV.
Collapse
Affiliation(s)
- Yantao Li
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Shengwei Ye
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Zilong Hu
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Nan Hao
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Xin Bo
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Huaguang Liang
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Xiangrong Tian
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
23
|
Valipour M, Zarghi A, Ebrahimzadeh MA, Irannejad H. Therapeutic potential of chelerythrine as a multi-purpose adjuvant for the treatment of COVID-19. Cell Cycle 2021; 20:2321-2336. [PMID: 34585628 PMCID: PMC8506812 DOI: 10.1080/15384101.2021.1982509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multifunctional nature of phytochemicals and their chemical diversity has attracted attention to develop leads originated from nature to fight COVID-19. Pharmacological activities of chelerythrine and its congeners have been studied and reported in the literature. This compound simultaneously has two key therapeutic effects for the treatment of COVID-19, antiviral and anti-inflammatory activities. Chelerythrine can prevent hyper-inflammatory immune response through regulating critical signaling pathways involved in SARS-CoV-2 infection, such as alteration in Nrf2, NF-κB, and p38 MAPK activities. In addition, chelerythrine has a strong protein kinase C-α/-β inhibitory activity suitable for cerebral vasospasm prevention and eryptosis reduction, as well as beneficial effects in suppressing pulmonary inflammation and fibrosis. In terms of antiviral activity, chelerythrine can fight with SARS-CoV-2 through various mechanisms, such as direct-acting mechanism, viral RNA-intercalation, and regulation of host-based antiviral targets. Although chelerythrine is toxic in vitro, the in vivo toxicity is significantly reduced due to its structural conversion to alkanolamine. Its multifunctional action makes chelerythrine a prominent compound for the treatment of COVID-19. Considering precautions related to the toxicity at higher doses, it is expected that this compound is useful in combination with proper antivirals to reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|