1
|
Miao J, Shi Y, Tang Y, Xu Y, Li X, Han L, Dai T, Liu X. Resistant risk and resistance mechanism of florylpicoxamid in Colletotrichum gloeosporioides isolated from Chinese walnut. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106093. [PMID: 39277419 DOI: 10.1016/j.pestbp.2024.106093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024]
Abstract
Colletotrichum gloeosporioides is the causal pathogen for the devastating walnuts anthracnose. A novel quinone inside inhibitor (QiI) fungicide florylpicoxamid has strong inhibitory efficacy against C. gloeosporioides. This study looked into the resistance risk and mechanism of C. gloeosporioides to florylpicoxamid. The basal level sensitivity of C. gloeosporioides isolates (n = 102) to florylpicoxamid was established with an average 50% mycelial growth inhibition concentration (EC50) value of 0.069 ± 0.035 μg/mL. Six stable florylpicoxamid-resistant mutants with resistance factors of >1000 were produced. The fitness of every mutant was much lower than that of their parental isolates. In general, the resistance risk of C. gloeosporioides to florylpicoxamid would be moderate. Molecular docking results revealed that the amino acid substitutions A37V, and S207L in CgCytb lead to a reduction in the binding affinity between florylpicoxamid and CgCytb, indicating that these two mutations (S207L and A37V in CgCytb) indeed confer florylpicoxamid resistance in C. gloeosporioides. These findings offer a fresh viewpoint on the mechanism underlying QiI fungicide resistance and could support the prudent application of florylpicoxamid in the future to combat walnut anthracnose.
Collapse
Affiliation(s)
- Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yifei Shi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yidong Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanrui Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiuhuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lirong Han
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China.
| |
Collapse
|
2
|
Naqvi SAH, Farhan M, Ahmad M, Kiran R, Fatima N, Shahbaz M, Akram M, Sathiya Seelan JS, Ali A, Ahmad S. Deciphering fungicide resistance in Phytophthora: mechanisms, prevalence, and sustainable management approaches. World J Microbiol Biotechnol 2024; 40:302. [PMID: 39150639 DOI: 10.1007/s11274-024-04108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
The genus Phytophthora contains more than 100 plant pathogenic species that parasitize a wide range of plants, including economically important fruits, vegetables, cereals, and forest trees, causing significant losses. Global agriculture is seriously threatened by fungicide resistance in Phytophthora species, which makes it imperative to fully comprehend the mechanisms, frequency, and non-chemical management techniques related to resistance mutations. The mechanisms behind fungicide resistance, such as target-site mutations, efflux pump overexpression, overexpression of target genes and metabolic detoxification routes for fungicides routinely used against Phytophthora species, are thoroughly examined in this review. Additionally, it assesses the frequency of resistance mutations in various Phytophthora species and geographical areas, emphasizing the rise of strains that are resistant to multiple drugs. The effectiveness of non-chemical management techniques, including biological control, host resistance, integrated pest management plans, and cultural practices, in reducing fungicide resistance is also thoroughly evaluated. The study provides important insights for future research and the development of sustainable disease management strategies to counter fungicide resistance in Phytophthora species by synthesizing current information and identifying knowledge gaps.
Collapse
Affiliation(s)
- Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Farhan
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ahmad
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Rafia Kiran
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, 44444, Punjab, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Salman Ahmad
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| |
Collapse
|
3
|
Li C, Fu Y, Li X, Zhang C, Liu P, Miao J, Liu X. Evaluation of SYP-34773's resistance risk and its impact on the activity of mitochondrial respiratory electron transport chain complex I in Phytophthora litchii. PEST MANAGEMENT SCIENCE 2024; 80:1877-1884. [PMID: 38041622 DOI: 10.1002/ps.7918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND SYP-34773 is a low-toxicity pyrimidine amine compound, which was synthesized by modifying the lead compound diflumetorim. Previous literature has shown that it can strongly inhibit the mycelial growth of several important plant pathogens, including Phytophthora litchii. However, the resistance risk of SYP-34773 has not been reported for P. litchii. RESULTS The mean effective concentration (EC50 ) value of SYP-34773 against the mycelial growth of 111 P. litchii isolates was 0.108 ± 0.008 μg mL-1 , which can be used as the baseline sensitivity for SYP-34773 resistance detection in the future. Six mutants were obtained from two parental strain through fungicide induction, whose resistance factors fell between 194- and 687-fold, with stability. Results regarding mycelial growth, sporangial production, sporangial germination, zoospore release, cystspore germination, and pathogenicity showed that the mutants' compound fitness index values were significantly lower than those of their parental isolate. Furthermore, there was no cross-resistance between SYP-34773 and diflumetorim in P. litchii. Significant inhibition of the mitochondrial complex I enzyme activity in two wild-type P. litchii isolates, but not in mutants, was observed upon treatment with SYP-34773. CONCLUSION The resistance risk of SYP-34773 in P. litchii is moderate, and resistance management strategies should be adopted in field use. SYP-34773 is a mitochondrial complex I inhibitor, and SYP-34773-resistant P. litchii isolates did not show cross-resistance against diflumetorim. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yixin Fu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinyue Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengfei Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Miao J, Gao X, Tang Y, Dai T, Liu X. Characteristics of famoxadone-resistant mutants of Phytophthora litchii and their effect on lychee fruit quality. Int J Food Microbiol 2024; 411:110528. [PMID: 38118356 DOI: 10.1016/j.ijfoodmicro.2023.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Lychee downy blight (LDB), a common disease caused by the oomycete Phytophthora litchii, poses a significant threat to both pre- and post-harvest stages, leading to substantial economic losses. Famoxadone, a quinone outside inhibitor fungicide, was registered for controlling LDB in China in 2002. However, limited information is available regarding the risk, mechanism, and impact on lychee fruit quality associated with famoxadone resistance. In this study, we determined the sensitivity of 133 P. litchii isolates to famoxadone, yielding a mean EC50 value of 0.46 ± 0.21 μg/mL. Through fungicide adaption, we derived resistant mutants with M124I and Y131C substitutions in PlCyt b (Cytochrome b in P. litchii) from wild-type isolates. In vitro assessments revealed that the fitness of the resistant mutants was significantly lower compared to the parental isolates. These laboratory findings demonstrate a moderate resistance risk of P. litchii to famoxadone. Molecular docking analyses indicated that the M124I and Y131C alterations disrupted hydrogen bonds and weakened the binding energy between famoxadone and PlCyt b. This indicates that the M124I and Y131C changes do indeed confer famoxadone resistance in P. litchii. Infection caused by famoxadone-resistant mutants exhibited a decreased or comparable impact on the characteristic traits of lychee fruit compared to the sensitive isolate. For future detection of famoxadone-resistant strains, AS-PCR primers were designed based on the M124I substitution.
Collapse
Affiliation(s)
- Jianqiang Miao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xuheng Gao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yidong Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Tan Dai
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China.
| |
Collapse
|
5
|
Gao X, Li W, Wang S, Xie B, Peng Q, Zhang C, Miao J, Dai T, Liu X. Attributes of Cyazofamid-Resistant Phytophthora litchii Mutants and Its Impact on Quality of Litchi Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:219-229. [PMID: 38131297 DOI: 10.1021/acs.jafc.3c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this study, we determined the sensitivity of 148 Phytophthora litchii isolates to cyazofamid, yielding a mean EC50 value of 0.0091 ± 0.0028 μg/mL. Through fungicide adaptation, resistant mutants (RMs) carrying the F220L substitution in PlCyt b were derived from wild-type isolates. Notably, these RMs exhibited a lower fitness compared with the parental isolates. Molecular docking analysis further revealed that the F220L change contributed to a decrease in the binding energy between cyazofamid and PlCyt b. The total phenol and flavonoid contents in the litchi pericarp treated with cyazofamid on day 5 were significantly higher than in other treatments. Overall, the laboratory assessment indicated a moderate risk of cyazofamid resistance in P. litchii, but the emergence of the F220L change could lead to a high level of resistance. Thus, cyazofamid represents a promising agrochemical for controlling postharvest litchi downy blight and extending the shelf life of litchi fruits.
Collapse
Affiliation(s)
- Xuheng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Wenhao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Shuai Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Bowen Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Qin Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
6
|
Dai T, Yuan K, Shen J, Miao J, Liu X. Ametoctradin resistance risk and its resistance-related point mutation in PsCytb of Phytophthora sojae confirmed using ectopic overexpression. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105747. [PMID: 38225090 DOI: 10.1016/j.pestbp.2023.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
Ametoctradin is mainly used to treat plant oomycetes diseases, but the mechanism and resistance risk of ametoctradin in Phytophthora sojae remain unknown. This study determined the ametoctradin sensitivity of 106 P. sojae isolates and found that the frequency distribution of the median effective concentration (EC50) of ametoctradin was unimodal with a mean value of 0.1743 ± 0.0901 μg/mL. Furthermore, ametoctradin-resistant mutants had a substantially lower fitness index compared with that of wild-type isolates. Although ametoctradin did not show cross-resistance to other fungicides, negative cross-resistance to amisulbrom was found. In comparison to sensitive isolates, the control efficacy of ametoctradin to resistant mutants was lower, implying a low to moderate ametoctradin resistance risk in P. sojae. All ametoctradin-resistant mutants contained a S33L point mutation in PsCytb. A system with overexpression of PsCytb in the nucleus was established. When we ectopically overexpressed S33L-harboring PsCytb, P. sojae developed ametoctradin resistance. We hypothesized that the observed negative resistance between ametoctradin and amisulbrom could be attributed to conformational changes in the binding cavity of PsCytb at residues 33 and 220.
Collapse
Affiliation(s)
- Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kang Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayi Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China.
| |
Collapse
|
7
|
Yin F, Qin Z. Long-Chain Molecules with Agro-Bioactivities and Their Applications. Molecules 2023; 28:5880. [PMID: 37570848 PMCID: PMC10421526 DOI: 10.3390/molecules28155880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Long-chain molecules play a vital role in agricultural production and find extensive use as fungicides, insecticides, acaricides, herbicides, and plant growth regulators. This review article specifically addresses the agricultural biological activities and applications of long-chain molecules. The utilization of long-chain molecules in the development of pesticides is an appealing avenue for designing novel pesticide compounds. By offering valuable insights, this article serves as a useful reference for the design of new long-chain molecules for pesticide applications.
Collapse
Affiliation(s)
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
8
|
Ke D, Meng H, Lei W, Zheng Y, Li L, Wang M, Zhong R, Wang M, Chen F. Prevalence of H6Y mutation in β-tubulin causing thiophanate-methyl resistant in Monilinia fructicola from Fujian, China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105262. [PMID: 36464367 DOI: 10.1016/j.pestbp.2022.105262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Brown rot disease broke out in stone fruit orchards of Fujian, China in 2019, despite pre-harvest application of methyl benzimidazole carbamate (MBC). To determine the reason, a total of 44 Monilinia fructicola strains were collected from nectarine, plum and peach fruits in this study, among which 79.5% strains were resistant to thiophanate-methyl, indicated by discriminatory dose of 5 μg/mL. The resistance of these strains was confirmed by treating detached peach fruit with label rates of formulated thiophanate-methyl which only completely inhibit infection of the sensitive strains, but not the resistant strains. Further analysis of the mechanism of MBC resistance revealed that all resistant strains carry a H6Y mutation in β-tubulin protein Tub2, which was only reported previously in the M. fructicola strains from California, USA, and do not display obvious fitness penalties, as no significant defects in mycelial growth rate, sporulation, conidia germination, aggressiveness on detached peach fruit and temperature sensitivity was detected. In addition, we found that diethofencarb, the agent for managing MBC-resistance strains, was unable to inhibit growth of the H6Y strains. Taken together, our study, for the first time, identified a mutation form of H6Y in the β-tubulin protein of M. fructicola in China, rendering the strains wide resistance to thiophanate-methyl. This mechanism of M. fructicola gaining resistance to MBC fungicides needs to be fully considered, when designing management strategies to control brown rot disease in stone fruit orchards.
Collapse
Affiliation(s)
- Dufang Ke
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Meng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Universities Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenting Lei
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yulong Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linhan Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyi Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Zhong
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mo Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Universities Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengping Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|