1
|
Xin Y, Liang J, Ren C, Song W, Huang B, Liu Y, Zhang S. Physiological and transcriptomic responses of silkworms to graphene oxide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116434. [PMID: 38728944 DOI: 10.1016/j.ecoenv.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.
Collapse
Affiliation(s)
- Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Jiawen Liang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chunjiu Ren
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Song
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Bokai Huang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Liu
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Zhang JZ, Li XZ, Yin YB, Luo SC, Wang DX, Zheng H, Liu YX. High-throughput sequencing-based analysis of the composition and diversity of the endophyte community in roots of Stellera chamaejasme. Sci Rep 2024; 14:8607. [PMID: 38615120 PMCID: PMC11016073 DOI: 10.1038/s41598-024-59055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/06/2024] [Indexed: 04/15/2024] Open
Abstract
Stellera chamaejasme (S. chamaejasme) is an important medicinal plant with heat-clearing, detoxifying, swelling and anti-inflammatory effects. At the same time, it is also one of the iconic plants of natural grassland degradation in northwest China, playing a key role in the invasion process. Plant endophytes live in healthy plant tissues and can synthesize substances needed for plant growth, induce disease resistance in host plants, and enhance plant resistance to environmental stress. Therefore, studying the root endophytes of S. chamaejasme is of great significance for mining beneficial microbial resources and biological prevention and control of S. chamaejasme. This study used Illumina MiSeq high-throughput sequencing technology to analyze the composition and diversity of endophytes in the roots of S. chamaejasme in different alpine grasslands (BGC, NMC and XGYZ) in Tibet. Research results show that the main phylum of endophytic fungi in the roots of S. chamaejasme in different regions is Ascomycota, and the main phyla of endophytic bacteria are Actinobacteria, Proteobacteria and Firmicutes (Bacteroidota). Overall, the endophyte diversity of the NMC samples was significantly higher than that of the other two sample sites. Principal coordinate analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA) results showed significant differences in the composition of endophytic bacterial and fungal communities among BGC, NMC and XGYZ samples. Co-occurrence network analysis of endophytes showed that there were positive correlations between fungi and some negative correlations between bacteria, and the co-occurrence network of bacteria was more complex than that of fungi. In short, this study provides a vital reference for further exploring and utilizing the endophyte resources of S. chamaejasme and an in-depth understanding of the ecological functions of S. chamaejasme endophytes.
Collapse
Affiliation(s)
- Jun-Ze Zhang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Xin-Zhong Li
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ye-Bing Yin
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Si-Cen Luo
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Dong-Xu Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Heng Zheng
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China.
| | - Yi-Xuan Liu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China.
| |
Collapse
|
3
|
Zhao L, Zhang Y, Yin Q, Chen G, Li W, Li N. Research progress on the toxicity of toxic Traditional Herbals from Thymelaeaceae. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117594. [PMID: 38110134 DOI: 10.1016/j.jep.2023.117594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants from the Thymelaeaceae family are widely distributed in tropical and temperate regions, with approximately 113 species used as Traditional Herbals. There are numerous applications for them, such as treating leukemia, AIDS, and liver cancer. It should be noted that around 20% of these plants have shown harmful side effects when used in clinical applications, including solid irritations to the skin and mucous membranes, carcinogenic effects, organ damage, vomiting, and diarrhea. AIM OF THE STUDY This paper aims to review the toxic side effects, toxic compounds, toxic mechanisms, and detoxification methods of Traditional Herbals in Thymelaeaceae, guiding their safe clinical uses. MATERIALS AND METHODS This review employed the keywords "Thymelaeaceae," 48 different "genus," 966 "species," and the combination of "toxicity" to identify the medicinal value and toxicity of plants from Thymelaeaceae in scientific databases (Pubmed, SciFinder Scholar, Elsevier, Web of Science, and CNKI). Information relevant to the toxicity of Traditional Herbals from Thymelaeaceae up to June 2023 has been summarized. The plant names have been checked with "World Flora Online" (www.worldfloraonline.org). RESULTS 28 toxic Traditional Herbals from 13 genera within the Thymelaeaceae family were categorized. Toxicities were summarized at the cellular, animal, and clinical levels. The toxic substances are primarily concentrated in the Daphne L. and Wikstroemia Endl. genera, with terpenes being the main toxic components. The toxicity mechanism is primarily associated with the mitochondrial pathways. Detoxification and enhanced efficacy can be achieved through processing methods such as vinegar-processing and sweat-soaking. CONCLUSIONS Medicinal plants in the Thymelaeaceae exhibit significant pharmacological activities, such as anti-HIV and anti-tumor effects, indicating a broad potential for application. However, their clinical uses are hindered by their inherent toxicity. Researching the toxic components and mechanisms of these Traditional Herbals and exploring more effective detoxification methods can contribute to unveiling the latent value of these medicinal plants from Thymelaeaceae.
Collapse
Affiliation(s)
- Lingnan Zhao
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanping Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qianqian Yin
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, Japan
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Huang P, Yan X, Yu B, He X, Lu L, Ren Y. A Comprehensive Review of the Current Knowledge of Chlorfenapyr: Synthesis, Mode of Action, Resistance, and Environmental Toxicology. Molecules 2023; 28:7673. [PMID: 38005396 PMCID: PMC10675257 DOI: 10.3390/molecules28227673] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Creating new insecticide lead compounds based on the design and modification of natural products is a novel process, of which chlorfenapyr is a typical successful example. Chlorfenapyr is an arylpyrrole derivative that has high biological activity, a wide insecticidal spectrum, and a unique mode of action. For decades, a series of chlorfenapyr derivatives were designed and synthesized continuously, of which many highly active insecticidal compounds were discovered sequentially. However, due to the widespread application of chlorfenapyr and its degradation properties, some adverse effects, including pest resistance and environmental toxicity, occurred. In this review, a brief history of the discovery and development of chlorfenapyr is first introduced. Then, the synthesis, structural modification, structure activity relationship, and action mechanism of arylpyrroles are summarized. However, challenges and limitations still exist, especially in regard to the connection with pest resistance and environmental toxicology, which is discussed at the end of this review. This comprehensive summary of chlorfenapyr further promotes its progress and sensible application for pest management.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (P.H.); (X.Y.); (B.Y.); (X.H.); (L.L.)
| |
Collapse
|
5
|
Li T, Yuan L, Huang Y, Zhang A, Jiang D, Yan S. Assessment of cytisine as an insecticide candidate for Hyphantria cunea management: Toxicological, biochemical, and control potential insights. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105638. [PMID: 37945268 DOI: 10.1016/j.pestbp.2023.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
In the present study, the toxicological effects of cytisine on the H. cunea larvae were investigated, and the potential of cytisine as a botanical insecticide through field simulation experiments was evaluated. The results showed that cytisine treatment (0.25-2.5%) exerted significant biotoxic effects on the H. cunea larvae, including diminished weight, disruption of both positive (HcCKS1, HcPLK, HcCCNA) and negative (HcGADD and HcCDKN) regulatory genes associated with larval growth, increased mortality, and heightened oxidative damage (H2O2 and MDA). Cytisine treatment significantly reduced glucose content and inhibited the expression of key rate-limiting enzyme genes (HcPFK, HcPK, HcHK1, HcCS, and HcIDH2) within glycolysis and the tricarboxylic acid cycle pathways. Under cytisine treatment, detoxification enzyme activities (CarE and GST) and expression of detoxification genes (HcCarE1, HcCarE2, HcCarE3, HcGST1, and HcGST3) were inhibited in H. cunea larvae. An increased contents of SOD, CAT, ASA and T-AOC, as well as expression of antioxidant enzyme genes HcSOD1 and HcCAT2, was found in cytisine-treated H. cunea larvae. Simultaneously, this is accompanied by a significant reduction in the expression of four antioxidant enzyme genes (e.g., HcPOD1 and HcPOD2). In the field experiment, a cytisine aqueous solution (25 g/L) with pre-sprayed and directly sprayed ways demonstrated potent insecticidal activity against H. cunea larvae, achieving a mortality rate of 53.75% and 100% at 24 h, respectively. Taken together, cytisine has significantly weight inhibition and lethal toxicity on the H. cunea larvae, and can be developed as a botanical insecticide for H. cunea control.
Collapse
Affiliation(s)
- Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yi Huang
- Heilongjiang Forestry Vocational Technical College, Mudanjiang 157011, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
6
|
He X, Lu L, Huang P, Yu B, Peng L, Zou L, Ren Y. Insect Cell-Based Models: Cell Line Establishment and Application in Insecticide Screening and Toxicology Research. INSECTS 2023; 14:104. [PMID: 36835673 PMCID: PMC9965340 DOI: 10.3390/insects14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
During the past decades, research on insect cell culture has grown tremendously. Thousands of lines have been established from different species of insect orders, originating from several tissue sources. These cell lines have often been employed in insect science research. In particular, they have played important roles in pest management, where they have been used as tools to evaluate the activity and explore the toxic mechanisms of insecticide candidate compounds. This review intends to first briefly summarize the progression of insect cell line establishment. Then, several recent studies based on insect cell lines coupled with advanced technologies are introduced. These investigations revealed that insect cell lines can be exploited as novel models with unique advantages such as increased efficiency and reduced cost compared with traditional insecticide research. Most notably, the insect cell line-based models provide a global and in-depth perspective to study the toxicology mechanisms of insecticides. However, challenges and limitations still exist, especially in the connection between in vitro activity and in vivo effectiveness. Despite all this, recent advances have suggested that insect cell line-based models promote the progress and sensible application of insecticides, which benefits pest management.
Collapse
|
7
|
Role of PI3K/Akt-Mediated Nrf2/HO-1 Signaling Pathway in Resveratrol Alleviation of Zearalenone-Induced Oxidative Stress and Apoptosis in TM4 Cells. Toxins (Basel) 2022; 14:toxins14110733. [PMID: 36355983 PMCID: PMC9694162 DOI: 10.3390/toxins14110733] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
Zearalenone (ZEA) is a common mycotoxin that induces oxidative stress (OS) and affects the male reproductive system in animals. Resveratrol (RSV) has good antioxidant activity and can activate nuclear factor erythroid 2-related factor (Nrf2) to protect cells through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. The objective of this study was to investigate the protective effect and the mechanism of RSV on OS and apoptosis in TM4 cells induced by ZEA. Prior to being exposed to ZEA, TM4 cells were pretreated with RSV or the PI3K/Akt inhibitor LY294002. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assays. Flow cytometry was used to determine the level of apoptosis and intracellular reactive oxygen species (ROS). The expression of poly ADP-ribose polymerase (PARP), caspase-3, BCL2-associated X (Bax)/B-cell lymphoma-2 (Bcl-2), and PI3K/Akt-mediated Nrf2/heme oxygenase 1 (HO-1) signaling pathway-related proteins was evaluated by Western blotting. Nrf2 siRNA transfection and LY294002 treatment were used to investigate the role of the Nrf2/HO-1 and PI3K/Akt signaling pathways in RSV alleviation of ZEA-induced OS. The results showed that pretreatment with RSV significantly reduced the expression of apoptosis-related proteins and increased cell viability. Catalase (CAT) activity and glutathione (GSH) levels were also increased, whereas malondialdehyde (MDA) and ROS levels decreased (p < 0.05). RSV also upregulated Akt phosphorylation, Nrf2 nuclear translocation, and HO-1 expression under conditions of OS (p < 0.05). Transfection with Nrf2 siRNA abolished the protective effects of RSV against ZEA-induced cytotoxicity (p < 0.05), ROS accumulation (p < 0.05), and apoptosis (p < 0.05). LY294002 completely blocked the RSV-mediated increase in Nrf2 nuclear translocation (p < 0.05), HO-1 expression (p < 0.05), and cytoprotective activity (p < 0.05). Collectively, the above findings indicate that RSV can protect against ZEA-induced OS and apoptosis in TM4 cells by PI3K/Akt-mediated activation of the Nrf2/HO-1 signaling pathway.
Collapse
|
8
|
Ren Y, He X, Yang Y, Cao Y, Li Q, Lu L, Peng L, Zou L. Mitochondria-Mediated Apoptosis and Autophagy Participate in Buprofezin-Induced Toxic Effects in Non-Target A549 Cells. TOXICS 2022; 10:551. [PMID: 36287832 PMCID: PMC9610203 DOI: 10.3390/toxics10100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Buprofezin (BUP) is an insecticide used for control of sucking pests. Its widespread use has raised concerns about possible adverse effects on the environment, and especially human health. The mechanism of toxicity of BUP, with respect to human health, is still unclear. Consequently, human A549 cells were employed to clarify the cytotoxicity and toxic mechanism of BUP at the molecular and cellular levels. The outcomes revealed BUP latent toxicity to A549 in a time- and dose-related way. Moreover, BUP induced mitochondrial dysfunction associated with mitochondrial membrane potential collapse, mitochondrial calcium overload, and ROS aggregation, ultimately resulting in the apoptosis and autophagy of A549 cells. Symbolic apoptotic and autophagic modifications were detected, including leakage of cyt-c, elevation of Bax/Bcl-2, activation of cas-9/-3, constitution of autophagic vacuoles, promotion of Beclin-1, conversion of LC3-II, and reduction of p62. Additionally, in total, 1216 differentially expressed genes (DEGs) were defined after BUP treatment. Several apoptosis- and autophagy-related genes, such as BCL2, ATG5, and ATG16, down- or upregulated at the RNA transcription level, and functional DEGs enrichment analysis showed their involvement in the metabolism of xenobiotics by cytochrome P450, mTOR signalling pathway, and AMPK signalling pathway. Results confirmed that BUP could induce cytotoxicity associated with mitochondria-mediated programmed cell death in A549 cells.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuan He
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yanting Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yanan Cao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lidan Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
Ren Y, He X, Yan X, Yang Y, Li Q, Yao T, Lu L, Peng L, Zou L. Unravelling the Polytoxicology of Chlorfenapyr on Non-Target HepG2 Cells: The Involvement of Mitochondria-Mediated Programmed Cell Death and DNA Damage. Molecules 2022; 27:molecules27175722. [PMID: 36080487 PMCID: PMC9457613 DOI: 10.3390/molecules27175722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Chlorfenapyr (CHL) is a type of insecticide with a wide range of insecticidal activities and unique targets. The extensive use of pesticides has caused an increase in potential risks to the environment and human health. However, the potential toxicity of CHL and its mechanisms of action on humans remain unclear. Therefore, human liver cells (HepG2) were used to investigate the cytotoxic effect and mechanism of toxicity of CHL at the cellular level. The results showed that CHL induced cellular toxicity in HepG2 cells and induced mitochondrial damage associated with reactive oxygen species (ROS) accumulation and mitochondrial calcium overload, ultimately leading to apoptosis and autophagy in HepG2 cells. Typical apoptotic changes occurred, including a decline in the mitochondrial membrane potential, the promotion of Bax/Bcl-2 expression causing the release of cyt-c into the cytosol, the activation of cas-9/-3, and the cleavage of PARP. The autophagic effects included the formation of autophagic vacuoles, accumulation of Beclin-1, transformation of LC3-II, and downregulation of p62. Additionally, DNA damage and cell cycle arrest were detected in CHL-treated cells. These results show that CHL induced cytotoxicity associated with mitochondria-mediated programmed cell death (PCD) and DNA damage in HepG2 cells.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuan He
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiyue Yan
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yanting Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tian Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lidan Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence:
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
10
|
Gu G, Jiang M, Hu H, Qiao W, Jin H, Hou T, Tao K. Neochamaejasmin B extracted from Stellera chamaejasme L. induces apoptosis through caspase-10-dependent way in insect neuronal cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21892. [PMID: 35478464 DOI: 10.1002/arch.21892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
To explore the toxicity mechanisms of neochamaejasmin B (NCB) extracted from Stellera chamaejasme L., we first evaluated its cytotoxicity in neuronal cells of Helicoverpa zea (AW1 cells). NCB inhibited cell growth and was cytotoxic to AW1 cells in a dose-dependent manner. Further, transmission electron microscopy (TEM) was used to analyze the microstructure, and typical apoptotic characteristics were observed in AW1 cells treated with NCB. Moreover, the NCB-induced apoptosis was dose dependent. Subsequently, we explored the mechanism of apoptosis. A decline in the mitochondrial membrane potential (MMP) was found. Also, the levels of Bax were increased with increases in drug concentration, but there was no statistical difference in Bcl-2 levels at different NCB doses. Caspase-3 and caspase-10 activity was increased. These findings confirmed that NCB induced apoptosis in AW1 cells through a caspase-10-dependent mechanism. The results provide the basic information needed for understanding the toxicity and mechanisms of action of NCB, which could potentially be used to develop NCB as a new insecticide.
Collapse
Affiliation(s)
- Guirong Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingfang Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hanying Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Weijie Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
11
|
Ren Y, Xia H, Lu L, Zhao G. Characterization of the complete chloroplast genome of Hordeum vulgare L. var. trifurcatum with phylogenetic analysis. Mitochondrial DNA B Resour 2021; 6:1852-1854. [PMID: 34124367 PMCID: PMC8183546 DOI: 10.1080/23802359.2021.1935343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
In the present study, the complete chloroplast genome of Hordeum vulgare L. var. trifurcatum was sequenced, assembled and compared with closely related species. The chloroplast genome of Hordeum vulgare L. var. trifurcatum was composed of 84 protein-coding genes (PCG), 8 ribosomal RNA (rRNA) genes, and 38 transfer RNA (tRNA) genes. The Hordeum vulgare L. var. trifurcatum chloroplast genome is 136,485 bp in size, with the GC content of 38.32%. Phylogenetic analysis based on the combined chloroplast gene dataset indicated that the Hordeum vulgare L. var. trifurcatum exhibited a close relationship with Hordeum vulgare subsp. spontaneum and Hordeum vulgare subsp. vulgare.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Hu Xia
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Lidan Lu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| |
Collapse
|