1
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
2
|
Rizk R, Devost D, Pétrin D, Hébert TE. KCTD Proteins Have Redundant Functions in Controlling Cellular Growth. Int J Mol Sci 2024; 25:4993. [PMID: 38732215 PMCID: PMC11084553 DOI: 10.3390/ijms25094993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gβ1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gβ1. Our work demonstrates a unique relationship between KCTD proteins and Gβ1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate.
Collapse
Affiliation(s)
| | | | | | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, QC H3G 1Y6, Canada; (R.R.); (D.D.); (D.P.)
| |
Collapse
|
3
|
Balasco N, Esposito L, Smaldone G, Salvatore M, Vitagliano L. A Comprehensive Analysis of the Structural Recognition between KCTD Proteins and Cullin 3. Int J Mol Sci 2024; 25:1881. [PMID: 38339159 PMCID: PMC10856315 DOI: 10.3390/ijms25031881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
KCTD ((K)potassium Channel Tetramerization Domain-containing) proteins constitute an emerging class of proteins involved in fundamental physio-pathological processes. In these proteins, the BTB domain, which represents the defining element of the family, may have the dual role of promoting oligomerization and favoring functionally important partnerships with different interactors. Here, by exploiting the potential of recently developed methodologies for protein structure prediction, we report a comprehensive analysis of the interactions of all KCTD proteins with their most common partner Cullin 3 (Cul3). The data here presented demonstrate the impressive ability of this approach to discriminate between KCTDs that interact with Cul3 and those that do not. Indeed, reliable and stable models of the complexes were only obtained for the 15 members of the family that are known to interact with Cul3. The generation of three-dimensional models for all KCTD-Cul3 complexes provides interesting clues on the determinants of the structural basis of this partnership as clear structural differences emerged between KCTDs that bind or do not bind Cul3. Finally, the availability of accurate three-dimensional models for KCTD-Cul3 interactions may be valuable for the ad hoc design and development of compounds targeting specific KCTDs that are involved in several common diseases.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | | | | | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| |
Collapse
|
4
|
Pirone L, Smaldone G, Spinelli R, Barberisi M, Beguinot F, Vitagliano L, Miele C, Di Gaetano S, Raciti GA, Pedone E. KCTD1: A novel modulator of adipogenesis through the interaction with the transcription factor AP2α. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158514. [PMID: 31465887 DOI: 10.1016/j.bbalip.2019.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/23/2023]
Abstract
Adipogenesis has an important role in regulating energy balance, tissue homeostasis and disease pathogenesis. 3T3-L1 preadipocytes have been widely used as an in vitro model for studying adipocyte differentiation. We here show that KCTD1, a member of the potassium channel containing tetramerization domain proteins, plays an active role in adipogenesis. In particular, we show KCTD1 expression 3T3-L1 cells increases upon adipogenesis induction. Treatment of 3T3-L1 preadipocytes with Kctd1-specific siRNA inhibited the differentiation, as indicated by reduction of expression of the specific adipogenic markers C/ebpα, Pparγ2, Glut4, and Adiponectin. Moreover, we also show that the protein physically interacts with the transcription factor AP2α, a known inhibitor of adipogenesis, both in vitro and in cells. Interestingly, our data indicate that KCTD1 promotes adipogenesis through the interaction with AP2α and by removing it from the nucleus. Collectively, these findings disclose a novel role for KCTD1 and pave the way for novel strategies aimed at modulating adipogenesis.
Collapse
Affiliation(s)
- Luciano Pirone
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | | | - Rosa Spinelli
- URT "Genomica del Diabete", Istituto per l'Endocrinologia e l'Oncologia Sperimentale "Gaetano Salvatore", CNR, Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy
| | - Manlio Barberisi
- Dipartimento Scienze Anastesiologiche, Chirurgiche E Dell'emergenza, Università Della Campania-Luigi Vanvitelli, Caserta, Italy
| | - Francesco Beguinot
- URT "Genomica del Diabete", Istituto per l'Endocrinologia e l'Oncologia Sperimentale "Gaetano Salvatore", CNR, Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy
| | | | - Claudia Miele
- URT "Genomica del Diabete", Istituto per l'Endocrinologia e l'Oncologia Sperimentale "Gaetano Salvatore", CNR, Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy
| | | | - Gregory Alexander Raciti
- URT "Genomica del Diabete", Istituto per l'Endocrinologia e l'Oncologia Sperimentale "Gaetano Salvatore", CNR, Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Italy
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy.
| |
Collapse
|
5
|
Smaldone G, Balasco N, Pirone L, Caruso D, Di Gaetano S, Pedone EM, Vitagliano L. Molecular basis of the scalp-ear-nipple syndrome unraveled by the characterization of disease-causing KCTD1 mutants. Sci Rep 2019; 9:10519. [PMID: 31324836 PMCID: PMC6642198 DOI: 10.1038/s41598-019-46911-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
The scalp-ear-nipple (SEN) syndrome is an autosomal-dominant disorder characterized by cutis aplasia of the scalp and malformations of breast, external ears, digits, and nails. Genetic analyses have shown that the disease is caused by missense mutations of the KCTD1 protein, although the functional/structural basis of SEN insurgence is hitherto unknown. With the aim of unravelling the molecular basis of the SEN syndrome associated with KCTD1 mutations we here expressed and characterized several disease causing mutants. A preliminary dissection of the protein provides insights into the role that individual domains play in KCTD1 stability. The characterization of SEN-causing mutants indicates that, although the mutation sites are located in distant regions of the BTB domain or of the pre-BTB region, all of them are unable to interact with the transcription factor AP-2α, a well-known KCTD1 biological partner. Notably, all mutations, including the one located in the pre-BTB region, produce a significant destabilization of the protein. The structural role of the pre-BTB region in KCTD1 and other proteins of the family is corroborated by its sequence conservation in orthologs and paralogs. Interestingly, SEN-causing mutations also favor the tendency of KCTD1 to adopt structural states that are characterized by the ability to bind the β-amyloid fluorescent dye thioflavin T. The formation of aggregation-prone species may have important implications for the disease etiology. Collectively, these findings provide an intriguing picture of the functional and structural alterations induced by KCTD1 mutations that ultimately lead to disease.
Collapse
Affiliation(s)
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Daniela Caruso
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134, Napoli, Italy.,Università degli Studi della Campania "Luigi Vanvitelli", Viale Abramo Lincoln 5, 81100, Caserta, Italy
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134, Napoli, Italy.
| |
Collapse
|
6
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
7
|
Targeting oncogenic transcriptional corepressor Nac1 POZ domain with conformationally constrained peptides by cyclization and stapling. Bioorg Chem 2018; 80:1-10. [DOI: 10.1016/j.bioorg.2018.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
|
8
|
Pirone L, Smaldone G, Esposito C, Balasco N, Petoukhov MV, Spilotros A, Svergun DI, Di Gaetano S, Vitagliano L, Pedone EM. Proteins involved in sleep homeostasis: Biophysical characterization of INC and its partners. Biochimie 2016; 131:106-114. [PMID: 27678190 DOI: 10.1016/j.biochi.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/29/2022]
Abstract
The insomniac protein of Drosophila melanogaster (INC) has a crucial role in sleep homeostasis as flies lacking the inc gene exhibit strikingly reduced and poorly consolidated sleep. Nevertheless, in vitro characterizations of INC biophysical properties and partnerships have not been yet reported. Here we report the heterologous expression of the protein and its characterization using a number of different techniques. Present data indicate that INC is endowed with a remarkable stability, which results from the cooperation of the two protein domains. Moreover, we also demonstrated and quantified the ability of INC to recognize its potential partners Cul3 and dGRASP. Taking into account the molecular organization of the protein, these two partners may be anchored simultaneously. Although there is no evident relationship between the reported INC functions and dGRASP binding, our data suggest that INC may cooperate as ligase adaptor to dGRASP ubiquitination. SAXS data collected on the complex between INC and Cul3, which represent the first structural characterization of this type of assemblies, clearly highlight the highly dynamic nature of these complexes. This strongly suggests that the functional behavior of these proteins cannot be understood if dynamic effects are not considered. Finally, the strict analogy of the biochemical/biophysical properties of INC and of its human homolog KCTD5 may reliably indicate that this latter protein and/or the closely related proteins KCTD2/KCTD17 may play important roles in human sleep regulation.
Collapse
Affiliation(s)
- Luciano Pirone
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy
| | | | - Carla Esposito
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy
| | - Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alessandro Spilotros
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
9
|
Smaldone G, Pirone L, Pedone E, Marlovits T, Vitagliano L, Ciccarelli L. The BTB domains of the potassium channel tetramerization domain proteins prevalently assume pentameric states. FEBS Lett 2016; 590:1663-71. [PMID: 27152988 DOI: 10.1002/1873-3468.12203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023]
Abstract
Potassium channel tetramerization domain-containing (KCTD) proteins are involved in fundamental physio-pathological processes. Here, we report an analysis of the oligomeric state of the Bric-à-brack, Tram-track, Broad complex (BTB) domains of seven distinct KCTDs belonging to five major clades of the family evolution tree. Despite their functional and sequence variability, present electron microscopy data highlight the occurrence of well-defined pentameric states for all domains. Our data also show that these states coexist with alternative forms which include open pentamers. Thermal denaturation analyses conducted using KCTD1 as a model suggest that, in these proteins, different domains cooperate to their overall stability. Finally, negative-stain electron micrographs of KCTD6(BTB) in complex with Cullin3 show the presence of assemblies with a five-pointed pinwheel shape.
Collapse
Affiliation(s)
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy.,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.), Catania, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
| | - Thomas Marlovits
- Center for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
| | - Luciano Ciccarelli
- Center for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| |
Collapse
|
10
|
Barone D, Balasco N, Vitagliano L. KCTD5 is endowed with large, functionally relevant, interdomain motions. J Biomol Struct Dyn 2015; 34:1725-35. [PMID: 26336981 DOI: 10.1080/07391102.2015.1090343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The KCTD family is an emerging class of proteins that are involved in important biological processes whose biochemical and structural properties are rather poorly characterized or even completely undefined. We here used KCTD5, the only member of the family with a known three-dimensional structure, to gain insights into the intrinsic structural stability of the C-terminal domain (CTD) and into the mutual dynamic interplay between the two domains of the protein. Molecular dynamics (MD) simulations indicate that in the simulation timescale (120 ns), the pentameric assembly of the CTD is endowed with a significant intrinsic stability. Moreover, MD analyses also led to the identification of exposed β-strand residues. Being these regions intrinsically sticky, they could be involved in the substrate recognition. More importantly, simulations conducted on the full-length protein provide interesting information of the relative motions between the BTB domain and the CTD of the protein. Indeed, the dissection of the overall motion of the protein is indicative of a large interdomain twisting associated with limited bending movements. Notably, MD data indicate that the entire interdomain motion is pivoted by a single residue (Ser150) of the hinge region that connects the domains. The functional relevance of these motions was evaluated in the context of the functional macromolecular machinery in which KCTD5 is involved. This analysis indicates that the interdomain twisting motion here characterized may be important for the correct positioning of the substrate to be ubiquitinated with respect to the other factors of the ubiquitination machinery.
Collapse
Affiliation(s)
- Daniela Barone
- a Institute of Biostructures and Bioimaging, C.N.R. , Via Mezzocannone 16, Naples I-80134 , Italy.,b Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche , Seconda Università di Napoli , Caserta 81100 , Italy
| | - Nicole Balasco
- a Institute of Biostructures and Bioimaging, C.N.R. , Via Mezzocannone 16, Naples I-80134 , Italy.,b Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche , Seconda Università di Napoli , Caserta 81100 , Italy
| | - Luigi Vitagliano
- a Institute of Biostructures and Bioimaging, C.N.R. , Via Mezzocannone 16, Naples I-80134 , Italy
| |
Collapse
|
11
|
de Paola I, Pirone L, Palmieri M, Balasco N, Esposito L, Russo L, Mazzà D, Di Marcotullio L, Di Gaetano S, Malgieri G, Vitagliano L, Pedone E, Zaccaro L. Cullin3-BTB interface: a novel target for stapled peptides. PLoS One 2015; 10:e0121149. [PMID: 25848797 PMCID: PMC4388676 DOI: 10.1371/journal.pone.0121149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022] Open
Abstract
Cullin3 (Cul3), a key factor of protein ubiquitination, is able to interact with dozens of different proteins containing a BTB (Bric-a-brac, Tramtrack and Broad Complex) domain. We here targeted the Cul3–BTB interface by using the intriguing approach of stabilizing the α-helical conformation of Cul3-based peptides through the “stapling” with a hydrocarbon cross-linker. In particular, by combining theoretical and experimental techniques, we designed and characterized stapled Cul3-based peptides embedding the helix 2 of the protein (residues 49–68). Intriguingly, CD and NMR experiments demonstrate that these stapled peptides were able to adopt the helical structure that the fragment assumes in the parent protein. We also show that some of these peptides were able to bind to the BTB of the tetrameric KCTD11, a substrate adaptor involved in HDAC1 degradation, with high affinity (~ 300–600 nM). Cul3-derived staple peptides are also able to bind the BTB of the pentameric KCTD5. Interestingly, the affinity of these peptides is of the same order of magnitude of that reported for the interaction of full-length Cul3 with some BTB containing proteins. Moreover, present data indicate that stapling endows these peptides with an increased serum stability. Altogether, these findings indicate that the designed stapled peptides can efficiently mimic protein-protein interactions and are potentially able to modulate fundamental biological processes involving Cul3.
Collapse
Affiliation(s)
- Ivan de Paola
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
| | | | | | - Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Second University of Napoli, Caserta, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
| | | | - Daniela Mazzà
- Department of Molecular Medicine, La Sapienza University, Roma, Italy
| | | | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
| | | | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
- * E-mail: (EP); (LZ)
| | - Laura Zaccaro
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
- * E-mail: (EP); (LZ)
| |
Collapse
|
12
|
Williams MJ, Goergen P, Phad G, Fredriksson R, Schiöth HB. The Drosophila Kctd-family homologue Kctd12-like modulates male aggression and mating behaviour. Eur J Neurosci 2014; 40:2513-26. [PMID: 24830553 DOI: 10.1111/ejn.12619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 04/13/2014] [Indexed: 12/19/2022]
Abstract
In Drosophila, serotonin (5-HT) regulates aggression, mating behaviour and sleep/wake behaviour through different receptors. Currently, how these various receptors are themselves regulated is still not completely understood. The KCTD12-family of proteins, which have been shown to modify G-protein-coupled receptor (GPCR) signalling in mammals, are one possibility of auxiliary proteins modulating 5-HT receptor signalling. The KCTD12-family was found to be remarkably conserved and present in species from C. elegans to humans. The Drosophila KCTD12 homologue Kctd12-like (Ktl) was highly expressed in both the larval and adult CNS. By performing behavioural assays in male Drosophila, we now reveal that Ktl is required for proper male aggression and mating behaviour. Previously, it was shown that Ktl is in a complex with the Drosophila 5-HT receptor 5-HT7, and we observed that both Ktl and the 5-HT1A receptor are required in insulin-producing cells (IPCs) for proper adult male behaviour, as well as for hyperaggressive activity induced by the mammalian 5-HT1A receptor agonist 8-hydroxy-2-dipropylaminotetralin-hydrobromide. Finally, we show that Ktl expression in the IPCs is necessary to regulate locomotion and normal sleep/wake patterns in Drosophila, but not the 5-HT1A receptor. Similar to what was observed with mammalian KCTD12-family members that interact physically with a GPCR receptor to regulate desensitization, in Drosophila Ktl may function in GPCR 5-HT receptor pathways to regulate their signalling, which is required for proper adult male behaviour.
Collapse
Affiliation(s)
- Michael J Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
13
|
Molecular recognition of Cullin3 by KCTDs: insights from experimental and computational investigations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1289-98. [PMID: 24747150 DOI: 10.1016/j.bbapap.2014.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/26/2014] [Accepted: 04/09/2014] [Indexed: 02/08/2023]
Abstract
Recent investigations have highlighted a key role of the proteins of the KCTD (K-potassium channel tetramerization domain containing proteins) family in several fundamental biological processes. Despite the growing importance of KCTDs, our current understanding of their biophysical and structural properties is very limited. Biochemical characterizations of these proteins have shown that most of them act as substrate adaptor in E3 ligases during protein ubiquitination. Here we present a characterization of the KCTD5-Cullin3 interactions which are mediated by the KCTD5 BTB domain. Isothermal titration calorimetry experiments reveal that KCTD5 avidly binds the Cullin3 (Cul3). The complex presents a 5:5 stoichiometry and a dissociation constant of 59 nM. Molecular modeling and molecular dynamics simulations clearly indicate that the two proteins form a stable (KCTD5-Cul3)(5) pinwheel-shaped heterodecamer in which two distinct KCTD5 subunits cooperate in the binding of each cullin chain. Molecular dynamics simulations indicate that different types of interactions contribute to the stability of the assembly. Interestingly, residues involved in Cul3 recognitions are conserved in the KCTD5 orthologs and paralogs implicated in important biological processes. These residues are also rather well preserved in most of the other KCTD proteins. By using molecular modeling techniques, the entire ubiquitination system including the E3 ligase, the E2 conjugating enzyme and ubiquitin was generated. The analysis of the molecular architecture of this complex machinery provides insights into the ubiquitination processes which involve E3 ligases with a high structural complexity.
Collapse
|
14
|
Correale S, Esposito C, Pirone L, Vitagliano L, Di Gaetano S, Pedone E. A biophysical characterization of the folded domains of KCTD12: insights into interaction with the GABAB2 receptor. J Mol Recognit 2014; 26:488-95. [PMID: 23996491 DOI: 10.1002/jmr.2291] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 01/31/2023]
Abstract
Recent investigations have shown that members of the KCTD family play important roles in fundamental biological processes. Despite their roles, very limited information is available on their structures and molecular organization. By combining different experimental and theoretical techniques, we have here characterized the two folded domains of KCTD12, an integral component and modulator of the GABAB2 receptor. Secondary prediction methods and CD spectroscopy have shown that the N-terminal domain KCTD12BTB assumes an α/β structure, whereas the C-terminal domain KCTD12H1 is predominantly characterized by a β-structure. Binding assays indicate that the two domains independently expressed show a good affinity for each other. This suggests that the overall protein is likely endowed with a rather compact structure with two interacting structured domains joint by a long disordered region. Notably, both KCTD12BTB and KCTD12H1 are tetrameric when individually expressed. This finding could modify the traditional view that ascribes only to POZ/BTB domain a specific oligomerization role. The first quantification of the affinity of KCTD12POZ/BTB for the C-terminal region of GABAB2 shows that it falls in the low micromolar range. Interestingly, we also demonstrate that a GABAB2 -related peptide is able to bind KCTD12BTB with a very high affinity. This peptide may represent a useful tool for modulating KCTD12/GABAB2 interaction in vitro and may also constitute the starting point for the development of peptidomimetic compounds with a potential for therapeutic applications.
Collapse
Affiliation(s)
- Stefania Correale
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134, Napoli, Italy; Kedrion S.p.A, 80029 S. Antimo, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Thermal and chemical stability of two homologous POZ/BTB domains of KCTD proteins characterized by a different oligomeric organization. BIOMED RESEARCH INTERNATIONAL 2013; 2013:162674. [PMID: 24307990 PMCID: PMC3838848 DOI: 10.1155/2013/162674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022]
Abstract
POZ/BTB domains are widespread modules detected in a variety of different biological contexts. Here, we report a biophysical characterization of the POZ/BTB of KCTD6, a protein that is involved in the turnover of the muscle small ankyrin-1 isoform 5 and, in combination with KCTD11, in the ubiquitination and degradation of HDAC1. The analyses show that the domain is a tetramer made up by subunits with the expected α/β structure. A detailed investigation of its stability, carried out in comparison with the homologous pentameric POZ/BTB domain isolated from KCTD5, highlights a number of interesting features, which are shared by the two domains despite their different organization. Their thermal/chemical denaturation curves are characterized by a single and sharp inflection point, suggesting that the denaturation of the two domains is a cooperative two-state process. Furthermore, both domains present a significant content of secondary structure in their denatured state and a reversible denaturation process. We suggest that the ability of these domains to fold and unfold reversibly, a property that is somewhat unexpected for these oligomeric assemblies, may have important implications for their biological function. Indeed, these properties likely favor the formation of heteromeric associations that may be essential for the intricate regulation of the processes in which these proteins are involved.
Collapse
|
16
|
Interaction of cellular poly(C)-binding protein 2 with nonstructural protein 1β is beneficial to Chinese highly pathogenic porcine reproductive and respiratory syndrome virus replication. Virus Res 2012; 169:222-30. [DOI: 10.1016/j.virusres.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/21/2022]
|
17
|
Krabichler B, Rostasy K, Baumann M, Karall D, Scholl-Bürgi S, Schwarzer C, Gautsch K, Spreiz A, Kotzot D, Zschocke J, Fauth C, Haberlandt E. Novel Mutation in Potassium Channel related Gene KCTD7 and Progressive Myoclonic Epilepsy. Ann Hum Genet 2012; 76:326-31. [DOI: 10.1111/j.1469-1809.2012.00710.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|